Instruction Manual

RT 200 Temperature Control
Apprts. with Experiment Panels

RT 200 Temperature Control Apparatus with Experiment Panels

Instruction Manual

Please read and follow the instructions before the first installation!

RT 200 Temperature Control Apparatus with Experiment Panels

Table of Contents

1 Introduction 1
2 Unit Description 2
2.1 Unit Layout 2
2.2 Components 3
2.2.1 Control Loop 3
2.2.2 Controller 3
2.2.3 Transducer 4
2.2.4 Control Variable Display 5
2.2.5 Actuator 5
2.3 Connection of the Components 6
2.4 Control Loop Block Diagram 6
2.5 Controller Operation 7
2.6 Controller Configuration for Continuous Operation (P, PI, PD, PID controller) 8
2.6.1 Control Type 8
2.6.2 Input Configuration 9
2.6.3 Output Configuration 9
2.6.4 Parameter Level 10
2.7 Controller Configuration for the 2-Point Controller 11
2.7.1 Control Type 11
2.8 Setting the Controller Parameters Kp, Tn and Tv 11
3 Safety Instructions 12
4 Fundamental Principles of Control Technique 13
4.1 The Control Circuit 13

RT 200 Temperature Control Apparatus with Experiment Panels

4.2 Principle behind a control system . 14
4.3 System parameters from the step response 15
4.3.1 Self-regulating system. 15
4.3.2 System without self-regulation . 17
4.4 Comparison of different types of controllers 19
4.4.1 Controller response characteristics. 19
4.4.2 Proportional-action controller (P) . 20
4.4.3 Proportional-plus-differential controller (PD) 20
4.4.4 Proportional-plus-integral controller (PI) 21
4.4.5 Proportional-plus-integral-plus-differential controller (PID). 21
4.5 Controller setting according to ZIEGLER-NICHOLS 22
4.6 Evaluating the control quality . 23
4.7 Cascade control . 25
4.8 On-off Controller. 26

5 Experiments . 28
5.1 Familiarisation with the Layout and Function
of an Industrial Controller. 28
5.2 Comparison of Different Types of Controller 28
5.2.1 Preparation for the Experiment . 28
5.2.2 Performing the Experiment . 29
5.2.3 Evaluation of the Experiment . 29
5.3 Introduction of a Disturbance . 33

6 Appendix . 34
6.1 Working Sheets . 34
6.1.1 Temperature Control System Control Loop 34
6.1.2 Data Recording . 35
6.2 Technical Data. 36

RT 200 Temperature Control Apparatus with Experiment Panels

Introduction

Abstract

The G.U.N.T. RT 200 Temperature Control Apparatus with Experiment Panels is used for experiments on simple temperature control. A soldering iron equipped with a thermocouple is used as the heater element. The temperature can be read on a digital display with a transducer. In addition there is a bar display for the indication of the temperature.

The system is equipped with a digital industrial controller.

An actuator regulates the control variable, that is the power to the soldering iron. In this way experiments can be performed on all continuous control systems such as P, PD, PID and Pl controllers, as well as on discontinuous controllers, such as 2-point controllers.

All components in the control loop are fitted to boards and can be hung in a support provided. The student can become familiar with the components of a control loop, interconnect the components and vary the parameters. The Appendix to this instruction manual contains working sheets that ease the evaluation of the experiments. All components are of a sturdy design and therefore well suited for student experiments.

Using the system, the following topics can be addressed:

- Layout of control loops
- Comparison of different types of controller
- Features of different control loops
- Components of a control loop

RT 200 Temperature Control Apparatus with Experiment Panels

2
Unit Description
2.1 Unit Layout

Fig. 2.1 Unit Layout (a different arrangement of the components is possible)

- Table support (1)
- Actuator component (2), with connection for control loop
- Control loop component (3) with heated space shown, soldering iron as heater element, thermocouple and Cu /stainless steel cooling plates
- Controller component (4) with RS 485 interface
- Bar display (5) for the control variable
- Transducer component (6) with digital temperature display

RT 200 Temperature Control Apparatus with Experiment Panels

- Mains cable, connecting cable and thermocouple cable for the connection of the control loop as well as various laboratory cables (not shown)

2.2 Components

2.2.1 Control Loop

Fig. 2.2 Control Loop Component

Fig. 2.3 Cross-Section of Soldering Iron (2)

2.2.2 Controller

Fig. 2.4 Controller Component

The objective of a temperature control system is maintain the temperature in a defined space (1) as constant as possible. For this purpose a heater is required, (simulated by soldering iron (2)), as well as a thermocouple (3) for the measurement of the temperature in the space.

The power supply (control variable) for the heater is provided via a 220 V socket (4).
The thermocouple can be connected to a socket (5) on the transducer using the cable supplied.

To simulate a disturbance variable, cooling plates (6, copper and stainless steel) can be hung on the bolt to dissipate heat. Attention! Ensure that the plate (6) is lying exactly on the tip of the soldering iron (2)!

The controller (1) is an industrial unit. It is already pre-configured in the factory. For detailed information on the operation of the controller (scaling, etc.) please refer to the controller manual.

The controller is switched on using the main switch (2).
The actual value x (the temperature in the space) can be fed to the sockets (3) as a voltage of 0-10V (3), or the actual value can be connected directly to the thermocouple using socket (4).

RT 200 Temperature Control Apparatus with Experiment Panels

tom the form of a current signal from $0-20 \mathrm{~mA}$; the current signal must be connected to the sockets (5) using laboratory cables. It is thus possible to use any transducer and sensor.

The setpoint w for the temperature is set directly on the controller with the aid of the arrow keys (6).

The control value y (the input current) is available at sockets (7) and can be connected to the actuator. Using an RS 485 interface (8) it is possible to
2.2.3 Transducer

Fig. 2.5 Transducer Component

The transducer converts the temperature signal from the thermocouple (0-400C) into a proportional voltage signal $(0-10 \mathrm{~V})$. For this purpose the thermocouple must be connected to socket (1), the voltage signal is available at the laboratory sockets (2).

The board also has a digital display (3) for the temperature. The transducer is switched on using main switch (4).

RT 200 Temperature Control Apparatus with Experiment Panels

2.2.4 Control Variable Display

Fig. 2.6 Bar Display Component

2.2.5 Actuator

Fig. 2.7 Actuator Component

The control behaviour of the controller can be demonstrated with the aid of the bar display (1) by injecting the signal for the control variable y (current signal for the actuator) with the aid of the sockets (2) and (3). The bar display is switched on at the main switch (4).

The actuator (1) is a power regulator that regulates the power to the socket (2) as a function of the control variable y (current signal $0-20 \mathrm{~mA}$). The current signal is fed to the laboratory sockets (3) using laboratory cables. The main supply is provided via the socket (4).

RT 200 Temperature Control Apparatus with Experiment Panels

2.3 Connection of the Components

Thermocouple Cable

Fig. 2.8 Connecting the Boards

2.4 Control Loop Block Diagram

Fig. 2.9 Control Loop Diagram for the System

RT 200 Temperature Control Apparatus with Experiment Panels

2.5 Controller Operation

Fig. 2.10
MANUAL / AUTO Change-

For the controller to be able to perform its function, it must be set to the AUTO mode. This operating state can be achieved by operating the MANUAL / AUTO changeover switch. The MANUAL mode is indicated by the Man. indication.
In the manual mode the actual value is displayed in the top line of the display in $\mathrm{C}(0-400 \mathrm{C})$. The setpoint is displayed in the bottom line. The actual value is proportional to the current input signal ($0-20 \mathrm{~mA}$). I. e., an indication of 200 C corresponds to a signal of 10 mA .

In the manual mode the output signal can be adjusted using the two arrow keys.

RT 200 Temperature Control Apparatus with Experiment Panels

2.6 Controller Configuration for Continuous Operation (P, PI, PD, PID controller)

The power regulator is operated with the aid of the built-in controller. The control variable input at the power regulator is a continuous signal (analogue signal) of 0-20 mA, where 0 mA corresponds to no power and 20 mA corresponds to full power.

The controller has two different operating modes. Continuous control in which the output of the con-

Fig. 2.11
Press the σ key for more than 3 sec.
\square Press the \checkmark key for more than 3 sec.
Change to parameter level, "Para" flashes.
Accept with 1x \square

2.6.1 Control Type

Fig. 2.12 troller (OUT1) produces a continuous signal, and 2-point control in which the output of the controller (OUT2) produces a switching signal (relay).

The controller can be configured for the related task using the keypad on the front. For this purpose, proceed as follows:

Press the σ key for more than 3 sec.
Change to the configuration level, "Conf" flashes.
Accept with 1x

Change CON1 to $\mathbf{1 0 . 0} \mathbf{0}$, for this purpose press 1x ©
and change the related value using

Using and "END/EXIT" change to the next level up.

RT 200 Temperature Control Apparatus with Experiment Panels

2.6.2 Input Configuration

Fig. 2.13

All rights reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 04/98

Fig. 2.14

Fig. 2.15

2.6.3 Output Configuration

Change OUT1 to 01.1.2, for this purpose press 1 x

and change the related value using $\boldsymbol{\Delta}$.
By pressing the increment key change to C. 200 to configure input 1.

Change INP1 to 30.0.2, for this purpose press 1 x ()
and change the related value using $\boldsymbol{\nabla}$.
Using \oslash and "END/EXIT" change to the next level up.

By pressing the increment key
 change to C. 201 or C. 202 to scale input 1.

Change $\mathbf{x 0}$ to $\mathbf{0}$

Change $\mathbf{x 1 0 0}$ to $\mathbf{4 0 0}$

Here other values may also be useful.
E.g. when using pressure transmitters
$0-6$ bar: $x 0=0$; $x 100=6$
$0-100$ mbar: $x 0=0 ; x 100=100$

Fig. 2.16

RT 200 Temperature Control Apparatus with Experiment Panels

Fig. 2.17

2.6.4 Parameter Level

Leave the configuration level by using $\boldsymbol{\Delta}$ to choose END/EXIT and accepting using
 "WAIT" appears.
Once the configuration level for the continuous mode has been set, a few values need to be changed in the parameter level.

Press the \checkmark key for more than 3 sec.
Change to parameter level, "Para" flashes.
Accept using 1x \circlearrowleft "Setpt." appears.

Accept using $1 \mathrm{x} \bigcirc$ "w0" appears.
Set lower setpoint limit wo.
Change w0 to 0, for this purpose press $1 \mathrm{x} \varnothing$ and change the related value using

Using \oslash and "END/EXIT" change to the next level up. Then set the upper setpoint limit W100.

Change w100 to 400, for this purpose press 1x ()
and change the related value using $\boldsymbol{\Delta}$.
Using \oslash and "END/EXIT" change to the next level up. "Setpt." appears.

Fig. 2.20

RT 200 Temperature Control Apparatus with Experiment Panels

2.7 Controller Configuration for the 2-Point Controller

Fig. 2.21

This configuration must be selected if you want to use a two-point controller.

Press the \checkmark key for more than 3 sec.
Change to parameter level, "Para" flashes.
Accept with 1x \varnothing

Press the key for more than 3 sec .

Change to the configuration level, "Conf" flashes.
Accept with 1x Q
Change CON1 to $\mathbf{0 2 . 0 . 0}$, for this purpose press 1 x (c)
and change the related value using $\boldsymbol{\Delta}$.
Using \subset and "END/EXIT" change to the next level up.

The rest of the procedure is similar to that for the continuous controller.

2.8 Setting the Controller Parameters Kp, Tn and Tv

Please refer to the controller operating instructions included.

RT 200 Temperature Control Apparatus with Experiment Panels

3 Safety Instructions

- DANGER! Never touch tip of soldering iron with bare hands!
There is a risk of burns!
- DANGER! Do not place cooling plates on plastic coated surfaces after use!
The surfaces may be irreparably damaged
- ATTENTION! With cooling plates fitted do not exceed a temperature of 180C!
There is a risk of overheating the instruction board material.

