

AL IMAM MOHAMMAD IBN SAUD ISLAMIC UNIVERSITY COLLEGE OF ENGINEERING Department of Electrical Engineering

Course Information			
Course Code and Name:	EE 221: Fundamentals of Electric Circuits		
Credit Hours:	3 (3 Lecture + 1 Tutorial)		
Prerequisites:	Math 105 (Calculus 1), Physics 118,		
_	PHYS 120, and GE 101		

Course Description

Basic laws: Ohm's, KVL, KCL. Resistive networks. Circuit analysis techniques: nodal and mesh analysis. Network theorems: Thevenin's, Norton's, source transformations, superposition, maximum power transfer. Energy storage elements. Phasor technique for steady-state sinusoidal response. Transient analysis of first-order circuits

Textbook					
Title	Fundamentals of Electric Circuits				
Authors	C. K. Alexander and M. N. O. Sadiku				
Publisher	McGraw-Hill	Year and Edition	Fifth Edition, 2006.		

Course Contents			
Introduction to Circuit Analysis and Design: Overview, SI Units, Voltage, Current, Power and Energy			
Basic Components and Electric Circuits Sources, Resistance Ohm's Law			
Voltage and Current Laws: Nodes and Branches; Kirchhoff's Laws; Single-loop Circuit			
Voltage and Current Laws:(cont.) Resistors in Series and Parallel; Voltage Division; Current Division			
Basic Nodal and Mesh Analysis: Introduction; Nodal Analysis; The Supernode			
Basic Nodal and Mesh Analysis: (cont.) Mesh Analysis The Supermesh Node vs. Mesh Comparison			
Circuit Analysis Techniques: Linearity, Superposition, Source Transformations, Thevenin and Norton			
Equivalents			
Circuit Analysis Techniques: (cont.) Maximum Power Transfer, Delta-to-Wye Equivalent Circuits			
Capacitors and Inductors: Inductors, Capacitors, Series and Parallel Combinations			
Basic RL and RC Circuits: RL circuits RC circuits			
Basic RL and RC Circuits: (cont.) Unit-step, pulse functions. Natural and force response Driven circuits			
Sinusoidal Steady State Analysis: Characteristics, Forced Response, Complex Forcing Function, The phasor,			
Impedance and Admittance			
Sinusoidal Steady State Analysis: (cont.) Node-Voltage Mesh-Current Methods, Superposition, Source			
Transformations, Thevenin and Norton Equivalents			
AC Circuit Power Analysis			

Academic Coordinator	Signature
Fawzi S. AlOrifi	FR

Official Stamp