
1

Al Imam Mohammad Ibn Saud Islamic University
College of Engineering

Department of Electrical Engineering

Digital System Laboratory Manual EE332

2

Index

1. Program 1: MULTI BYTE ADDITION..…………………….3

2. Program 2: MULTI BYTE SUBTRACTION…………………..5

3. Program 3: MULTI BYTE MULTIPLICATION……………….7

4. Program 4: MULTI BYTE DIVISION………..…………………9

5. Program 5:CONVERSION OF BCD TO ASCII NUMBER ………..12

6. Program 6:BLOCK TRANSFER …………………..……..15

7. Program 7:FACTORIAL OF A NUMBER …………………..18

8. Program 8: GENERATION OF FIBONACCI SERIES…………..20

9. Program 9:CONVERSION PACKED BCD TO UNPACKED BCD…..22

10. Program 10:CONVERSION OF BCD TO HEXADECIMAL …24

11. Program 11: SORTING IN ASCENDING ORDER……......26

12. Program 12: SORTING IN DESCENDING ORDER…….....29

13. Program 13: SORTIN 8279 KEYBOARD DISPLAY……….31

14. Program 14:GENERATION OF SINE WAVE BY 8255……..34

3

Program No: 1.MULTI BYTE ADDITION

Aim: Write an 8086 Assembly Language program to Add two multi byte numbers and store the
result as the third number.

DATA SEGMENT
N1DB 55H, 66H, 77H
N2 DB 11H, 22H, 33H
RESULTDB3H DUP (00)
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA
MOV DS, AX
MOV SI, OFFSET N1
MOV DI, OFFSET N2
MOV BX, OFFSET RESULT
CLC
MOV CX, 0003H
MOV AX, 0000H

BACK:MOV AL, [SI]
MOV DL, [DI]
ADC AL, DL
MOV [BX], AL
INC SI
INC DI
INC BX
DEC CX
JNZ BACK
MOV AH, 4CH
INT 21H
INT 3H

 CODE ENDS
 END START

RESULT:

4

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

Viva Questions:

1. What is the purpose of BX register?

2. What is the Function of CLC?

3. What is the other instruction which can be used instead of MOV SI offset N1?

4. What is the function of MOV AH, 4CH & INT 21H?

5. What is the purpose of INT 3H?

5

Program No. 2: MULTI BYTE SUBTRACTION

Aim: Write an 8086 Assembly Language program to subtract two multi byte numbers and store
the result as the third number

DATA SEGMENT
N1 DB 55H, 66H, 77H, 88H
N2 DB 11H, 22H, 33H, 44H
RESULT DB 4H DUP(00)
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA

MOV DS, AX
MOV SI, OFFSET N1
MOV DI, OFFSET N2
MOV BX, OFFSET RESULT
CLC
MOV CX, 0004H
MOV AX, 0000H
BACK: MOV AL, [SI]
MOV DL, [DI]
SBB AL, DL
MOV [BX], AL
INC SI
INC DI
INC BX
LOOP BACK
MOV AH, 4CH
INT 21H
INT 3H

CODE ENDS
END START

RESULT:

6

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

Viva Questions:

1. Why subtract with carry instruction is used in the loop?

2. What is the purpose served by BX register?

3. Why subtraction is done with AL register why not with AX ?

4. What is the other instruction which can be used instead of MOV DI, offset N2 ?

7

Program No.3: MULTI BYTE MULTIPLICATION

Aim: Write an 8086 Assembly Language program to multiply two multi byte numbers and store
the result as the third number

DATA SEGMENT
N1 DB 05H, 04H, 02H
N2 DB 01H, 02H, 03H
RESULT DB 4H DUP (00)
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA
MOV DS, AX
MOV SI, OFFSET N1
MOV DI, OFFSET N2
MOV BX, OFFSET RESULT
MOV CL, 03H
MOV AX, 0000H
MOV DX, 0000H
BACK: MOV AL, [SI]
MOV CH, [DI]
MUL DH
MOV [BX], AL
INC SI
INC DI
INC BX
LOOP BACK
MOV AH, 4CH
INT 21H
INT 3H

CODE ENDS
END START

RESULT:

8

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

Viva Questions:

1. What is the use of stack pointer?

2. What is a directive?

3. What is a pseudo operation?

4. ORG 2000H implies what?

5. Al register is used why not AX?

9

Program No. 4: MULTI BYTE DIVISION

Aim: Write an 8086 Assembly Language program to divide two multi byte numbers and store
the result as the third number

DATA SEGMENT
N1 DB 55H, 66H, 99H
N2DB11H, 22H, 33H
RESULT DB 3H DUP(00)
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE, DS:DATA
START: MOV AX, DATA

 MOV DS, AX
 MOV SI, OFFSET N1
 MOV DI, OFFSET N2
 MOV BX, OFFSET RESULT
 MOV CL, 03H
 MOV AX, 0000H
 MOV DX, 0000H
 BACK: MOV AL, [SI]
 MOV CH, [DI]
 DIV CH
 MOV [BX], AL
 INC SI
 INC DI
 INC BX
 LOOP BACK
 MOV AH, 4CH
 INT 21H
 INT 3H
CODE ENDS
END START

 RESULT:

10

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

11

Viva Questions:
1. Why AL has been used and not AX?