RT 200 Temperature Control Apparatus with Experiment Panels

4 Fundamental Principles of Control Technique

4.1 The Control Circuit

The structure of a control circuit should be explained by means of a level control. The control circuit mainly consists of:

- Controlled system, here the vessel
- Controller, here a industrial controller

The following are also present:

- Fill level measuring device for measuring the height of the fill level for example a diff. pressure transmitter
- Control valve for influencing the intake flow

All components are clearly displayed in a control circuit diagram.

Control circuit diagram

Variables in the control circuit

- Actual value x: Fill level in cylinder
- Setpoint w: Desired fill level
- Manipulated variable y: Output variable of the controller

RT 200 Temperature Control Apparatus with Experiment Panels

- Disturbance variable z: Change in drain flow through ball valve

4.2 Principle behind a control system

The basic principle behind a control system is to have the output variable (actual value \mathbf{x}) of an apparatus (controlled system) be kept to a certain value independent of disturbing influences. To do this, the actual value \mathbf{x} is measured and referenced with the desired value (target value w). If a difference is found, the controller attempts to control the controlled system using control output y according to a certain control function, in order to cause the actual value \mathbf{x} to approximate the target value w again.

This control process is continuous.

RT 200 Temperature Control Apparatus with Experiment Panels

4.3 System parameters from the step response

4.3.1 Self-regulating system

 system does not reach a stationary upper range value after introduction of a input step, instead it heads towards infinity. This type of system is called a system without self-regulation.In the case of self-regulating systems a stationary state sets in after a certain period of time. The output of the system attains the upper range value x_{s}.

RT 200 Temperature Control Apparatus with Experiment Panels

The system parameters can be determined from this time response.

- Proportional-action coefficient $\mathbf{K}_{\mathbf{s}}$
- Dead time $\mathbf{T}_{\mathbf{t}}$
- Delay time Tu
- Compensation time $\mathbf{T}_{\mathbf{g}}$

The proportional-action coefficient Ks reflects the static response characteristic

$$
K_{s}=\frac{x_{s} Y}{y_{s} X}
$$

where	ys	manipulated variable step
	x_{s}	stationary upper range value of the system output
Y	maximum manipulated variable	
X	maximum output variable of the system	

The dead time $\mathbf{T}_{\mathbf{t}}$ (time lag) indicates the delay with which the system output reacts to the input step.

The delay time T_{u} shows the influence of a higher system order.

The compensation time $\mathbf{T g}_{\mathbf{g}}$ is a measure of the system lag.
The delay time T_{u} and the compensation time T_{g} are determined by applying a tangent at the point of the greatest slope in the step response. The distance from the first measurable reaction of the system to the point of intersection of tangent/zero line results in the delay time T_{u}. The distance from the point of intersection tangent/zero line to the point of intersection tangent/stationary upper range value results in the compensation time Tg_{g}.

RT 200 Temperature Control Apparatus with Experiment Panels

4.3.2 System without self-regulation

System without self-regulation with integral action

System without self-regulation with PT_{1} action

A differentiation should be made between two cases below with regard to a system without selfregulation

- The stationary upper range value of the control variable is outside of the admissible limit and is infinite.
Here, the system features integral action. Even with very small input variables, the output will ultimately be infinite.
In the case of the training stand this response can be achieved by closing the drain.
- The stationary upper range value of the control variable is outside of the limit yet still has a finite value.
Here, the system features PT_{1} action with a large system gain K_{s}.
In the case of the training stand this action is achieved by completely opening the intake and the drain.

The slopes of the step response of two different points of time with a distance t are used to determine these parameters. If PT_{1} action is assumes the following applies

$$
\dot{x}=\frac{\Delta x}{\Delta t}=\frac{K_{s} \cdot \Delta y}{T_{g}} e^{-\frac{t}{T_{g}}}
$$

RT 200 Temperature Control Apparatus with Experiment Panels

Two measurements result in the following relationship

$$
\frac{\dot{x}_{1}}{\dot{x}_{2}}=\frac{\Delta x_{1} \Delta t_{2}}{\Delta x_{2} \Delta t_{1}}=e^{\frac{t}{T_{g}}}
$$

This results in the compensation time

$$
\mathrm{T}_{\mathrm{g}}=\frac{\mathrm{t}}{\ln \left(\frac{\Delta \mathrm{x}_{1} \Delta \mathrm{t}_{2}}{\Delta \mathrm{x}_{2} \Delta \mathrm{t}_{1}}\right)}
$$

The system gain is calculated as follows

$$
\mathrm{K}_{\mathrm{s}}=\frac{\Delta \mathrm{x}_{1} \mathrm{~T}_{\mathrm{g}}}{\mathrm{y}_{\mathrm{s}} \Delta \mathrm{t}_{1}}
$$

RT 200 Temperature Control Apparatus with Experiment Panels

4.4 Comparison of different types of controllers

4.4.1 Controller response characteristics

The controller used in this training stand is a continuous controller which features P, PI, PD or PID action.
The response characteristics of the controller is determined by several parameters. In the most common case of a PID controller it is:

- Proportional-action range $\mathbf{x p}_{p}$ (proportional action)
- Integral-action time T_{n}
(integral-action)

- Derivative-action time $\mathbf{T}_{\mathbf{v}}$

(differential action)

The output signal of the controller can be described as the sum of output signals of various transfer blocks with these various time characteristics.
The same input signal is applied to the inputs of all transfer blocks, namely the control difference w-x. The characteristics of the various types of controllers are described in the following.

RT 200 Temperature Control Apparatus with Experiment Panels

4.4.2 Proportional-action controller (P)

The P controller is the simplest type of controller. The manipulated variable is directly proportional to the system deviation w-x.

$$
y=K_{p} \cdot(w-x) \text { where } K_{p}=\frac{100 \%}{x_{p}}
$$

The remaining system deviation is a disadvantage.
 It is the inevitable result of the control function: since the manipulated variable usually does not vanish, the control deviation can also not vanish.
The remaining system deviation can be reduced by increasing the gain $\mathbf{K}_{\mathbf{p}}$ or by reducing the proportional-action range $\mathbf{x p}_{\mathbf{p}}$. However, the tendency of the control system to oscillate simultaneously increases when this is done. It can become unstable.

4.4.3 Proportional-plus-differential controller (PD)

In the PD controller a component proportionate to the speed is fed back in addition to the P-component. This has a damping influence. As a result, a higher gain K_{p} can be selected without the system beginning to oscillate

$$
\begin{aligned}
& y=K_{p} \cdot\left((w-x)+T_{v} \frac{d(w-x)}{d t}\right) \\
& \text { where } K_{p}=\frac{100 \%}{x_{p}}
\end{aligned}
$$

The proportional-plus-differential controller thus has a smaller residual system deviation in general.

RT 200 Temperature Control Apparatus with Experiment Panels

4.4.4 Proportional-plus-integral controller (PI)

In PI-controllers an integral component is fed back in addition to the proportional component. This prevents a lasting system deviation. As soon as the system deviation is not equal to zero, the integral part adds the deviations over time and the output variable of the controller increases continuously. Finally, the output variable is exactly so large that the system deviation is equal to zero.

$$
\begin{aligned}
& y=K_{p} \cdot\left((w-x)+\frac{1}{T_{n}} \int(w-x) d t\right) \\
& \text { where } K_{p}=\frac{100 \%}{x_{p}}
\end{aligned}
$$

The integral component reduces the stability and the P -component must be reduced accordingly.

4.4.5 Proportional-plus-integral-plus-differential controller (PID)

PID controllers are the most common type of controller. The manipulated variable is calculated from the system deviation $\mathbf{w - x}$ as follows:

$$
\begin{aligned}
y= & K_{p} \cdot\left((w-x)+\frac{1}{T_{n}} \int(w-x) d t+T_{v} \frac{d(w-x)}{d t}\right) \\
& \text { where } K_{p}=\frac{100 \%}{x_{p}}
\end{aligned}
$$

Thanks to the integral component this type of controller, just as the PI controller, has no remaining system deviation.

The differential component is proportionate to speed and, therefore, has a damping effect.

RT 200 Temperature Control Apparatus with Experiment Panels

4.5 Controller setting according to ZIEGLER-NICHOLS

Oscillation
Increasing the gain step by step

The setting rules according to ZIEGLER-NICHOLS are a commonly used and proven method of adapting a controller to a system.
The advantage of this method is that the system parameters do not need to be known explicitly. The necessary information concerning the system is gained from the response of the closed control circuit at the limit of stability.
To do this, the controller is configured as a pure \mathbf{P} controller and the gain K_{p} is increased so much or the proportional-action range is reduced until the control circuit just begins to oscillate.

The critical gain required for this K_{p} crit or Xp_{p} crit and the cycle time $T_{\text {crit }}$ of the sustained oscillation to be employed are used to determine the controller parameters.

The controller parameters for a PID controller are then calculated as follows

Controller parameters according to Ziegler-Nichols			
Type of controller	\mathbf{P}	PI	PID
Proportional range $\mathbf{x}_{\mathbf{p}}$	$2.0 x_{p}$ crit	$2.2 x_{p}$ crit	$1.66 x_{p}$ crit
Integral-action time $\mathbf{T}_{\mathbf{n}}$	-	$0.85 \mathrm{~T}_{\text {crit }}$	$0.50 \mathrm{~T}_{\text {crit }}$
Derivative-action time $\mathbf{T}_{\mathbf{v}}$	-	-	$0.12 \mathrm{~T}_{\text {crit }}$

RT 200 Temperature Control Apparatus with Experiment Panels

4.6 Evaluating the control quality

The control quality is evaluated using the step response of the closed control circuit.

A differentiation is made here between the response to setpoint changes and the response to disturbances.

- The response to setpoint changes describes the reaction of the control circuit to a change in the target value.
- The response to disturbances reflects the influence of disturbances on the actual value.

In order to interpret the step responses in a comparative manner several characteristic values are introduced.

Overswing amplitude \mathbf{x}_{0}

The overswing amplitude is a brief deviation of the actual value from the target value. It is a measure of the tendency of the control circuit to oscillate with regard to damping.

Remaining system deviation $\mathbf{e}=\mathbf{w}-\mathbf{x}$

The remaining system deviation is a static value. It is a measure of the accuracy of the control system (bottom illustration). It is of particular significance for P and PD controllers.
Overswing amplitude and remaining system deviation are often referred to in relation to the target value and are indicated in percentages.

Rise time Ton

The rise time is a measure for the speed of the control process. It is the time between the target value step and the first attainment of the tolerance band.

RT 200 Temperature Control Apparatus with Experiment Panels

All rights reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany

In the case of response to disturbances, the rise time is the time between the first deviation from the tolerance band and reentering the tolerance band.

If the actual value has a remaining system deviation which is too great (response to setpoint changes bottom illustration), then it is the time until first attainment of the later stationary upper range value.

Settling time Toff

The settling time reflects the time form the target value step until the final settling of the actual value in the tolerance band.

In the case of response to disturbances, the time between first leaving the tolerance band and final settling in the tolerance band applies. The relationship between the rise time and the settling time is itself a measure for the damping of the control circuit. A small rise time with a large settling time means small damping and tendency to oscillate.

RT 200 Temperature Control Apparatus with Experiment Panels

4.7 Cascade control

This special type of control with an auxiliary controlled variable uses two controllers connected in series. The control device consists of a master controller and a follow-up controller.

