

AL IMAM MOHAMMAD IBN SAUD ISLAMIC UNIVERSITY COLLEGE OF ENGINEERING Department of Mechanical Engineering

Course Information			
Course Code and Name:	ME471 Introduction to Finite Element Method		
Credit Hours:	3 (3 Lecture + 1 Tutorial)		
Prerequisites:	MATH 226 Linear Algebra, MATH 345 Numerical Methods		

Course Description

Virtual formulation, Finite element analysis: shape formation, equilibrium conditions, element classification, and assembly of elements, modeling methodology. Structures and elements: trusses, beams, 2-D solids, 3-D solids, axisymmetric solids, thin-walled structures. Dynamic analysis. Heat transfer and thermal analysis.

Textbook						
Title	An Introduction to the Finite Element Method					
Authors	J.N. Reddy					
Publisher	Mcgraw Hill Series in	Year and Edition	3 rd Ed., 2005			
	Mechanical Engineering					

Course Contents			
Introduction to finite element analysis			
Direct stiffness approach: Spring elements			
Bar and truss elements			
Introduction to differential equations and strong formulation			
Principle of minimum potential energy and weak formulation			
Finite element formulation of linear elasticity			
The constant strain triangle			
The quadrilateral element			
Practical considerations in FEM modelling			
Convergence of analysis results			
Higher order elements			

	\sim	
Academic Coordinator	Signature ()	
Dr. Rashid Khan	ľ K.	

Official Stamp