2. What happens if num1 contains 0AAH and num2 contains 0FFH. ?

3. How do you account for the difference obtained in previous question?

4. Why should AX be used not AL. ?

5. What happens if num1 and num2 values are interchanged?

6. If carry is set to 1 before subtraction what is the instruction to be used?

7. What is an extended accumulator?

8. AL and BL are used for multiplying why not AX & BX?

9. Instead of using MOV BL is it not possible to MUL num2?

10. What is the instruction used for signed multiplication?

12

Program No. 5: CONVERTION OF BCD TO ASCII NUMBER

Aim: Write an 8086 Assembly Language program to convert BCD to ASCII number

DATA SEGMENT
N1 DB 56H
N2 DB 02H DUP (00)
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE, DS:DATA

START:MOV AX, DATA
MOV DS, AX
XOR AX, AX
MOV AL, N1
MOV SI, OFFSET N2
MOV BL, AL
AND AL, 0F0H
ADD AL, 30H
MOV CL, 4H
ROR BL, CL
AND BL, 0FH
ADD BL, 30H
MOV [SI] , BL
MOV AH, 4CH
INT 21H
INT 3H

CODE ENDS
END START

RESULT:

13

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

14

Viva Questions:

1. What is the difference between adding 30h and OR 30H to a BCD number to conversion
toASCII?

2. Why unpacking is necessary during the conversion?

3. What is the ASCII character for symbol A?

4. What is the ASCII character for symbol zero ‘0’?

5. What is ROR instruction will do?

15

Program No. 6: BLOCK TRANSFER

Aim:
To write an ALP using 8088 to transfer a block of memory content from one location to other
location.

DATA SEGMENT
N1 DB 01H,02H,03H
DATA ENDS
EXTRA SEGMENT
N2 DB 03H DUP (00)
EXTRA ENDS
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, ES:EXTRA

 START: MOV AX, DATA
MOV DS, AX
MOV AX, EXTRA
MOV ES, AX
MOV SI, OFFSET N1
MOV DI, OFFSET N2
CLD
MOV CX, 0003H
REP MOVSB
MOV AH, 4CH
INT 21H
INT 3H
CODE ENDS

 END START

 RESULT:

16

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

17

Viva Questions:

1. If the DF=1, will the SI and DI register decremented?

2. The destination memory is pointed by which register combination?

3. The source is pointed to by which register combination?

4. What is the purpose of instruction pointer?

5. What is the purpose of stack pointer?

18

Program No. 7: FACTORIAL OF A NUMBER

Aim: To write an ALP to find the factorial of a given 8 bit number using indirect addressing
mode.

 DATA SEGMENT
 FIRST DB ?
 SUM DW 1 DUP(0)
 DATA ENDS
 CODE SEGMENT
 ASSUME CS:CODE,DS:DATA
 START:MOV CL,FIRST
 MOV AL,01H
 L: MUL CX
 DEC CL
 JNZ L
 MOV SUM,AX
 CODE ENDS
 END START

Result:

19

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

20

Program No. 8: GENERATION OF FIBONACCI SERIES

Aim: To write an ALP for finding Fibonacci series using direct addressing mode.

START: CODE SEGMENT
ASSUMECS:CODE
START:
MOV SI,0000H
MOV CX,0005H
MOV AX,0001H
MOV BX,0000H

 L: ADDAX,BX
MOV [SI],BX
MOVBX,AX
MOV AX,[SI]
INCSI
DEC CX
JNZ L
CODE ENDS
END START

 RESULT:

21

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

22

Program No. 9: CONVERTION OF PACKED BCD NUMBERS TO UNPACKED BCD
NUMBERS

Aim: To write an ALP using 8086/8088 program to convert Packed BCD numbers to unpacked
BCD numbers.

 DATA SEGMENT

NUMBERDB ?
RESULTDB 1 DUP(0)
DATA ENDS
CODE SEGMENT
ASSUMECS:CODE,DS:DATA
START:MOVAL,NUMBER

ROL AL,04H
AND AL,0FH
MOVRESULT,AL
MOVAL,NUMBER
AND AL,0FH
MOV RESULT+1,AL
CODE ENDS

END START

Result:

23

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

24

Program No.10: CONVERTION OF BCD NUMBER TO HEXADECIMAL USING
INDIRECT ADDRESSING MODE

Aim: To write an ALP to convert BCD number to HEXADECIMAL using indirect addressing
mode.
DATA SEGMENT
NUMBERDB ?
RESDW 1 DUP(0)
DATA ENDS
CODE SEGMENT
ASSUMECS:CODE,DS:DATA

START:MOVAL,NUMBER
AND AL,0FH
MOVAH,NUMBER
ROL AH,04H
AND AH,0FH
AAD
MOVRES,AX
CODE ENDS
END START

Result:

25

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

26

Program No: 11. SORTING IN ASCENDING ORDER

Aim: To write an ALP to arrange an array of numbers in Ascending order using 8086l8088
microprocessor.