At the input of the master controller, the controlled variable x_{1} is compared with the reference variable w_{1} and the control difference e_{1} is formed. Its output variable, the control signal y 1 , acts as a reference variable w_{2} for the follow-up controller, and is compared at its input with the auxiliary controlled variable x_{2}. By dividing the control circuit into a follow-up control circuit and a master control circuit, the quality of control of x_{1} is improved. In case of a fault, since the change in x_{2} occurs earlier, the follow-up controller triggers a control process, thereby supporting overall control.

In general, control momentum can be improved via the introduction of subordinate control loops in the control circuit.

RT 200 Temperature Control Apparatus with Experiment Panels

4.8 On-off Controller

Two-point controller

All rights reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany

Two-point controllers are among the simplest types of controllers. They are used, for example, as thermostats in furnaces and air conditioning systems.

Two-point controllers are switches which only have two states, dependent on the input signal; On: $y=100 \%$ and Off: $y=0 \%$. In general, the two-point controller does not switch exactly at $\mathrm{x}=\mathrm{w}$, rather with a certain hysteresis at $\mathrm{x}=\mathrm{w} \pm \mathrm{x}_{\mathrm{sd}} / 2$. This results in the depicted curves for the control and manipulated variables. The manipulated variable y is pulse-width modulated and has a period T of

$$
\mathrm{T}=\mathrm{t}_{\mathrm{e}}+\mathrm{t}_{\mathrm{a}}
$$

The manipulated degree α of the controller is the result of the switching ratio

$$
\alpha=\frac{t_{e}}{t_{e}+t_{\mathrm{a}}}
$$

these two characteristic variables of the two-point controller are dependent on the set hysteresis on the one hand and on the system parameters $\mathrm{K}_{\mathrm{s}}, \mathrm{T}_{\mathrm{t}}$ and T_{g} on the other.

The amplitude x_{0} of the switching cycles can be approximated using
$x_{0} \approx \frac{x_{s d}}{2}+\frac{K_{s} Y}{2} \cdot \frac{T_{t}}{T_{g}}$

RT 200 Temperature Control Apparatus with Experiment Panels

Three-point controller with hysteresis

Another type of continuous controller is the threepoint controller. It is often used in motor drives. Its behaviour is similar to that of the two-point controller. In a drive, it can determine the direction of drive (clockwise or counter-clockwise) and standstill. In a temperature control, it produces three control states:

Heater ON, cooler OFF (heating)
Heater OFF, cooler OFF
Heater OFF, cooler ON (cooling)
The control states can also be referred to as 1, 0 and -1 .

RT 200 Temperature Control Apparatus with Experiment Panels

5 Experiments
 5.1 Familiarisation with the Layout and Function of an Industrial Controller

The student should be given time to become familiar with the control loop on the system. For this propose there is a working sheet in the Appendix on which the related terms can be entered on a diagram of the control loop.

In addition, the student can become familiar with the operation of the controller. The operating instructions for the controller can be used for this purpose.

5.2 Comparison of Different Types of Controller

5.2.1 Preparation for the Experiment

In the following experiments are described that enable the student to compare the different controllers and their action.

For this purpose the controller must first be configured to the required type, as described in Sec. 2, and the parameters must be entered.
The following parameters provide typical step responses:

RT 200 Temperature Control Apparatus with Experiment Panels

	P controller	PI controller	PD controller	PID controller	Two-point controller
Step from to	140 to $160^{\circ} \mathrm{C}$	220 to $240^{\circ} \mathrm{C}$	240 to $260^{\circ} \mathrm{C}$	200 to $220^{\circ} \mathrm{C}$	260 to $280^{\circ} \mathrm{C}$
Xp	10%	15%	5%	20%	10%
Tn	0	30 sec	0	20 sec	15 sec
Tv	0	0	5 sec	6 sec	5 sec

Tab. 5.1 Good control parameters for typical controller behaviour
Note: The two-point controller has a PID characteristic

5.2.2 Performing the Experiment

- Set setpoint w to the above mentioned start temperature on the controller.
- Wait until the temperature is reached
- Record initial measured values: Timet (=0 sec, measure using stopwatch), read control variable Y (current in mA or in \%) on bar display, read actual value \mathbf{X} (temperature in the heated space) at the transducer
- Enter step at the controller by adjusting the setpoint w to the above mentioned final temperature.
- Every 5-10 sec take measurements until a time or around 200 sec has passed.

5.2.3 Evaluation of the Experiment

If the values measured are plotted on a graph, the following diagrams are produced:

RT 200 Temperature Control Apparatus with Experiment Panels

200 Time t in sec
Fig. 5.1 P Controller

Fig. 5.2 PI Controller

RT 200 Temperature Control Apparatus with Experiment Panels

All rights reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 04/98

Fig. 5.3 PD Controller

Fig. 5.4 PID Controller

RT 200 Temperature Control Apparatus with Experiment Panels

Fig. 5.5 Two-Point Controller

Based on the diagrams, the typical properties of the controller types can be confirmed:

- P controller: permanent temperature error between setpoint and actual value can be seen
- PD controller: damping can be seen (only one oscillation), less error than for the P controller
- PI controller: no error any more, but it is also not possible to see any stability (system oscillates)
- PID controller: no error and good damping
- Two-point controller: switching states can be clearly seen on the control value y, control is of adequate quality for this case

RT 200 Temperature Control Apparatus with Experiment Panels

5.3 Introduction of a Disturbance

ATTENTION

To investigate the behaviour of the controller types when there is a disturbance, a disturbance variable can be applied. For this purpose one of the cooling plates must be placed on the soldering iron.

The copper plate has a greater cooling effect than the stainless steel plate.
ATTENTION! The temperature must not exceed 180C because the plastic parts of the system may be irreparably damaged by the heat.

RT 200 Temperature Control Apparatus with Experiment Panels

6 Appendix

6.1 Working Sheets
6.1.1 Temperature Control System Control Loop

All rights reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 04/98

RT 200 Temperature Control Apparatus with Experiment Panels

6.1.2 Data Recording

Controller Type : \qquad

Date: \qquad
Name: \qquad
\qquad
$\mathrm{Tn}=$ \qquad
$\mathrm{Tv}=$ \qquad
Setpoint w = \qquad ${ }^{\circ} \mathrm{C} \quad$ Start temperature: \qquad ${ }^{\circ} \mathrm{C}$
Parameter:

Measured Values:

Notes:

RT 200 Temperature Control Apparatus with Experiment Panels

6.2 Technical Data

Temperature Control System

Heat Source: Soldering iron
Power max. 16 W
Supply: $\quad 230 \mathrm{~V} / 50 \mathrm{~Hz}$
(Optional alternatives, see rating plate)
Controller:
Standard Input Signal: 0/4 ... 20 mA
0 ... 10 V
Thermocouple
Standard Output Signal 0 ... 20 mA
Operating Modes:
Continuous control system and two-point control system
Controller Types: P, PI, PD and PID controller, Parameters can be set

Display
Supply:
digital, LED
(Optional alternatives, see rating plate)
Temperature Transducer

Signal Input	Thermocouple	type k
Signal Output	$0 \ldots 10$	VDC
Temperature Range	$0 \ldots 400$	C
Display	digital, 3	$1 / 2$ digit, LED
Supply	$230 \mathrm{~V} / 50$	Hz

(Optional alternatives, see rating plate)
Control Variable Display
Signal input
0 ... 20 mA
Display
LED bar display
Supply $\quad 230 \mathrm{~V} / 50 \mathrm{~Hz}$
(Optional alternatives, see rating plate)
Actuator

Input Signal	$0 \ldots 20$	mA
Output Signal	$0-16$	W
Supply	$230 \mathrm{~V} / 50$	Hz
(Optional alternatives, see rating plate)		

RT 200 Temperature Control Apparatus with Experiment Panels

Overall Dimensions

(L x W x H): $\quad 700 \times 350 \times 700 \mathrm{~mm}$
Weight:
approx. 38 kg

Industrial controller KS92/94

DAC ${ }^{\circledR}$ is a patented method and a registered trademark of Regeltechnik Kornwestheim GmbH.
© PMA Prozeß- und Maschinen-Automation GmbH 2000. Printed in Germany (0007).
All rights reserved. No part of this document may be
reproduced or published in any form or by any means without prior written permission from the copyright owner.

A publication of PMA Prozeß- und Maschinen-Automation.
Subject to changes without notice.
PMA Prozeß- und Maschinen-Automation GmbH
P.O. Box 310320

