

### ME322 Thermal-fluids Laboratory (Required Course)

**Code and Name:** ME322 Thermal-fluids Laboratory **Credit Hours:** 1 (Lecture: 0, Tutorial: 0, Lab/Practical: 2)

Textbook:

- Engineering Fluid Mechanics, Clayton, and Crowe, 9<sup>th</sup> Edition, Wiley, 2010.

Other References:

- Thermodynamics – An Engineering Approach, Yunus A. Cengel, and Michael A. Boles, 7<sup>th</sup> Edition, McGraw Hill Higher Education, 2011.

- www.engineeringtoolbox.com

### **Course Description:**

Introduction to basic fluid mechanics instrumentation, experimental verification and reinforcement of the analytical concepts introduced in ME 221 and ME 222. Pressure drop in pipes, fittings and centrifugal pump performance.

**Pre-requisites:** ME222 Fluid Mechanics. **Co-requisites:** None

## **Course Learning Outcomes:**

With relation to ABET Student Outcomes (SOs: 1-7)

- 1. Reproduce results which prove the laws & equations studied in theory (1, 6)
- 2. Describe devices & methods used in the area of fluid mechanics in industry
- 3. Explain the theoretical foundation of the experiments being performed (6)
- 4. Predict results based on theoretical understanding (1)
- 5. Analyze experiments based on expected results vs. actual outcomes (6)
- 6. Demonstrate the ability to work independently & as a team. (5)
- 7. Research and obtain information about topics, machines and devices not covered in the theoretical course.

### Topics to be covered:

- Introduction to the fundamentals of fluid behavior (Hydrostatics).
- Pressure measurement and calibration of Bourdon type pressure gage.
- Experimental analysis of Hydrostatic pressure on a plane wall.
- Experimental demonstration of Bernoulli's equation.
- Experimental study of flow through different orifices.
- Comparison of different types of flow meters
- Measurement of pipe friction for laminar and turbulent flows
- Experimental analysis of centrifugal pumps
- Measurement of the viscosity of a fluid
- Comparison of the drag coefficient of spheres using different fluids
- Demonstration of change of state of gases.

# **Grading Policy:**

The grading for the course are 60% coursework and 40% Final Exam. The course work consists of two Midterm Exams, where each midterm exam is worth 20%. It also includes quizzes, homework, and projects for the remaining 20% that is modified by the course instructor.