 DATA SEGMENT
 N1 DB 56H, 49H, 33H,05H,12H,17H,08H
 DATA ENDS
 CODE SEGMENT
 ASSUME CS:CODE, DS:DATA

 START: MOV AX, DATA
 MOV DS, AX
 XOR AX, AX
 MOV BX, 0006H
 Z: MOV SI, OFFSET N1
 MOV CX, 0006H
 BACK: MOV AL, [SI]
 INC SI
 CMP AL,[SI]
 JBE Y
 XCHG AL,[SI]
 DEC SI
 MOV [SI], AL
 INC SI
 Y: DEC CX
 JNZ BACK
 DEC BX
 JNZ Z
 MOV AH, 4CH
 INT 21H
 INT 3H
 CODE ENDS
 END START

RESULT:

27

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

28

Viva Questions:

1. What is the function of JBE ?

2. What is the need of CMP instructions?

3. What is the difference between conditional and unconditional jump instructions?

4. What is the function of XCHG in the program?

5. What is significance of accumulator?

29

Program No: 12. SORTING IN ORDER DESCENDING ORDER

Aim: To write an ALP to arrange an array of numbers in descending order using 8086l8088
microprocessor.
 DATA SEGMENT
 N1 DB 56H, 49H, 33H,05H,12H,17H,08H
 DATA ENDS
 CODE SEGMENT
 ASSUME CS:CODE, DS:DATA
 START: MOV AX, DATA
 MOV DS, AX
 XOR AX, AX
 MOV BX, 0006H
 Z: MOV SI, OFFSET N1
 MOV CX, 0006H
 BACK: MOV AL, [SI]
 INC SI
 CMP AL,[SI]
 JAE Y
 XCHG AL,[SI]
 DEC SI
 MOV [SI],AL
 INC SI
 Y: DEC CX
 JNZ BACK
 DEC BX
 JNZ Z
 MOV AH, 4CH
 INT 21H
 INT 3H
 CODE ENDS
 END START

RESULT:

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

30

Viva Questions:

1. What is the function of JAE?

2. What IS the need of CMP instructions?

3. What is the difference between conditional and unconditional jump instructions?

4. What is the function of XCHG in the program?

5. What is significance of accumulator?

31

Program No: 13. 8279 KEYBOARD DISPLAY

Aim: To demonstrate 8279 Keyboard Display using 8088.

Interface keyboard and display controller 8279 with 8086 at addresses 0080H. Write an ALP to set
up 8279 in scanned keyboard mode with encoded scan, N-key rollover mode. Use a 16-character
display in right entry display format. Then clear the display RAM with zeroes. Read the FIFO for key
closure. If any key is closed, store its code to register CL. Then write the byte 55 to all the displays
and return to DOS. The lock input to 8279 is 2MHz, operate it at 100 kHz.
Tools Required: TASM, 8086 Kit, 8279 interfacing card.
Theory:
The 8279 is interfaced with lower byte of the data bus, i.e. D0-D7. Hence the A0 input of 8279 is
connected with address line A1. The data register of 8279 is to be addressed as 0080H, i.e. A0=0. For
addressing the command or status word A0 input of 8279 should be 1 (the address line A1 of 8086
should be 1), i.e. the address of the command word should be 0082H.

Procedure:

Step1: Set 8279 command words according to program i.e. Keyboard/Display Mode Set CW,
Program clock selection, Clear Display RAM, Read FIFO, Write Display RAM commands.

Step2: Read FIFO command for checking display RAM.

Step3: Wait for clearing of Display RAM by reading FIFO Du bit of the status word i.e. if Du
bit is not set wait, else proceed.

Step4: Read FIFO command for checking key closure, also read FIFO status.

Step5: Mask all bits except the number of characters bits. If any key is pressed, take required
action; otherwise proceed to write display RAM by using write display command.

Step 6: Write the byte 55H to all display RAM locations.

Step 7: Call routine to read the key code of the pressed key is assumed available.

This Program displays the code of the key, which is pressed on the keyboard pad. The code is
displayed in the data field and remains unchanged till the next key is pressed.

Description of the Program:
The port of 8255 i.e. P1 is initialized to make port A as input port and port C as output port. The
three Rows of the key are scanned one by one and process is repeated till the key is pressed, in the
routine code and F code (final code). The information of code is then displayed and the monitor
jumps back again to see if any other key is pressed.

32

33

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

34

Program No: 14. GENERATION OF SINUSOIDAL WAVE USING 8255

Aim: To write an ALP to generate Sinusoidal Wave Using 8255.

ASSUME CS:CODE,DS:DATA
SINE DB 0,11,22,33,43,54,63,72,81,90,97,104,109,115,119,122
DB 125,,126,127,126,122,119,115,109,104,97,90,81,72,63,54,43,33,22,11
PA EQU 44A0H
CR EQU 44A3H
DATA ENDS
CODE SEGMENT
 START: MOV AX, DATA

MOV DS, AX
MOV DX, CR
MOV AL, 80H
OUT DX, AL

REPEAT: MOV DX, PA

LEA SI, SINE
MOV CX, 36

NEXT: MOV AL,[SI]
ADD AL, 128
OUT DX, AL
INC SI
LOOP NEXT
MOV CX, 36
LEA SI, SINE

 NEXT1: MOV AL, 128
MOV AH,[SI]
SUB AL, AH
OUT DX, AL
INC SI
LOOP NEXT1
JMP REPEAT
MOV AH, 4CH
INT 21H
CODE ENDS
END START

Result:

35

Writew the content of Registers and Memory of the microprocessor as it executes the program.