D-34113 Kassel
Germany

Contents

General hints 9
1.1 Technical data 10
1.1.1 Safety notes 10
1.1.2 Electromagnetic compatibility 10
1.1.3 Maintenance / Behaviour in case of trouble 10
1.1.4 Electrical connections 10
2 Mounting and connection 11
2.1 Mounting 11
2.1.1 Removing the controller from the housing 12
2.1.2 Installing the controller in the housing 12
3 Electrical connections 13
3.1 Supply voltage connection (5) 14
3.2 Connecting the analog inputs INP 14
3.3 Outputs OUT 15
3.4 Digital inputs di 15
3.5 Digital outputs do1 to do6 9 16
3.6 Versions with integrated supply voltage 16
3.7 Connecting the bus interface (11 17
3.7.1 Operation 17
3.7.2 Remote/local 17
3.7.3 Connection examples 18
Operation 19
4.1 Front view 19
4.2 Status displays 19
4.3 Menus 1... 3 20
4.4 The operating level 20
4.5 Parameter and configuration level 21
5 KS92/94 function survey 23
5.1 Basic hardware functions 23
5.1.1 Circuit board P: 23
5.1.2 Circuit board A 23
5.1.3 Circuit board B (optional) 23
5.1.4 Circuit board C (optional, only possible with KS94) 23
5.2 Survey of included function modules 24
5.3 Galvanic isolation 25
5.4 Input conditioning 26
5.4.1 Input circuit monitor 26
5.4.2 Scaling 26
5.4.3 Linearization 26
5.4.4 Additional measurements 27
5.4.5 Filter 27
5.4.6 Scanning intervals 27
5.4.7 Linearization error 27
5.4.8 Temperature compensation 27
5.4.9 Measurement value correction (optional) 28
5.5 Signal pre-processing 29
5.6 Inputs 31
 31
5.6.2 Additional signal input 3 / INP3 (optional) (\rightarrow L. 3 Ba) 34
5.6.3 Additional signal input $4 /$ INP4 (optional) $(\rightarrow[.354)$ 34
5.6.4 Signal input 5 / INP5 (ratio variable x2, ext. set-point Wext) (\rightarrow [40ic) 34
5.6.5 Signal input 6 / INP6 (auxiliary variable yp, position feedback yp) (\rightarrow[.450) 35
5.6.6 Digital inputs "di" 35
5.7 Outputs 36
5.7.1 Signal output 1 OUT1 $(\rightarrow$ [.5日a $)$ 36
5.7.2 Signal output 2 OUT2 $(\rightarrow$ L.53i $)$ 36
5.7.3 Additional signal output 3 OUT3 (optional) $(\rightarrow[.55 \mathrm{~B})$ 37
5.7.4 Signal output 4 OUT4 $(\rightarrow[.590)$ 38
5.7.5 Signal output 5 OUT5 $(\rightarrow[.59$ i $)$ 38
5.7.6 Digital outputs dol to do6 38
5.7.7 Input and output survey 38
Set-point functions 41
6.1 Terminology 41
6.2 General 41
6.3 Detailed set-point function block diagrams 43
6.4 Safe set-point W2 45
6.5 External set-point Wext 45
6.6 Set-point offset 46
6.7 Bumplessness 46
6.7.1 Set-point change 46
6.7.2 Set-point switch-over (w/w2, Wext/Wint, w/wp, Controller 'On') 47
6.8 Tracking 47
6.8.1 Set-point tracking (\rightarrow [. 105 $)$ 47
6.8.2 Process value tracking 48
6.8.3 MIN/MAX selection WSel 48
Process value calculation 49
7.1 Standard controller 49
7.2 Ratio controller 49
7.2.1 Conventional ratio control: 49
7.2.2 Additional possibilities of ratio control with KS92/94 49
7.2.3 Example for standard ratio control: 50
7.2.4 Material batching and mixing 50
7.3 Three-element control 52
7.4 Mean value 52
8 Correcting variable processing 53
8.1 Second correcting value. 53
8.2 Correcting variable limits. 53
8.3 External correcting variable limiting (override control) 54
8.4 Override control 54
8.4.1 Override control with continuous output 54
8.4.2 Override control with three-point stepping output 54
8.5 Bumpless A/M switch-over. 55
8.6 Motor actuator output action 55
8.7 Positioning output switch-off 56
8.8 Controller output action with sensor break 56
8.9 Position feedback Yp: 56
Special Functions 57
9.1 Control using a disturbance signal 57
9.1.1 Yp signal. 57
9.2 "Rapid Recovery" 59
9.2.1 Y storage 59
9.2.2 Set-point ramp after switch-on 59
9.3 $\mathrm{DAC®}=$ Actuator monitoring. 60
10 Alarm processing 63
10.1 Alarm $1 /($ limit 1) 64
10.2 Alarm $2 /$ (limit 2) 64
10.3 Alarm $3 /($ limit 3) 64
10.4 Alarm 4 / (limit 4) 64
11 Optimizing the controller 65
11.1 Process characteristics 65
11.2 Controller characteristics 65
11.2.1 Signallers 66
11.2.2 Two-point controller 67
11.2.3 Three-point controller 68
11.2.4 $\Delta / \mathrm{Y} /$ off 69
11.2.5 Three point stepping controller 70
11.2.6 Continuous controller 71
11.2.7 Continuous controller with position control 72
12 Optimizing the controller 73
12.1 Self-tuning 73
12.1.1 Process-at-rest monitoring: 73
12.1.2 Set-point reserve: 73
12.1.3 Start during automatic operation: 74
12.1.4 Start during manual operation 74
12.1.5 Self-tuning procedure with heating: 75
12.1.6 Self-tuning procedure with heating and cooling processes: 75
 76
12.2 Optimizing empirically 77
12.3 Selectable adaptation (only KS94) 78
13 Programmer 79
13.1 General 79
13.1.1 Programmer definition 79
13.1.2 Segment parameter entry 80
13.1.3 Parameter pre-setting (default) 80
13.1.4 Time display 81
13.1.5 "Flat ramps" 81
13.1.6 Programs (recipes) 81
13.1.7 Change mode ramp/step 83
13.1.8 Preparation for operation and end position 83
13.1.9 Control signals and status messages 84
13.1.10 Pre-requisites 84
13.2 Changes in the program sequence 85
13.3 Bandwidth monitoring 85
13.4 Manual programmer operation 86
 86
13.6 Behaviour after mains recovery and after removal of sensor errors 87
13.6.1 Memory loss (RAM) 87
13.6.2 Memory (RAM) available 87
13.7 Preset 87
13.8 Sensor fault 87
13.9 Programmer displays 88
13.9.1 "Display 1" 88
13.9.2 "Display 2" 88
13.9.3 "Text 1" 88
13.9.4 "Text 2" 88
13.10 Programmer operation. 89
13.11 Inputs and outputs, parameters, configuration 89
14 Timer 91
14.1 Definition 91
14.2 Entry of times and timers 91
15 User-defined texts 93
15.1 Text1 93
15.2 Text2 93
16 Configuration 95
16.1 General 95
16.2 Basic structure 95
16.3 Main groups 98
16.4 CONTR: Controller 99
16.5 SOURCE: Input signal allocation 101
16.6 INPUT: 103
16.6.1 Signal input $1 /$ INP1 (main variable x 1) 103
16.6.2 Signal input 3 / INP3 (ratio variable x2 or auxiliary variable z) 105
16.6.3 Signal input 4 / INP4 (variable x3, ext. set-point Wext, override control
ovc+/-) 106
16.6.4 Signal input 5 / INP5 (ratio variable x2, ext. set-point Wext). 106
16.6.5 Signal input 6 / INP6 (auxiliary variable Yp, feedback Yp) 106
16.7 OUTPT: 107
16.7.1 Signal output 1 / OUT1 107
16.7.2 Signal output $2 /$ OUT2 108
16.7.3 Signal output 3 / OUT3 108
16.7.4 Signal output 4 / OUT4 109
16.7.5 ignal output 5 / OUT5 109
16.7.6 DO5,6 (digital control outputs) 110
16.8 ALARM: 111
16.8.1 Alarm $1 /($ limit 1$)$ 111
16.8.2 Alarm 2 (limit 2) 111
16.8.3 Alarm 3 (limit 3) 111
16.8.4 Alarm 4 (limit 4) 111
16.9 TUNE: self-tuning 112
16.10 DISP: User interface for operation 112
16.11 AUX: Additional functions 113
16.11.1 COM (serial interface) 113
16.11.2 Hardware 113
16.11.3 Forcing signal input 113
16.11.4 Forcing digital input 113
16.11.5 Forcing signal output 114
16.11.6 Forcing digital output 114
16.11.7 Hard-/Software Codenumber 114
16.12 Examples of configuration 115
17 Parameters 117
17.1 General 117
17.1.1 Allocation of parameters to the 'extended operating level' 117
17.2 Set-point function 119
17.3 Time function 119
17.4 Programmer functions. 119
17.5 Alarm function 120
17.6 Self-tuning 120
17.7 Control algorithm 121
17.8 Input processing 122
17.8.1 Process value handling 122
17.8.2 Signal pre-processing 122
17.9 Miscellaneous. 123
17.10 Signals 123
18 Versions 125
18.1 Industrial controller KS92 125
18.2 Industrial controller KS94 126
18.3 Input and output allocation with pre-configured units 127
19 Terminology explanation 129
20 Index. 133

1 General hints

Industrial controllers KS92 and KS94 belong to a new generation of microcomputer-based controllers in the upper performance class.
Despite their versatility, these controllers are easy to operate. Not only "slow" thermal processes, but also pressure and flow with short reaction times can be controlled without problems. Due to measuring and control functions configurable within wide limits, the controllers can be used for a wide range of application.

Safe, reliable control within close tolerances, and high plant availability are pre-requisites for economic production.
Controllers with reliable and robust control algorithms are the basis for stable process conditions, also with varying operating parameterses.
A self-tuning function ensures short start-up times. The "thinking" operator guidance system with standard symbols, plain-language texts plus software and hardware interlocks prevent operating errors and thus reduce downtimes.

Controllers KS92 and KS94 are configurable as signallers, 2-point, 3-point, 3-point stepping and continuous controllers. Moreover, the output functions can be configured for $\Delta / \mathrm{Y} /$ off, position control, split-range control and numerous 3-point combinations of switching/continuous control.
Control modes are set-point, set-point/cascade and programmer, each with the possibility of set-point offset. The effect of offset can be additive (e.g. reduced stand-by set-point) or a factor (e.g. O2 correction or split load).
Offset can be triggered by an external contact, whereby the value is defined via an analog signal or via an adjustable parameter.

Additional control modes:

- Ratio control (stoichiometric combustion, mixing ratios, additives, batching, ...)
- Three-element control (level control in a steam boiler, ...)
- Mean value calculation from two process values.

Apart from a correcting function for the measurement signal, it is possible to scale, linearize or square-root every input and output signal. This enables the controller to be matched precisely to the application without any supplementary equipment.
For every-day practice, feed-forward control has proved very useful to line out disturbances, e.g. with steam-generating plants. For applications where several controllers act on a single actuator, the output limiting function is recommended. Alternatively, preset output limits can be used. This not only applies for continuous outputs, but also for switching and three-point stepping outputs (motor control).

General hints

1.1 Technical data

The technical data are given in data sheet no. 949873728333.

1.1.1 Safety notes

Following the enclosed safety instructions 949904707101 is indispensable!
The insulation of the instrument conforms to EN 61 010-1 with pollution degree 2, overvoltage category III, operating voltage 300 V and protection class I. Additional with horizontal installation, a protection to prevent live part, e.g. wire ends, from dropping into the open housing of a withdrawn controller must be fitted.

1.1.2 Electromagnetic compatibility

The instrument conforms to European Directive 89/336/EEC and will be provided with the CE-marking. The following European Generic Standards are met: Emission: EN 50081-2 and Immunity: EN 50082-2. The unit is suitable for use in industrial areas (in residential areas, RF interference may occur). The electromagnetic radiation can be reduced decisively by installing the unit in a grounded metal switch cabinet.

1.1.3 Maintenance / Behaviour in case of trouble

The controller needs no maintenance. The rules to be followed in case of trouble are:

- Check mains (voltage, frequency and correct connections),
- check, if all connections are correct,
- check the correct funktion of the sensors and final elements,
- check the configuration words for required functions and
- check the adjusted parameters for required operation.

If the controller still does not work properly after these checks, shut down the controller and replace it.
Cleaning:Housing and Front can be cleaned by means of a dry, lint-free cloth. No use of solvents or cleansing agents!

1.1.4 Electrical connections

\square The electrical connections must be made according to the connecting diagram. For R.F. interference suppression, the mains cables must be kept separate from all other cables.
\square The protective earth, which is to be taken to terminal A11 (P13 with continuous controllers) must be grounded via a lead which should be as short as possible (15 cm during test).
\square When connecting a contactor to the relay output, an RC protective circuit is required to prevent high voltage peaks which might cause trouble to the controller.

2 Mounting and connection

2.1 Mounting

The mounting position of controllers KS92 and KS94 is uncritical.
Sufficient space for mounting should be provided on the rear of the control panel.
The controller mounting procedure is as follows:

- Mark and realize the panel cut-out as shown in the drawing below.
- Insert the housing into the panel cut-out from the front.
- Fit a fixing clamp to the controller top so that it locks into one of the housing cut-outs. Tighten it slightly using a screwdriver.
- Fit the second fixing clamp accordingly on the controller bottom, in diagonal position to the upper fixing clamp.
- Tighten the two fixing clamps, until the housing is seated firmly without distortion.

For reaching protection type IP65 between controller and panel, an additional sealing ring must be provided. Moreover, two further fixing clamps are required. The mounting material required for this purpose can be delivered on request.

S.I.L. switch: with the switch closed, transition to parameter and configuration level is disabled. When making an attempt to change over to the parameter level, " $\mathrm{F}^{\prime} \cdot \boldsymbol{\operatorname { r r }} \cdot \boldsymbol{\exists}$ " ${ }^{\prime}$ is displayed (text1). Correcting variable, set-point and parameters at the "extended operating level" remain available for selecting and changing. For access to the S.I.L. switch, release the locking screw and withdraw the instrument module from the housing. Subsequently, re-insert the controller module into the housing and mount it with screws.

Caution! The instrument contains ESD-hazarded components.

2.1.1 Removing the controller from the housing

For maintenance and service purposes, the controller module can be removed from the housing, whereby the housing with the relevant wiring remains in the installation.
If the operating voltage is switched on during this procedure, the live terminals in the controller housing must be protected against contact.

The controller electronics contains electrostatically sensitive components. Static discharge must be prevented by suitable measures.
When removing several controllers, take care that the controllers are re-mounted into the correct housings! For this, not only the hardware, but also the data configured in the controller are decisive.

For dismounting the controller module from the housing, remove the captive screw on the controller front. Hereby, the module is released from the housing, until it can be removed.

2.1.2 Installing the controller in the housing

\square Note that each specific controller module belongs to a particular housing.
Insert the module carefully into the housing guide rails in the correct mounting position and slip it in position without pressure. A small remaining gap between front and frame is correct. Tighten the screw on the controller front, until the module is firmly locked in position.