AX BX CX DX IP SP

36

 Appendix –A

Microprocessor Intel 8088/8086 Kit
Commands

37

Al-Imam Muhammad Bin Saud Islamic University, RiyadH
College of Engineering,

Department of Electrical Engineering
--

Prepared by : Mohammad Obaidullah Khan, Lecturer (IMSIU)

1. Line Assembler and Disassembler Commands:

Command Syntax Description

A
(Assembler)

 1)A
 2)A<add>

To let the user to type 8088
ALP into memory and
assemble them into machine
code line by line.

L

(Disassembler)

1) L
2) L <addr1>
3) L <addr1>/<n>
4) L <addr1><addr2>

To translate (disassemble) a
block of machine codes in
memory into 8088 assembly
instructions.

2. Program Execution Commands:

Command Syntax Description

G
(Go)

1) G
2) G <addr>

To execute a program in
memory

S

(Step)

1) S
2) S n

To single-step a program or
execute a specified number
of instructions and then stop
with a display of register
contents on the screen;
execution starts from the
address pointed to by the
code segment CS register and
the IP instruction pointer.

38

3. Debugging Commands:

Command Syntax Description

B
(Breakpoint)

1) B
2) B<n>
3) B<n><addr>

To set up to three breakpoints
or display their current
settings. When a program is
on execution and runs into a
breakpoint address, the
program execution will be
halted.

C

(Cancel)

1) C
2) C <n>

To cancel one or all of the
break points set previously.

X

(Register)

1) X
2) X <register name>

To display or change the
contents of any of the
registers

M

(Memory)

1) M
2) M <addr1>
3) M <addr1><addr2>
4) M <addr1><addr2> /

<data1>/
5) M <addr1> / <data1>

[data2]…../
6) M <addr1> / <addr2> /

<data1> [data2]…../

To display or change the
contents of a memory
location or a range of
memory location.

I

(Insert)

1) I
2) I /<data1> [data2]…../
3) I <addr1>
4) I <addr1> /<data1>

[data2]…. /
5) I <addr1><addr2>

/<data1> [data2]…/
6) I <addr1><addr2>

/<data1> [data2]…/

To insert data into a memory
location or a portion of
memory locations

39

D

(Delete)

1) D
2) D /<n>
3) D <addr1>
4) D <addr1> /<n>
5) D <addr1><addr2>
6) D <addr1><addr2<

/<n>

To delete a byte of data or a
segment of data in memory

F

(Find)

1) F /<datastring>
2) F<addr1> /<datastring>
3) F <add1><addr2>

/<datastring>

To search for a specified
value or set of values in
memory

J

(Jump)

1) J <addr>

To directly jump to the
particular address from
which program execution
must start.

T

(Transfer)

1) T

<addr1><addr2><addr3
>

2) T <addr4><addr5> /<n>

To copy a range of memory
contents to another area in
memory.

P

(Pause)

1) P<n>

To adjust the speed of
displaying on the screen.

N

(Input)

1) N <port_address>

To input and display in
hexadecimal One byte of
data from the specified port

W

(Write)

1) W <addr1><addr2>

/<file_name>

To record the contents of a
range of memory on tape

R

(Read)

1) R /<file_name>
2) R <addr> /<file_name
3) R
4) R <addr>

Read data from tape

40

4. Control Characters:

Control characters are entered by pressing a predefined key while holding down the CTRL or
ALT key. Each control character performs a specific function

• <CTRL-S> :Suspends output to the display. Pressing any key resumes output to the
display.

• <CTRL-P> : This control character is a toggle switch. Entering this control character
once turns on the printer, causing the screen output to be sent to the line printer. Entering
this control character a second time turns off the printer.

• <CTRL-X> : Cancels the current input line to the command buffer.
• <ALT-Y> : Returns the system control to the monitor program.

Control Characters for moving Cursor in the Command Line Buffer:

• <ALT-E> : Moves the cursor up one line.
• <ALT-X> : Moves the cursor down one line.
• <ALT-S> : Moves the cursor to the left one position.
• <ALT-D> : Moves the cursor to the right one position.
• <ALT-F> : Returns the cursor to where it was located before it was moved.

Control Characters for Scrolling the screen:

• <ALT-A> : Scrolls down the screen
• <ALT-Z> : Scrolls up the screen
• <ALT-Q> : Returns the cursor to where it was located before it was moved.

41

 Appendix-B

DOS Debugger Program

A DOS debugger is a utility program that comes with the MS-DOS operating
system as a programming tool for debugging (trouble shooting) and testing
executable files. The debugger is sometimes called a "mini-assembler," because it
allows the user to create and run short or small assembly language programs. With
the debugger, the user can access the system's main memory and save the program
directly on the disk without the intervention of the DOS. In addition, the debugger
can be used to disassemble object codes (machine instructions) into readable
codes.

There are two ways to run the program under the debugger: single-step (trace) or
Go with full speed. Single-stepping or tracing the program is to execute one
instruction at a time. After each tracing, the program stops so that the user can
examine the effects that are caused by every instruction in the program. The
debugger also allows us to set a few breakpoints, and run program at the full
speed until the particular instruction is reached.

Note that unless you are real sure about the operational function of the program
that you are debugging, don't use G command to run the program, because it might
cause some unexpected results. Since the DOS debugger allows the user to write
on the absolute sector address on a disk, for the safety reason, it is very important
that the user should make a backup copy of the program and then run the program.

DOS Debugger Environment

Before invoking or loading the DOS Debugger, you may want to locate where the
DEBUG.COM program is stored in the system: it may be stored under
C:\DOS\DEBUG.COM, if you are using a PC with a hard disk; or, it may be on a
DOS supplemental disk or operating disk. After invoking the DEBUG.COM, the
DEBUG itself then is loaded into the following memory area in the PC's main
memory.

Refer to Figure 1, via the DEBUG you have complete access to the memory and
the CPU registers of the 8088/8086 used in the PC.

42

 Figure 1. The Debugger environment

Figure 2 shows the 16-bit registers that are shown on the debug screen. Note that
the 8-bit registers such as AH, AL, and so on, are not directly displayed on the
debug screen.

 16-bit 8-bit Special Registers/general purpose

AX AH AL Accumulator

BX BH BL Base register

CX CH CL Counter register

DX DH DL Data register

16-bit Instruction Fetch

CS Code Segment Register Base address

IP Instruction Pointer Offset address

16-bit Stack Segment Operation

SP Stack Pointer Offset address

BP Base register Offset address

SS Stack segment register Base address

16-bit Source of String /Array

DS Data Segment Register Base address

43

SI Source Index Register Offset address

16-bit Destination of String /Array

ES Extra Data Seg. Reg. Base address

DI Destination Index Reg. Offset address

Flags: Overflow (OF), Directional Flag (DF), Interrupt Flag (IF), Trace Flag (TF), Sign bit
flag (SF),

Zero Flag (ZF), Auxiliary Flag (AF), Parity Flag (PF), and Carry Flag (CF)

Figure 2. 8088/8086/80286 CPU registers

Debugger Commands

All DEBUG commands are single letter commands, and are usually followed by
one or more parameters. The commands can be uppercase or lower case letters, or
a combination of both. Delimiters are only required, however, between two
consecutive hex numbers. The commands become effective only after you press
the [Enter] key. To end the command, enter [Ctrl] and [Break] keys.

To invoke the debugger, enter one of two commands (depending on the system
setup); the debug prompt, a dash '-', is displayed; debugger is then ready to take
commands from you.

C>DOS\DEBUGIf using a hard disk

A>DEBUGIf two floppy drive PC is used

-Debug prompt

DEBUG COMMANDS

Commonly used debug commands such as ASSEMBLE, DUMP, ENTER, FILL,
MOVE, COMPARE, and SEARCH are available for use in entering programs,
examining or modifying storage locations in the memory.

A[address] (Assemble command)

We can write an assembly language program with the "A" or "a" command. The
Assemble command "A" allows us to enter assembly language instructions using

44

mnemonic symbols directly into memory. When we enter just "A" or "a" after the
debugger prompt:

-A

0910:100- you enter the instruction right after this prompt

CS:0100 is the default address. It uses the offset address 100H as the beginning
address of the program. The other alternative is to specify the beginning address
explicitly as follows:

-A100

0910:100- you enter the instruction right after this prompt

C [addr1][range][addr2] (Compare command)

- [addr1] is the beginning address of 1st block of memory

- [range] determine the length of comparison

- [addr2] is the beginning address of the second block of memory

The "C" command compares the contents of two blocks of memory. For example,
the following commands compare a memory block starting at DS:200 through
DS:300 to an equal-size data block starting at address DS: 500. It will display each
unequal element found in the address and contents of that byte in both blocks. No
information is displayed if both of these blocks contain the same data.

-C 200 300 500

 D[address] (Display or dump memory command)

The "D" command allows us to examine the contents of memory locations by
dumping the data stored in the memory onto the screen.

If [address] is omitted,

-D

45

then the address used by previous D command is assumed and the 128 consecutive
bytes offset from the current value in DS are displayed. When no previous D is
used, the offset address 100 Hex is used.

Other examples of using the "D" command are

-D 100 .. dump memory locations starting at 100H

-D DS:100 .. dump memory locations starting at DS:100

-D CS:100 .. dump memory location starting at CS:100

-D DS:200 210 .. dump memory location in the range of 200-210

E[address][list] (Enter command)

Enter command will replace the contents of memory locations starting at the
address specified by the DS register. Using this command, you can enter the
machine code directly into the memory. The following examples show how to use
the "E" command:

-E DS:100 FF FF FF FF .. enter four FF at 100H

-E DS:200 "The E Command:" .. enter ASCII characters

 F [range][list] (Fill memory command)

The format of the "F" command is filling the memory locations in the [range] with
the values in the [list]. The "F" command can be used to fill a block of consecutive
memory locations with the same data. The "F" command examples are:

-F 100 110 FF .. Fill memory 100-110 with FF

-F 200 220 00 .. Fill memory 200-220 with 00

G[=address][address[address..]] (Go, execute command)

The "G" command allows us to execute the instructions and programs under the
debugger. Examples of the GO commands are

-G =CS:200 210 .. run the program from 200 through 210

-G =CS:100 .. run the program at 100

-G .. run the program from current CS:IP location

46

H[value][value] (Hex arithmetic: add and sub)

Add and subtract two hex numbers; display sum and display. For example, we
enter

-H AE BF

01B0 FF04 .. first number is sum .. second no is difference

-H 96 C2

0158 FF04

I[port address] (Input command)

Input and display one byte from the specified port in hex

L[address[drive [sector sector]] (Load a file or disk sectors)

Load a file or absolute diskette sectors into memory; maximum number of sectors
that can be loaded with a single Load command is Hex 80.