3 Electrical connections

The electrical connections must be made according to the connecting diagram. For R.F. interference suppression, the mains cables must be kept separate from all other cables.

The protective earth, which is to be taken to terminal A11 (P13 with continuous controllers) must be grounded via a lead which should be as short as possible (15 cm during test).When connecting a contactor to the relay output, an RC protective circuit is required to prevent high voltage peaks which might cause trouble to the controller.

The controller is provided with flat-pin connectors $1 \times 6,3 \mathrm{~mm}$ or $2 \times 2.8 \mathrm{~mm}$ for electrical connection.

Connecting diagram:

 galvanic isolation

[^0]
Electrical connections

3.1 Supply voltage connection (5)

The following controller versions are available:

AC versions

- 90... 260 V AC (KS92 only $230 \mathrm{~V} \mathrm{AC)}$

Frequency: 48... 62 Hz
Power consumption: approx. 10 VA
24 V UC versions (only KS 94)

- $24 \mathrm{~V} \mathrm{AC}, 48 \ldots . .62 \mathrm{~Hz}$

The voltage limits are 24 V AC. $(+10 \ldots-15 \%)$

- 24 V DC

With the 24 V DC version, the limits are within 19,2 and 30 V .

3.2 Connecting the analog inputs INP

Input INP1 1

Input for variable x 1 . (see page 31 ff)
a Thermocouple
b Resistance thermometer (PT100 in 3-wire connection)
c Temperature difference as $2 \cdot$ PT100 in 2-wire connection
d Potentiometric transducer
e Current
f Voltage

Input INP3 (15

Dependent of configuration, this input is used for variable x 2 or variable z .
The reference potential (GND) of this input is at terminal C10 (see page 34).

Input INP4 (15)

Dependent of configuration, this input is used for variable x 3 , external set-point or override control (OVC). The reference potential (GND) of this input is at terminal C10 (see page 34).

X 2

Input INP5 (3)

This input is used for variable x 2 , for the external set-point or for external set-point offset (configuration level L. 18:
With voltage signals, A6 must be connected with the reference potential at A9 (see page 34)

Input INP6 2

This input is used for position feedback with 3-point stepping controllers, for the external set-point or for the external set-point offset (configuration level L. 185) (see page 35)

3.3 Outputs OUT

Output OUT1 7

Dependent of version, OUT1 is a continuous, a logic or a relay output. It may be allocated to Y1 or to alarm. With logic and continuous output, a protective earth must be connected to P13. The logic signal switches between 0 and $20 \mathrm{~mA}(\operatorname{load} \leq 600 \Omega)$ or $0 />12 \mathrm{~V}(\mathrm{load} \geq 600 \Omega)$ (see page 34).

Outputs OUT2, OUT4 and OUT5 6

These outputs are relay outputs. Output OUT2 is configured either for y 2 or for alarm (see page 38).
Outputs OUT4 and OUT5 are allocated to alarms LIM1 / LIM2.
With programmers, they can be configured in addition to outputs $1 \ldots 4$ or for program end (5.595/[.591) (see page 38).

Output OUT3 16

Dependent of configuration, OUT3 is a continuous or a logic output. The logic signal switches between 0 and $20 \mathrm{~mA}(\operatorname{load} \leq 600 \Omega)$ or 0 and $12 \mathrm{~V}(\operatorname{load} \geq 600 \Omega)$.
Which signal shall be taken to this output must be determined at configuration level. Selection between various controller outputs, process values and set-point is possible (see page 37)

3.4 Digital inputs di

Digital inputs di1 and di2 4

Dependent of configuration (L. 19 I and L .19), inputs di1 and di2 can control the following procedures:

- Switch-over between internal set-point $\mathbf{W}(0)$ and externel set-point Wext (1)
- Switch-over between internal set-point $\mathbf{W}(0)$ and second set-point $\mathbf{W} 2$ (1)
- Switch-over between automatic (0) and manual (1) operation
- Set-point offset switch-on; normal (0) offset (1)
- Switch-over between normal correcting value (0) and safety correcting value (1)
- Controller switch-ON (0) or OFF (1)
- Switch-over between PI (0) and P (1); with 2/3-point and continuous controllers or feedback switch-off with 3-point stepping controllers
- Bumpless switch-over between normal correcting value (0) and safe correcting value (1)
- Bumpless switch-over to internal set-point (tracking only di2) OFF (0) ON (1)

Digital inputs di3 to di12 9(1)(1213

di3 used for switch-over between local (0) and remote (1).
di4 used for switch-over between program STOP (0) and START (1) (L.192; SPr.St.).
di5 used for programmer RESET; normal (0), reset (1).
di6/di7
used for program number selection with programmer.

$\boldsymbol{\tau}$| di8 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| di9 | 0 | 0 | 1 | 1 |
| Parameter set | 0 | 1 | 2 | 3 |

di7/di8 used for program number selection with programmer.
di10 minimum delimitation of the correcting variable with 3-pnt.stepping controller
dil1 maximum delimitation of the correcting variable with 3-pnt.stepping controller and can be configured for switching on the effective set-point offset (5.19 IT : Sidion).
di12 switches over bumplessly to the internal set-point (tracking) OFF (0) ON (1). and can be used for switching over to the second set-point W2 (L.19日) OFF (0) ON (1).

Electrical connections

3.5 Digital outputs do1 to do6 9

do1 indicates the status of control output 1 with programmer.
do2 indicates the status of control output 2 with programmer.
do3 indicates the status of control output 3 with programmer.
do4 indicates the status of control output 4 with programmer.
do5 indicates, if the controller is in manual or automatic mode, or the Y1 condition with switching controllers (5.595).
do6 indicates, if the controller uses the external or the internal set-point, or status Y2 with switching controllers (5.597).

3.6 Versions with integrated supply voltage

The supply voltage can be used only for energization of a 2-wire transmitter or for energization of max. 4 control inputs. The supply voltage is potential-free and can also be used for energizing inputs INP3 ... INP6 or for other units. Selection of supply voltage or digital inputs is by S.I.L. switches (see figure opposite).

	Transmitter supply voltage	Digital input
(1)	Position T	Position D
(2)	open	closed (D)
(3)	closed (T)	open

The supply voltage is only applied to terminals A12 and A14 with INP1 configured for current or
 transmitter supply (factory setting)! With the S.I.L. switches set to digital input, the voltage is applied to terminals A1 and A4 independent of the configuration of input INP1. In this case, the voltage input of INP5 is not available.

Supply voltage for energization of digital input (e.g. dil...di4)

External use of the supply voltage

Connection of a 2-wire transmitter on example of INP1 or INP 5

Electrical connections

3.7 Connecting the bus interface (11)

TTL or RS422 or RS485, PROFIBUS or InTERBUS. With TTL, an interface module for conversion to RS422/RS485 is required. 4 units may be connected to an interface module.

3.7.1 Operation

KS94 data can be read, or displayed and modified from the front-panel PC interface or via the serial interface.

After delivery of controller KS94, the PC interface is active. KS94 configuration and parameter setting are supposed to be done by means of the engineering tool before commissioning.

Switch-over to the serial interface is either

- via operator dialogue (front):

press $\square \geq$ during 3 sec. \rightarrow Fiar:a flashes press \triangle until CE Es flashes $\rightarrow \square$ confirm briefly.	display CEIS	$\hat{=}$ switch over to rear interface
press $\square \geq$ during 3 sec. \rightarrow F'ar:a flashes press Δ until C Frnt flashes \rightarrow confirm briefly	display CFrnt.	$\widehat{\text { s switch over to front-panel interface }}$

- or by activating 'REMOTE' (\rightarrow page 17). Switching back to LOCAL does not cause switch-over to the front-panel interface.
Switch-over to the PC interface is only possible with the R/L input set to LOCAL.

3.7.2 Remote/local

Units with serial interface are fitted with a hardware input (di3) for switch-over between REMOTE and LOCAL operation (R/L).
During 'REMOTE'all operations via the serial interface (writing and reading) are permissible. The following operations are still possible via the keys of the local operating front panel:
\square Display switch-over
\square Display of parameters without modification
\square Display of configuration data without modification
During remote operation, the PC interface cannot be operated. When switching over from LOCAL to REMOTE, an active PC interface is switched off.

During 'LOCAL', only reading of all data via the serial interface is permissible.
Modifications are not possible, exception:
any data related only to the interface or which are not adjustable local via local operation.

Electrical connections

3.7.3 Connection examples

Fig.: 1 TTL-interface connection

Fig.: 2 RS422-interface connection

Fig.: 4 RS485-interface connection

Fig.: 3 PROFIBUS-DP connection

Fig.: 5 InterBus connection

4. Operation

4.1 Front view

Fig.: 6 Front view
LED 2 e.g. Cooling LED 1 e.g. Heating Locking screw

Text 1 e.g. physical unit
Text 2 e.g. Bargraph/ Dialogue

PC interface
Manual/Automatic key

LED 3 e.g. Alarm 1 LED 4 e.g. Alarm 2

Display 1 e.g. Process value

Display 2 e.g. Set-point

Selection key
Increment key (\uparrow)
Decrement key (\downarrow)
Locking screw: Locks the controller module in the housing.
LEDs: indicate the status of controller outputs Y1, Y2 and alarms LIM1, LIM2 (other settings at configuration level 5.8 B)
Display 1: indicates the process value at operating and parameter level, and the configuration code at configuration level.
Display 2: indicates the set-point during automatic operation at operating level and the correcting value during manual operation. The values are adjustable directly with push-buttons $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$. Further displays can be adjusted by means of configuration code (5.日E $\mathbf{1}$).
Text 1: indicates the short-form dialogue or the unit of display 2. Further displays can be adjusted by means of configuration code (5.
Text 2: indicates the correcting variable bargraph. Further displays can be adjusted by means of configuration code (5010).
PC interface: PC connection for configuration, parameter setting and operation by means of the engineering tool

4.2 Status displays

This message signals a sensor error. Possible cause:
Break or wrong polarity with thermocouple
Break or short circuit with Pt100 and potentiometric transducer
Break with $4 \ldots 20 \mathrm{~mA}$ and $2 \ldots 10 \mathrm{~V}$ standard signal

The following messages can be displayed in KS92/94 'Text1'.

ClockF	Faulty clock (real-time clock must be re-adjusted.)
Recrow	Recovery function is active (after power recovery, the process is controlled with the correcting variable determined last.
Grow	Gradient function is active (the set-point changes at an adjustable (Grw+/-) rate of change).
YZ	The second correcting variable (safety correcting variable) is active
FdaF	Self-tuning was canceled with error.
Rde	Self-tuning busy
Timミr	Timer function is active (a future starting point was not reached yet).
C:ElEr	Calibration error with automatic position feedback calibration.
Elork	No motor actuator reaction (only with the DAC function activated).
Direr	Faulty motor actuator output action (only with the DAC function activated).
WFEil	Yp error (potentiometer defective or not connected (only with activated DAC function).

4.3 Menus 1... 3

Apart from the parameter and configuration words, the following dialogue words are used (Text1):

Text1		Signification
CBus	CFrnt	PC communication via interface at terminals B12...B16
Cle.ar		The additional display selected at operating level is deleted (\rightarrow Mar*k)
Clowk		Setting the clock
Corf		Transition to configuration level
Eriol		Return to the previous selection menu
Exit.		Return to operating level (main display)
Hold		The displayed parameter is determined as standard display.
Marck		The displayed parameter is stored as additional display at operating level (\rightarrow Cle.ar*)
More		The configuration level area described with MORE is accessible
OSt.ar	DStor	Self-tuning is started or stopped
P:ar`a		Transition to parameter level
FR'lin	F'Stor	Programmer starting or stopping
F'Sこt.	FRes	Programmer preset or reset
Duit		Return to operating level (main display) without storage of the values changed last

4.4 The operating level

The operating level comprises main display (1) and extension (2). During the main display, automatic or manual operation can be selected ((\%) With automatic, the set-point, and with manual, the correcting value can be adjusted directly $(\Delta \nabla)$. In the extension, the number and sequence of displays is dependent of
 Some of these parameters are directly adjustable $(\Delta \boldsymbol{\nabla})$. A parameter can be displayed continuously with the Hold function. (Press $\square<3 \mathrm{~s} \rightarrow$ Select parameter (press $\boldsymbol{\Delta} \boldsymbol{\nabla}$) \rightarrow $>3 \mathrm{~s} \rightarrow$ Select Hold (Press $\Delta \boldsymbol{\nabla}$) \rightarrow
 operating mode is also selected.

If the set-point is set to '----' by means of $\boldsymbol{\nabla}$, the controller is switched off!!
Мепи 1 is always selectable at operating level: deletion of additional display ($\mathbf{C} \mathbf{l}$ 巨.ar*), communication

Fig.: 7 Operation

4.5 Parameter and configuration level

Menu 1 is always selectable at operating level: several operations $(\rightarrow 7.2)$ and transition to parameter level (Fiar:a).
Menu 2 is always selectable at parameter level: selection of additional displays (N|=r$r^{\circ} \mathrm{k}$), return to parameter level (End), return to operating level (Exit.), transition to configuration level (Conf').
Мепи 3 is always selectable at configuration level: permitting the MORE area (More), return to configuration level (End), return to operating level without storage of the last changes (Duit.) or with storage of the changes (Exit.).

Fig.: 8 Parameter setting

Value adjustment is as follows (parameter values / configuration codes):
$\begin{array}{ll}\text { Fig.: } 9 & \begin{array}{l}\text { Example for a } \\ \text { single parameter }\end{array}\end{array}$

Fig.: 10 Example for combined data (e.g. C-Codes)

5 KS92/94 function survey

5.1 Basic hardware functions

Various KS92/94 controller versions according to order number are available. Decisive for the hardware is the number of connected circuit boards, i.e. connectors.
A large number of standard applications can be realized only with the KS92/94 basic version, which contains circuit boards P and A. The input and output functions shown in the following correspond to the basic setting. Finally, however, the individual configuration is decisive:

5.1.1 Circuit board P:

Output OUT1: positioning signal OUT1 can be ordered as a current or relay output. Dependent of selected controller type, it can be operated as a continuous $0 / 4 \ldots 20 \mathrm{~mA}$ signal or as a $0 / 20 \mathrm{~mA}$ logic signal.

Output OUT2: positioning signal
Output OUT4: limit signal (alarm)
Output OUT5: limit signal (alarm)

5.1.2 Circuit board A

Universal input INP1: process variable x1 (process value)
Difference input INP5: external set-point We
Measurement input INP6: Position feedback yp with 3-point stepping and continuous controller
Control input dil: set-point switch-over
Control input di2: automatic/manual switch-over

5.1.3 Circuit board B (optional)

Circuit board B contains a serial interface (TTL or RS485; ISO1745- and MODBUS protocol), a real-time clock and additional control inputs and outputs, which are reserved exclusively for the programmer functions:

Control input di3:
Control input di4:
Control input di5:
Control input di6:
Control input di7:
Control output do1:
Control output do2:
Control output do3:
Control output do4:

> "remote/local" mode programmer start/stop programmer reset program selection program selection
> control output 1
> control output 2
> control output 3
> control output 4

5.1.4 Circuit board C (optional, only possible with KS94)

Circuit board C offers further configurable inputs and outputs.
Difference input INP3: disturbance variable z or process variable x2 (ratio, three-element, ...)
Difference input INP4: external set-point We, set-point offset dWe, override control OVC, process variable x3 (three-element), ...
Current output OUT3: operating mode continuous $0 / 4 \ldots 20 \mathrm{~mA}$ or logic $0 / 20 \mathrm{~mA}$; function configurable
Control input di8:
Control input di9: control input di10:
Control input dil1:
Control input di12:
Control output do5:
Control output do5:
selection control parameter set $1 . . .4$
selection control parameter set $1 . . .4$
override control OVC+ with three-point stepping controllers override control OVC- or set-point correction dW(e) "On/off" w/W2 switch-over
positioning signal y1 (switching controllers) or "A/M" status positioning signal y2 (switching controllers) or " i / e " status

5.2 Survey of included function modules

A survey of function modules and their interdependence is shown below.
The individual function modules are described in the following sections.
Fig.: 11 Survey of functions

5.3 Galvanic isolation

Galvanic isolation is necessary for safety (contact safety) and for measurement reasons.
Due to the KS92/94 electronics construction, galvanic isolation is standard without extra charge. A transformer in the power supply always isolates all inputs and outputs from the supply voltage. Data exchange between electronics p.c.b. A and power supply or output p.c.b. P is also galvanically isolated. I.e. positioning output OUT1 which can be designed for $0 / 4 \ldots 20 \mathrm{~mA}$, is also isolated from all inputs. Control inputs di, control outputs do and serial interface are always galvanically isolated via opto-couplers, i.e. they cannot contribute to stray potential and error due to leakage current.

Although additional current inputs INP3 and INP4 of option C are galvanically connected (difference inputs; COMMON), they are isolated from the rest of the instrument. This also applies to current output OUT3.
This means: if hardware option C is used, process value, set-point and correcting variable can be galvanically isolated. Even an additional process value output OUT3 $(0 / 4 \ldots 20 \mathrm{~mA})$ is galvanically isolated from the input.
Common control signals as A/M, w/W2, int/ext, etc., e.g. signals coming from a PLC and in many cases without galvanic isolation, are handled with galvanic isolation and do not cause potential compensation. The same applies to control outputs do, which are connected electrically with control units, i.e. which imply a risk of potential connections.

In the connecting diagram on page 13, the double lines clearly show the galvanic isolations throughout the controller.
Galvanic isolation of inputs and outputs is shown in the following drawing.

5.4 Input conditioning

Before the pre-filtered (time constant ...; limiting frequency ...) analog input signals are available as digitized measurement values with physical unit and can be used e.g. as process value, set-point or position feedback, they undergo extensive conditioning.

5.4.1 Input circuit monitor

Thermocouples

The input circuit monitor provides thermocouple checking for break and wrong polarity. An error is found, if the value of the measured thermovoltage is by more than 30 K below the span start.
Pt100 measurements and potentiometric transducers are monitored for break and short circuit.

Current and voltage signals

With current $(0 / 4 \ldots 20 \mathrm{~mA})$ and voltage signals $(0 / 2 \ldots 10 \mathrm{~V})$, monitoring for exceeded range ($\mathrm{I}>21,5 \mathrm{~mA}$ or U $>10,75 \mathrm{~V}$) and for short circuit ($\mathrm{I}<2 \mathrm{~mA}$ or $\mathrm{U}<1 \mathrm{~V}$) with "life zero" signals is provided.
Sensor errors can be output as control signal. In case of error, upscale or downscale action of the input ciruits are possible.
Moreover, a "substitute" value can be defined with controller KS94.
Unless the main correcting variable, but e.g. external set-point, set-point offset or external output limiting are concerned, control can be continued also with failure of an auxiliary variable.
After removal of a sensor error, the controller waits, until the input signal has settled (approx.10s), before the controller is initialized (outputs switched off during several seconds).

5.4.2 Scaling

Standard signals mA and V are scaled according to the physicl measuring range of the transformer (x 0 , x 100).
With potentiometric transducer measurements (INP1, INP6), "calibration" is according to a well-proven, practice-oriented method. Bring the transducer to span start and then to span end position and "calibrate" it for 0% or for 100% by pressing a key at parameter level. Calibration is basically a scaling procedure, whereby gradient and zero correction are calculated automatically via the firmware.

5.4.3 Linearization

Generally, thermocouples and Pt100 are measured in the overall physical measuring range according to data sheet, and linearized according to the relevant allocation table. Linearization is realized by error curve approximation with up to 28 segment points.

5.4.4 Additional measurements

Dependent of configured sensor type, additional and corrective measurements are required.
The amplifier zero is checked with all measurement types and taken into account during measurement value calculation. The lead resistances with Pt100 and potentiometric transducer, and the cold-junction reference temperature (internal TC) with thermocouples are measured additionally.

5.4.5 Filter

In addition to filtering in the analog section of each input signal, a 1st order filter is adjustable (filter time constant $0,5 . . .9999 \mathrm{~s}$; configuration).

5.4.6 Scanning intervals

The internal scanning interval of controllers KS92 and KS94 is 100 ms .
A survey of input and output scanning intervals, front LEDs, operating keys and serial interfaces is given in the following table.

Description	Scanning interval	Circuit board
Serial interfaces	100 ms	B, front
LEDs	100 ms	front
Keys	100 ms	front
INP1	200 ms	A
TC, with thermocouples Compensation measurement of the lead resistance with Pt100 and transducer	$2,4 \mathrm{~s}$	A
Zero correction using an internal reference voltage	$2,4 \mathrm{~s}$	A
INP3	$2,4 \mathrm{~s}$	A
INP4	200 ms	C
INP5	200 ms	C
INP6	800 ms	A
OUT 1,2,4,5	400 ms	A
OUT3	100 ms	P
di3...7	100 ms	C
di8..12	100 ms	B
do1...4	100 ms	C
do5,6	100 ms	B
	100 ms	C

5.4.7 Linearization error

Thermocouples and Pt100 are linearized within nearly the overall physical measuring range. Linearization is with up to 28 segments, which are placed in the error curve optimally to compensate the linearity errors. As the error curve approximation is only by polygons and not by an nth order polynomial, the remaining error is zero in some points of the characteristic curve. Between these "zero points", however, there is a very low, though measurable remaining error. For reproducibility, however, this error is not relevant, because it would be reproduced in exactly the same point, if the measurement would be repeated under identical conditions.

5.4.8 Temperature compensation

Measurement of the cold-junction reference temperature with thermocouples is using a PTC resistor. The temperature error thus determined is converted into mV of the relevant thermocouple type, linearized and added to the measurement value as correcting value with correct polarity. The remaining error with varying cold-junction reference temperature is approx. $0,5 \mathrm{~K} / 10 \mathrm{~K}$, i.e. about one twentieth of the error which would occur without compensation. Better results are possible with a controlled, external TC, which is adjustable within $-99 . . .+100^{\circ} \mathrm{C}$ dependent of temperature adjusted at the cold-junction reference. With comparative measurements for assessment of the "reproducibility", however, constant environmental conditions are indispensable when working with internal TC! A draft at the PTC resistor of the cold-junction reference can be sufficient to produce a measurement error.

5.4.9 Measurement value correction (optional)

The measurement value correction can be used for correcting the measurement.
Prerequisite: Configuration word $[.2 \mathrm{~B} 5 ; \mathrm{KKorr}=1(\rightarrow$ page 104 $)$
In most case, the relative accuracy and reproducibility rather than the absolute one is of interest, e.g.

- measurement error compensation in a working point (set-point control)
- minimization of linerarity errors in a limited working range (variable set-point)
- conformity with other measuring equipment (recorders, indicators, PLCs, ...)
- compensation of the sensor, transmitter, etc. stray errors

The optional measurement value correction can be designed both for zero correction and gain matching. It corresponds to a scaling $\mathrm{mx}+\mathrm{b}$, with the difference that the controller firmware calculates the gain m and the zero offset b from the pre-defined values for process value ($\mathrm{x} 1 \mathrm{in} ; \mathrm{x} 2 \mathrm{in}$) and set-point (x 1 out; x 2 out) of two reference points.