M[range][address] (Move a block of data)

Move or copy from one block of memory to another. Example of M command is

-M 100 200 300 .. move a data block start from the location

through 200 to the destination block starting

at 300

 N[d:][path] filename (Name)

Name the file for the write disk command or Load command to call it.

O[port address][byte] (Output)

Send output bytes to the output port

P[=address][value] (Proceed)

Execute a loop, a repeat string instructions, a software interrupt, or a procedure

47

Q exit DEBUG program and return to the DOS

R[register name] (Register)

Display and/or modify the contents of registers and flags

 S[range][list] (Search)

Search for characters through a specified range of address. The example is

-S 200 210 FF .. search the data byte FF in the range 200

through 210

 T[=address][value] (Trace)

Execute an instruction and display the CPU registers. The examples of "T"
commands are

-T .. trace the program from current CS:IP

-T =CS:100 .. trace the program from CS:100

-T =CS:100 4 .. trace the program from CS:100 for 4

instructions

U[address] (Unassemble command)

Translate the contents of memory into assembly instructions. The examples of "U"
commands are

-U .. unassemble the program from current CS:IP

-U CS:100 105 .. unassemble the program from 100 to 105

 W[address[drive sector sector]] (Write to disk command)

Write file on absolute diskette sectors. The CX should hold the number of bytes to
be written on the disk, and the name of the program should be given by using the
"N" command.

48

DEBUG COMMANDS (Continue)

Following commands are found in DOS 5.0 only

XA[count] (Allocate expanded memory)

Allocate a specific page of expanded memory. A page is 16-kbytes of memory.

For example: allocate 10 pages of expanded memory:

-XA A you enter

Handle created=0003

XD[handle] (Deallocate expanded memory)

Deallocate a handle to expanded memory

For example: deallocate the handle 0003

-XD 0003

Handle 0003 deallocated

XM[lpage][ppage][handle] (Map expanded memory pages)

Map a logical page of expanded memory, belonging to the specific handle, to a
physical page of expanded memory.

For example: to map logical page 6 of handle 0003 to physical page 2

-XM 5 2 0003

XS (Display expanded memory status)

Display information about the status of expanded memory

For example:

-XS

 Using DEBUG

49

Example 1:

Using DEBUG.COM to examine 8088/8086/80286 CPU registers, modify the
contents of AX register, verify the change, and then exit the debugger.

-rExamine registers command

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=111E ES=111E SS=111E CS=111E IP=0100 NV UP EI PL NZ NA PO NC

111E:0100 2D444F SUB AX, 4F44

-RAXExamine and modify AX register

AX=0000

:10You enter 10

-RExamine the resiters to see AX

AX=0010 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=111E ES=111E SS=111E CS=111E IP=0100 NV UP EI PL NZ NA PO NC

111E:0100 2D444F SUB AX, 4F44

-QExit debugger and return the control

to DOS

A>

Figure 3. Output display of example 1

After the r command is entered, the DEBUG sets the CPU registers with default
values: registers AX, BX, CX, DX, BP, SI, and DI are set to 0000.

All segment registers are set to DS=111E, ES=111E, SS=111E, CS=111E. This
number is the base address of the memory that the DEBUG is working on and it
may be different from one machine to another machine, and may be different from
one time to another. The instruction pointer, IP, is set to its default offset address
(0100) by the DOS. Starting from actual memory location 112E0 Hex, that we

50

calculated by shifting the IP one digit to the right and added to the CS, there is a
garbage instruction

SUB AX, 4F44.

CS 111E

+ IP 0100

Effective Address 112E0 Hex

You then enter: RAX (or R AX or rax)

for examining/or modifying AX register. If you want to examine other registers,
the correct register name must be referred. The AX=0010 is the correct entered
value.

Finally, you enter Q or q to exit the DEBUG.

Example 2. Using the DEBUG to perform the following tasks:

1) Enter a short assembly language program as shown in Figure 4.

2) Save this program as "a:ex2-2.com" then exit DEBUG

3) Reinvoke the DEBUG to test the ex2-2.com program.

A>DEBUG invoke or load debugger

-A100 assemble the instructions at CS:100

111E:0100 MOV AX,0123 ... hit Enter key

111E:0103 ADD AX,25 ... hit Enter key

111E:0106 MOV BX,AX

111E:0108 ADD BX,AX

111E:010A MOV CX,BX

111E:010C SUB CX,AX

111E:010E SUB AX,AX

51

111E:0110 ... hit Enter key to end

-R ... examine registers

AX=0010 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=111E ES=111E SS=111E CS=111E IP=0100 NV UP EI PL NZ NA PO NC

111E:0100 B82301 MOV AX, 1023

-U ... disassemble the instructions

111E:0100 B82301 MOV AX,0123

111E:0103 052500 ADD AX,25

111E:0106 89C3 MOV BX,AX

111E:0108 01C3 ADD BX,AX

111E:010A 89D9 MOV CX,BX

111E:010C 29C1 SUB CX,AX

111E:010E 29C0 SUB AX,AX

111E:0110 0800 OR [BX+SI],AL Junks

Figure 4. Output display of example 2

The assembly language instructions that we use in this example are:

MOV AX, 1023 ; Move 1023 Hex into AX register

ADD AX, 25 ; AX = AX + 25 Hex = 1048 Hex

MOV BX, AX ; Move the content of AX register to BX register and

; the AX is unchanged BX = AX = 1048

ADD BX, AX ; BX = BX + AX = 1048 + 1048 = 2090 Hex

MOV CX, BX ; a copy of BX is move to CX register

SUB CX, AX ; CX = CX - AX

SUB AX, AX ; AX =AX - AX or clear AX register

52

Example 2 (continue)

2) Save the entered program as a:ex2-2.com.