Example 1:

Zero offset
$\begin{array}{ll}\text { x1 in }=100^{\circ} \mathrm{C} & \text { x1out }=100^{\circ} \mathrm{C}+1,5^{\circ} \mathrm{C} \\ x 2 \text { in }=300^{\circ} \mathrm{C} & x 2 \text { out }=300^{\circ} \mathrm{C}+1,5^{\circ} \mathrm{C}\end{array}$
The difference between corrected values and input values is equal over the complete range.

Example 2:
Gain change (rotated around the coordinate origin)

```
x 1in \(=0^{\circ} \mathrm{C} \quad \mathrm{x}\) lout \(=0^{\circ} \mathrm{C}\)
\(x 2\) in \(=300^{\circ} \mathrm{C} \quad x 2\) out \(=300^{\circ} \mathrm{C}+1,5^{\circ} \mathrm{C}\)
```

The corrected values are equal to the input values at x 1 in and x lout, but the difference increases.

Example 3:

Zero and gain matching
x lin $=100^{\circ} \mathrm{C} \quad$ xlout $=100^{\circ} \mathrm{C}-2,0^{\circ} \mathrm{C}$
$x 2$ in $=300^{\circ} \mathrm{C} \quad x 2$ out $=300^{\circ} \mathrm{C}+1,5^{\circ} \mathrm{C}$
The corrected values are already different at input values x 1 in and x lout and the difference increases additionally.

5.5 Signal pre-processing

Input value conditioning is followed by signal pre-processing.
The analog input signals can undergo further conditioning.
FLITG 1 and FLIN: 2 are spacekeepers for configurable functions which can be selected from the following function library:

Each function can be used only once (either in Func1 or in Func2). The table gives a survey of inputs and usable functions.

Function	$\begin{gathered} \text { INP1 } \\ (\mathrm{C} .220) \end{gathered}$	$\begin{gathered} \text { INP3 } \\ (\mathrm{C} .326) \end{gathered}$	$\begin{gathered} \text { INP4 } \\ (\mathrm{C}, \mathrm{STE}) \end{gathered}$	$\begin{gathered} \hline \text { INP5 } \\ (\mathrm{C} .42 \overline{)}) \end{gathered}$	$\begin{gathered} \text { INP6 } \\ (\mathrm{E} .470) \end{gathered}$
SCAL	X	only with KS94	only with KS94	X	X
CHAR	X	-	only with KS94	-	-
SQRT	X	only with KS94	only with KS94	X	X
LAG1	X	only with KS94	only with KS94	X	X

SCAL - Scaling
Scaling is done according to equation
OUT $=\mathrm{m} \cdot \mathrm{INP}+\mathrm{b}$.
Hereby, parameters m and b can be adjusted so that inverse characteristics can also be realized.
Adjustable parameters: $\mathrm{m}=$ gain and $\mathrm{b}=$ offset

CHAR - Linearization
Up to 8 adjustable segment points (value pairs xsi/ysi) can be used to simulate or linearize non-linear functions. The number of value pairs is limited to 8 (7 segments). If less than 8 value pairs are used, the first unused segment must be switched off by entry of the xs-value into "-". Offset and gradient for the relevant intervals are determined automatically from the adjusted value pairs. The segment points are
 interconnected by straight lines, so that there is a defined output value (ys) for each input value (xs). Beyond the defined intervals, the first or last segment is prolonged. Adjustable parameters: for each input - $(\mathrm{x} 1, \mathrm{y} 1)$, (x2,y2)...(x8,y8)
Note that the input values (x-values) must be entered in ascending order.

SQRT- Square root
The square root of the input signal is calculated and the result is multiplied by parameter "gain".
OUT = gain * root INP
If the value under the root is negative, the result is set to 0 .
Adjustable parameter: for each input - gain

- LAG1 Filter

The input value is taken to the output with delay. The delay is according to a 1 st order e-function (1st order low pass) with the filter time adjustable with parameter Tf.
Adjustable parameter: $\mathrm{Tf}=$ filter time

Inputs

The input names and numbers were selected for utmost language-independent, international clarity of the inputs and outputs on the process value display (7 segments) during configuration.
Digital inputs and output are marked with lower case letters to permit clear distinction of " 0 " and "o" on the display.

IFPFIIT: - analog inputs
The signal inputs for the previously selected controller configuration are determined in this main group. The signal inputs for the selected controller function are displayed in the configuration menu. As with control function configuration, a large number of applications can be covered by determination of the main configuration. Special cases can be matched and adjusted by additional option configuration at the second level. INP2 is not available with controllers KS92/42. Therefore, there is a gap in the input sequence. Max. the following five signal inputs are available:

- process value x : INP1, INP3 or INP4
- external set-point We, dWe: INP5
- position feedback yp: INP6

5.6.1 Signal input 1 INP1 (main variable $x 1)(\rightarrow[.2 \square \square)$

The analog input INP1 is used as main variable x 1 .
The input sensor type can be determined as thermocouple, resistance thermometer, potentiometric transducer or as a standard signal. The physical unit is freely selectable. If required, additional input configurations can be determined with the extra configuration.

\square Thermocouple input

The following thermocouple types are configurable as standard:
Type $\mathbf{E}, \mathbf{J}, \mathbf{K}, \mathbf{L}, \mathbf{N}, \mathbf{R}, \mathbf{S}, \mathbf{T}$ and \mathbf{W} to IEC584.
The signal behaviour can be affected by configuration of the following points. Distinction of internal and external temperature compensation is made ($\rightarrow 255$).

- Internal temperature compensation:

The compensating lead must be taken up to the controller terminals. Lead resistance adjustment is not required.

- External temperature compensation:

A separate cold-junction reference with a fixed reference temperature must be used (configurable between 0 and $\left.100^{\circ} \mathrm{C}\right)(\rightarrow$ 號
The compensating lead must be taken only up to the cold-junction reference, from which point copper lead must be used. Lead resistance adjustment is not necessary.

- Upscale (set-point \ll process value) or downscale (set-point \gg process value) action of the built-in TC monitoring can be configured, or a fixed substitute value can be used for the action. ($\rightarrow 5.5$).
- For input value processing, a filter time constant with a numeric value between 0,5 and 999,9 is adjustable $(\rightarrow$ [.E
- A process value correction is configurable (\rightarrow EI5 $)$.

The order of configuration is as follows:

Resistance thermometer input

Resistance thermometer, temperature difference
With a resistance thermometer, the signal behaviour with sensor break can be determined $(\rightarrow$ L. 25). Temperature compensation is not required and therefore switched off. With temperature difference measurement, calibration by means of short-circuit is required.
Lead resistance adjustment can be done using e.g. the 10 calibrating resistor (order no. 9404209 10101). Dependent of sensor type, the controller must be configured for one of the following inputs:

- resistance thermometer Pt 100 with linearization
- temperature difference with $2 \times \mathrm{Pt} 100$ and linearization
- linear potentiometric transducers

For input value processing, a filter time constant with a numeric value within 0,5 and 999,9 is adjustable $(\rightarrow[.2 \mid 4)$. The decimal point (digits behind the decimal point) and process value correction can be configured $(\rightarrow$ [.355).
Configuration is in the following order:

Resistance thermometer Pt 100

The two ranges $-99,9 \ldots+250,0^{\circ} \mathrm{C}$ and $-99,9 \ldots+850,0^{\circ} \mathrm{C}$ are configurable $\left(\rightarrow\right.$ L. $\mathrm{I}^{7} 5$). Connection is possible in two or three-wire circuit. Measuring leads must be of copper. The input circuit monitor responds with $-130^{\circ} \mathrm{C}$ (sensor break or lead break). The output action is configurable for:

- upscale (set-point \ll process value) $(\rightarrow$. 2 L 5)
- downscale (set-point >> process value) $(\rightarrow$ L. 2 —5)
- a fixed value (in case of error, the selected number is used for the value to be measured $(\rightarrow$ III $)$.

Resistance thermometer in 2-wire connection:
For lead resistance adjustment, disconnect the measuring leads from the controller and short-circuit them in the connecting head of the resistance thermometer. Now, measure the resistance of the measuring lead using a resistance bridge and connect a calibrating resistor $\left(\mathrm{R}_{\mathrm{a}}\right)$ of the same value.

Resistance thermometer in 3-wire connection:
The resistance of each input lead must not exceed 30Ω. Lead resistance adjustment is not necessary, provided that the resistances Ra of the input leads are equal. If necessary, they must be equalized using a calibrating resistor.

- Temperature difference $2 \times$ Pt100

Range $\vartheta_{1-} \vartheta_{2}$ is within $-200,0 \ldots+300,0^{\circ} \mathrm{C}\left(\vartheta_{2}=\right.$ referene $)$. For lead resistance adjustment for INP1, take the controller into manual operation and select calibrating parameter $\times \mathrm{O}-$ as shown in Fig.:12. Press the selector key to prepare the calibration (" \square " in the display $\times \mathbb{0}$. flashes). Now, short circuit the input leads at the two PT100 resistors. Press the selector key again to store the measured resistance value as lead resistance,
 in order to correct the subsequenf measurements accordingly.
Remove the short circuits of the teads.

\square Potentiometric transducer

The overall resistance $\leq 500 \Omega$ incl. 2 $\cdot \mathrm{RL}$.
Calibration or scaling are done with the sensor connected.
An input circuit monitor can be configured for sensor or lead break or short circuit. The action, process value correction and decimal point are adjustable
(\rightarrow [.205 and [.2 13)
Configuration is in the following order:

Calibration for $\mathrm{X}_{\mathbf{0}}$ and $\mathrm{X}_{\mathbf{1 0 0}}$ is at parameter level as follows.
Calibration is only possible with the controller set to manual mode.
Potentiometric transducer calibration for X_{0} or X_{100} is possible via the interface and the front foil.
Calibration is in two steps:
Fig.: 12 Selecting parameter $\times \mathbf{0} \mathrm{C} / \times 1 \mathrm{D} \mathrm{C}$

- Calibration for X_{0} :

Select X C - as shown in Fig.: 12. Press the selector key, the " \square " on the display x C . starts blinking. Now, bring the potentiometric transducer into the position for X_{0} (usually lower end position). The instantaneously valid value for INP1 appears on display 1. Press the selector key again to store this actual value as X 0 .

- Calibration for X_{100} must be done accordingly.

Select $\times 1 \mathrm{E} \mathrm{C}$. Press the selector key. The "G" of the display $\times 1 \mathrm{~d} \mathrm{c}$ starts blinking. Now, bring the transducer into the position for X_{100} (usually upper end position). The instantaneously valid value for INP1 is shown on display 1. Press the selector key again to store this actual value as X_{100}.