Before you save the program, you may want to count how many bytes of memory
space will be needed by this program. We count it starting from the instruction
MOV AX, 1023 through SUB AX,AX.

The number on the first column is the base address and the numbers on second
column are the offset addresses of the memory.

The numbers on the third column are translated machine codes. One hexadecimal
digit on this column is 4-bit (two digits give 1-byte).

We counted the number on the third column: 16-bytes. The DEBUG uses the CX
register as a counter that indicates the number of bytes to be saves. So we entered
the following commands to save the program:

-RCX modify the CX register

CX 0000

:10 hex (decimal 16)

-n a:ex2-2.com name the program

-w write to the disk

Writing 0010 bytes

-q Exit DEBUG

A>DIR ex2-2.com see if the program is saved

Figure 2-12 Output display of example 2-2

3) Reinvoke the DEBUG for testing a:ex2-2.com

A>DEBUG ex2-2.com

-u unassembly the program

53

1133:0100 B82301 MOV AX,0123

1133:0103 052500 ADD AX,25

1133:0106 89C3 MOV BX,AX

1133:0108 01C3 ADD BX,AX

1133:010A 89D9 MOV CX,BX

1133:010C 29C1 SUB CX,AX

1133:010E 29C0 SUB AX,AX

1133:0110 50 PUSH AX Junks -

Figure 5. Output display of example 2

Example 2 (continue)

4) Test the ex2-2.com program by tracing the instructions

-R examine CPU regiter before single-step

AX=0010 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0100 NV UP EI PL NZ NA PO NC

1133:0100 B82301 MOV AX, 1023(Move 1023Hex to AX)

-T execute the instruction appears

AX=1023 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0103 NV UP EI PL NZ NA PO NC

1133:0103 052500 ADD AX, 0025 (AX = AX + 25 Hex)

-T

AX=1048 BX=0000 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0106 NV UP EI PL NZ NA PE NC

1133:0106 89C3 MOV BX, AX (BX = AX)

-T

54

AX=1048 BX=1048 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0108 NV UP EI PL NZ AC PE NC

1133:0108 01C3 ADD BX, AX(BX = BX + AX)

-T

AX=1048 BX=0290 CX=0010 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=010A NV UP EI PL NZ AC PE NC

1133:010A 89D9 MOV CX, BX(CX = BX)

-T

AX=1048 BX=0290 CX=0290 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=010C NV UP EI PL NZ AC PE NC

1133:010C 29C1 SUB CX, AX(CX = CX - AX)

-T

AX=1048 BX=0290 CX=1048 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=010E NV UP EI PL NZ AC PE NC

1133:010E 29C0 SUB AX, AX(AX = AX - AX)

-T

AX=0000 BX=0290 CX=1048 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0110 NV UP EI PL NZ NA PE NC

1133:0110 50 PUSH AX Junks, stop!

Figure 6. Output display of example 2

Notice that in the debugger environment, all the numeric data are represented in
hex numbers. The debugger shows the instruction to be executed, before you enter
the trace command (T). After the execution of each instruction, the instruction
pointer IP is incremented and the register that appears on the left side of the
instruction is modified. In addition, some flags are changed to reflect the status
after the operations. All these changes are showed in the high-lighted areas. If you

55

want to run trace the program one more time, the IP must be set to the right offset
address.

Example 3. Using the debugger to perform the following tasks:

1) Create a short assembly language program that does the following:

- Move 09 Hex to AX register:

- Double this number in AX and then move a copy of this number to both

BX and CX registers

- Set the source index register (SI) to 180 Hex: [MOV SI, 180]

- Store the contents of AX, BX, and CX to the data area pointed to by DS:SI,
where

the data segment register (DS) holds the default base address:

MOV [SI], AX

INC SI

MOV [SI], BX

INC SI

MOV [SI], CX

2) Save this program as a:ex2-3.com

3) Exit the Debug

4) Invoke DEBUG to load a:ex2-3.com

5) Trace the program and examine the data area that is pointed to by DS:180

- Fill the data area pointed to by the DS:200 through DS:220 with the hex number
FF

and examine this result.

56

Solution:

1) Moving the hex number 09 into AX register requires the instruction [MOV, AX,
09].

This is the instruction of the immediate addressing mode, since the data 09 is
included in the instruction. Notice that AX is the destination of the data movement.

2) There is more than one instruction than can be used to double the contents of the
AX register. We use addition instruction: [ADD AX,AX]. This is the register
addressing mode instruction since the source and destination of the data are all
within the CPU register. This instruction does the following operation: AX = AX +
AX

3) The [MOV BX,AX; MOV CX, AX] instructions move data from AX to both
BX and CX. The addressing mode of this type of instruction is register addressing.

4) The source index register is initialized with the offset address 180 hex through
the instruction MOV SI, 180

5) To store the data in the data area whose base address is held by the data segment
register DS and offset address is held by the SI register. We use the indirect
addressing instruction:

MOV [SI], AX

Where the bracket around the SI register means that the destination of this data
movement is the memory pointed by the DS:SI register.

We move three 16-bit words' data to memory. After the first movement, we then
increment the SI by one so it can point to next available location:

INC SI

We then repeat the SI updating and data storing until all the contents of the AX,
BX and CX are stored. Figure 2-15 shows the programming model for the solving
this problem.

57

Figure 4 Programming model of the example 3

 Invoke the debug , enter the instructions, name the program, count file size, and
write to

the disk.

A>DEBUG

-a100 assemble the instructions at CS:100

111E:0100 mov ax,09 hit enter

111E:0103 add ax,ax

111E:0105 mov bx, ax

111E:0107 mov cx, ax

111E:0109 mov si, 180

111E:010C mov [si],ax

111E:010E inc si

111E:011F mov [si],bx

111E:0111 inc si

111E:0112 mov [si],cx

111E:0114

58

-n a:ex2-3.comname the program

-r cxNo of bytes to write

CX 0000

:14

-w

Writing 0014 bytes

Figure 5Output screen of example 3.

There are two ways to load the program into the debug. The first approach is to
invoke the DEBUG and pass the program name as the parameter: A>DEBUG
A:EX2-3.COM

The second approach is to invoke the debug, name the program, and then load the
program. We take this approach to bring the program back to DEBUG

A>DEBUG

-n a:ex2-3.com

-l load the program

-r

AX=0000 BX=0000 CX=0014 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0100 NV UP EI PL NZ NA PO NC

1133:0100 B80900 MOV AX,0009

-t

AX=0009 BX=0000 CX=0014 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0103 NV UP EI PL NZ NA PO NC

1133:0103 01C0 ADD AX,AX

-t

AX=0012 BX=0000 CX=0014 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000

59

DS=1133 ES=1133 SS=1133 CS=1133 IP=0105 NV UP EI PL NZ AC PE NC

1133:0105 89C3 MOV BX,AX

Figure 6 Loading and tracing the example ex2-3.com program

 -t

AX=0012 BX=0012 CX=0014 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0107 NV UP EI PL NZ AC PE NC

1133:0107 89C1 MOV CX,AX

-t

AX=0012 BX=0012 CX=0012 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0109 NV UP EI PL NZ AC PE NC

1133:0109 BE8001 MOV SI,0180

-t

AX=0012 BX=0012 CX=0012 DX=0000 SP=FFFE BP=0000 SI=0180 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=010C NV UP EI PL NZ AC PE NC

1133:010C 8904 MOV [SI],AX DS:0180=1212

-t

AX=0012 BX=0012 CX=0012 DX=0000 SP=FFFE BP=0000 SI=0180 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=010E NV UP EI PL NZ AC PE NC

1133:010E 46 INC SI

-t

AX=0012 BX=0012 CX=0012 DX=0000 SP=FFFE BP=0000 SI=0181 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=010F NV UP EI PL NZ NA PE NC

1133:010F 891C MOV [SI],BX DS:0181=1200

-t

60

AX=0012 BX=0012 CX=0012 DX=0000 SP=FFFE BP=0000 SI=0181 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0111 NV UP EI PL NZ NA PE NC

1133:0111 46 INC SI

-t

AX=0012 BX=0012 CX=0012 DX=0000 SP=FFFE BP=0000 SI=0182 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0112 NV UP EI PL NZ NA PE NC

1133:0112 890C MOV [SI],CX DS:0182=0000

-t

AX=0012 BX=0012 CX=0012 DX=0000 SP=FFFE BP=0000 SI=0182 DI=0000

DS=1133 ES=1133 SS=1133 CS=1133 IP=0114 NV UP EI PL NZ NA PE NC

1133:0114 0D0A00 OR AX,000A

Figure 7. Loading and tracing the example ex2-3.com program (continue)

To verify that the data area pointed by the register pair DS:SI, we dump or display
the data block using D command. We see that the data are stored in the right place.

 -d ds:180

1133:0180 12 12 12 00 72 65 61 64-73 20 66 72 6F 6D 20 61reads from a

1133:0190 20 64 65 76 69 63 65 0D-0A 00 B3 39 42 52 45 41 device....9BREA

1133:01A0 4B 20 69 73 20 00 DC 39-56 45 52 49 46 59 20 69 K is ..9VERIFY i

1133:01B0 73 20 00 E8 39 45 43 48-4F 20 69 73 20 00 F5 39 s ..9ECHO is ..9

1133:01C0 6F 66 66 0D 0A 00 00 3A-6F 6E 0D 0A 00 08 3A 49 off....:on....:I

1133:01D0 6E 76 61 6C 69 64 20 70-61 74 68 20 6F 72 20 66 nvalid path or f

1133:01E0 69 6C 65 20 6E 61 6D 65-0D 0A 00 0F 3A 49 6E 76 ile name....:Inv

1133:01F0 61 6C 69 64 20 6E 75 6D-62 65 72 20 6F 66 20 70 alid number of p