Standard 0/4... 20 mA signal input

The input resistance is 50Ω
During configuration, distinction of $0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ is made. For the $4 \ldots 20 \mathrm{~mA}$ standard signal, the behaviour with sensor break can be determined (and thus the digits behind the decimal point are configurable (\rightarrow Lit) Additionally, a physical input signal scaling by means of X_{0} and X_{100} is possible (\rightarrow [1 filter time constant with a numeric value within 0,5 and 999,9 is adjustable (\rightarrow [.E 14)
For configuration, proceed in the following order:

$0 / 2 \ldots 10 \mathrm{~V}$ input

The input resistance is $\geq 100 \mathrm{k} \Omega$
During configuration, distinction of $0 \ldots 10 \mathrm{~V}$ and $2 \ldots 10 \mathrm{~V}$ is made. For the $2 \ldots 10 \mathrm{~V}$ standard signal, the output action with sensor break can be determined (213). Moreover, the decimal point and thus the digits behind the decimal point are adjustable (\rightarrow En 5). Additionally, a physical input signal scaling
 constant with a numeric value within 0,5 and 999,9 can be used (\rightarrow L.E '4).
For configuration, proceed in the following order:

5.6.2 Additional signal input 3 / INP3 (optional) (\rightarrow [. 350)

This signal input is only available with option p.c.b "C" fitted.
It may be configured for ratio variable x_{2} or disturbance variable $z(\rightarrow$. 1 日5 or 5 . 185 $)$.
Selection of standard input signals $0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ is possible. The physical unit can be configured. The input resistance is 50Ω. For the $4 \ldots 20 \mathrm{~mA}$ standard signal, the output action with sensor break can be configured $(\rightarrow$ [.305 and [.3 13).
Physical input scaling is possible by determination of 0% and $100 \%(\rightarrow 54$ and 5.30). Moreover, the decimal point, i.e. the digits behind the decimal point can be configured $(\rightarrow 2 \pi)$.
For input value processing, a filter time constant with a numeric value within 0,5 and 999,9 is adjustable $(\rightarrow$ [.314)
For configuration, proceed in the following order:
$[.300 \rightarrow 5.301-6.302-5.305-6.313-(5.313)$
5.6.3 Additional signal input 4 / INP4 (optional) $(\rightarrow$ L. 35 F)

This signal input is only available with option p.c.b. "C" fitted.
It can be configured for three-element control x_{3}, external set-point or external set-point offset $(\rightarrow$. 18: $)$.
Selection of $0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ standard input signals is possible. The physical unit can be configured. The input resistance is 50Ω. For the $4 \ldots 20 \mathrm{~mA}$ standard signal, the output action with sensor break can be determined $\rightarrow[.355$ and 5.353$)$.
A physical input scaling is possible by determination of 0% and 100% (\rightarrow L.5 \ddagger and 5.5). Moreover, the decimal point, i.e. the digits behind the decimal point can be configured $(\rightarrow[.55 \mathrm{~B})$.
For input value processing, a filter time constant with a numeric value within 0,5 and 999,9 can be adjusted $(\rightarrow$ K.354)
For configuration, proceed in the following order:
$[.350 \rightarrow[.351-[.352-[.355-6.353-(5.354)$

5.6.4 Signal input 5 / INP5 (ratio variable $x 2$, ext. set-point Wext) \rightarrow [.40 0)

Analog input INP5 is used for connection of the signal for ratio variable x 2 or for the external set-point Wext, if option p.c.b. is not fitted in the controller and with the function selected during controller configuration. Selection of $0 / 4 \ldots 20 \mathrm{~mA}$ and $0 / 2 \ldots 10 \mathrm{~V}$ signals is possible. The physical unit can be configured.
[-8 This input is a difference input. Terminal A9 is used as reference potential (Common). With voltage signals, terminal A6 must always be connected with terminal A9.

The input resistance is 50Ω as mA input and $\geq 100 \mathrm{k} \Omega$ as V input.
For the $2 \ldots 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$ standard signals, the output action with sensor break can be determined $(\rightarrow$ 5455 and 543). Moreover, the decimal point, i.e. the digits behind the decimal point can be selected (5.405). Additionally, a physical input scaling by determination of 0% and 100% is possible (\rightarrow [4] i and $\left.5.4 \mathrm{~B}_{2}^{2}\right)$.
For input value processing, a filter time constant with a numeric value within 0,5 and 999,9 can be adjusted $(\rightarrow$ L.4 4 4)
Configuration is in the following order:

See also external set-point $W_{\text {ext }}$ page 45 and ratio controller page 49

5.6.5 Signal input 6 / INP6 (auxiliary variable yp, position feedback yp) (\rightarrow [.45

The signal for auxiliary variable yp or position feedback is configured at analog input INP6, if this was selected during controller configuration.
For this input, the decimal point and thus the digits behind the decimal point can be selected $(\rightarrow 450.4)$ Moreover, a physical input signal scaling by determination of 0% and 100% is possible $(\rightarrow .454$ and [.452).
The output action with sensor break can be selected only with $4 \ldots 20 \mathrm{~mA}$ standard signal $(\rightarrow .2 .455$ and [.453).
For input value processing, a filter time constant with a numeric value within 0,5 and 999,9 can be adjusted $(\rightarrow[.454)$.

Configuration is in the following order:
$[.458 \rightarrow[.454-2.452-2.455-2.453-[.454$
See also position feedback yp page 56

5.6.6 Digital inputs "di"

Energization of digital inputs "di" via an external 24 V DC supply is required. The current consumption for each input is 5 mA .

The digital inputs can be energized by one or several voltage sources (e.g. 24 V PLC control outputs). Note that the negative potentials of the voltage sources are identical and must be taken to the corresponding controller connecting terminals.

Connecting examples:

Digital inputs (connector A)

Digital inputs and outputs at one voltage source (connector B)

Digital input and outputs at two voltage sources (connector B)

Digital inputs di1 and di2

Dependent of configuration (L.19日 and [.19i), digital inputs d1 and d2 can control the following operations. Allocating several functions to a digital input is also possible.

- Switch-over between internal set-point W (0) and second set-point W2 (1)
- Switch-over between automatic (0) and manual (1) mode
- Set-point offset switch-on; normal (0) offset (1)
- Switch-over between normal correcting value (0) and safe correcting value (1)
- Switches the controller ON (0) or OFF (1)
- Switch-over between PI (0) and P (1) with 2/3-point and continuous controllers or feedback switch-off with 3-point stepping controllers
- Bumpless switch-over between normal correcting value (0) and safe correcting value (1)
- Bumpless switch-over to the internal set-point (tracking only di2) OFF (0) ON (1)

Digital inputs di3 to di12

di3 used for switch-over between local (0) and remote (1).
di4 used for switch-over between program STOP (0) and START (1) (L.192; EPr.St.).
di5 used for programmer RESET; normal (0), reset (1).
di6/di7 used for program number selection with programmer.

di8	0	1	0	1
di9	0	0	1	1
Parameter set	0	1	2	3

di7/di8 used for program number selection with programmer.
di10 minimum delimitation of the correcting variable with 3-pnt.stepping controller
di11 maximum delimitation of the correcting variable with 3-pnt.stepping controller and can be configured for switching on the effective set-point offset ([. 19 IT : Sochorin).
di12 switches over bumplessly to the internal set-point (tracking) OFF (0) ON (1). and can be used for switching over to the second set-point W2 (L. 19 m) OFF (0) ON (1).

5.7 Outputs

The input names and numbers were selected for utmost language-independent, international clarity of the inputs and outputs on the process value display (7 segments) during configuration.
Digital inputs and output are marked with lower case letters to permit clear distinction of " 0 " and "o" on the display.

OUT: outputs

Dependent of hardware, there may be four switching outputs or three switching and one analog output. Additionally, there may be optional output OUT3, which is located on plug-in options p.c.b. "C".
OUT1 can be ordered as switching or continuous output. Outputs OUT2, OUT4 and OUT5 are always switching and output OUT3 is always analog.
(2)

Behaviour of outputs with initialisation
All outputs are switched off for 100 ms at the end of initialisation. Analog outputs take over the lower output value $(0 / 4 \mathrm{~mA})$.

5.7.1 Signal output 1 OUT1 (\rightarrow [思)

Signal output OUT1 is used for controller correcting variable Y1/Y2. As it is a universal output, extensive functions can be configured.
Which signal shall be taken to this output must be determined at configuration word $5.5 \mathrm{Ba} ; \mathbf{5 r}$:
-00: none (output switched off) • 05: control deviation xw • 20: Wint

- 25: Alarm 1 (Limit 1)
- 1. controller output Y1/Youtl • 10: process value xeff • 21. Wext
- 26: Alarm 2 (Limit 2)
- 02: controller output Y2/Yout2 • 11: process value x1 • 22: dWext
- 27: Alarm 3 (Limit 3)
- 03: controller output Ypid
-12: process value x2 •23: Weff
- 28: Alarm 4 (Limit 4)
- 04: position feedback Yp
-13: process value x3 •24: Wp (programmer)
With a controller with continuous output, the output signal type can also be determined. $0 \ldots .20 \mathrm{~mA}, 4 \ldots 20$ mA or logic signal 0 and 20 mA can be selected.
Direct or inverse motor actuator output action can be adjusted.

5.7.2 Signal output 2 OUT2 (\rightarrow [.5 In)

Switching signal output OUT2 is used for controller correcting variable Y1/Y2. This is a relay output. Which signal should be taken to this output must be determined at configuration level. Selection of controller output Y1/2 and alarm signals (limit) is possible.
Direct or inverse motor actuator output action.

5.7.3 Additional signal output 3 OUT3 (optional) (\rightarrow [.55. ${ }^{2}$)

This output is only provided in conjunction with options p.c.b. "C".
Analog signal output OUT3 is used for a selectable controller signal. As this is a universal output, it can be configured for extensive functions.
Which signal shall be taken to this output must be determined at configuration level (5.55). Selection between various controller outputs, process values and set-points is possible. Direct or inverse motor actuator action is selectable. The output signal type can be determined. Selectable are $0 \ldots . .20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$ or logic signal 0 and 20 mA .

Before the signals reach output OUT3, they can be processed again by means of function block "Func" (\rightarrow [.555). Configuration parameter Func permits selection of direct signal output, scaling and linearization.

With direct signal output, the subsequently adjustable parameters X_{0} and X_{100} are not taken into account (5.575 and 5.571)

Scaling

Scaling is adjustable according to reference values X_{0} and $\mathrm{X}_{100}{ }^{\circ}$

Example 1:

This scaling is a simple allocation of $0 \ldots 100$ to $0 . . .20 \mathrm{~mA}$.
The output is determined for $0 . . .20 \mathrm{~mA}$.
$\mathrm{X}_{0}=0 \quad \mathrm{X}_{100}=100$
When applying value 50 , the output is 10 mA .

Example 2:

This scaling is an allocation of 0... 200
to $0 . . .20 \mathrm{~mA}$.
The output is determined for $0 \ldots 20 \mathrm{~mA}$.
$\mathrm{X}_{0}=0 \quad \mathrm{X}_{100}=200$
When applying value 50 , the output is 5 mA .

Example 3:

This scaling is an allocation of $10 \ldots 110$ to $0 \ldots 20 \mathrm{~mA}$, whereby an offset is provided. The output is determined for $0 . . .20 \mathrm{~mA}$.
$\mathrm{X}_{0}=10 \quad \mathrm{X}_{100}=110$
When applying value 50 , the output is 8 mA .

\square CHAR - Linearization

8 adjustable segment points

(value pairs xsi/ysi) can be used for simulation or linearization of non-linear functions.
The number of value pairs is limited to 8 (7 segments). When using less than 8 value pairs, the first unused segment must be switched off by entry of the xs value into" . . . ".
Offset and gradient for the relevant intervals are calculated automatically from the adjusted value pairs.
The segment points are interconnected by straight lines so that each input value (xs) corresponds to a defined output value (ys).
 Beyond the defined segments the first or the last segment is prolonged. Adjustable parameters: (x1,y1), (x2,y2)...(x8,y8)

Input values (x-values) have to be set in ascending order.

5.7.4 Signal output 4 OUT4 (\rightarrow [.598)

Switching signal output OUT4 can be used for various signals. This is a relay output.
Which signal shall be taken to this output must be determined at configuration level. Selection of controller output Y1/2 and alarm signals (limit) is possible. One of the four programmer outputs $1 \ldots 4$ and programmer end is possible.
Direct or inverse motor actuator output action can be adjusted.

5.7.5 Signal output 5 OUT5 $(\rightarrow[.59$ i)

Switching signal output OUT5 can be used for various signals. This is a relay output.
Which signal shall be taken to this output must be determined at configuration level. Selection of controller output Y1/2 and alarm signals (limit) is possible. One of the four programmer outputs 1... 4 and programmer end is possible.
Direct or inverse motor actuator output action can be adjusted.

5.7.6 Digital outputs do1 to do6

do1 indicates the status of control output 1 with programmer.
do2 indicates the status of control output 2 with programmer.
do3 indicates the status of control output 3 with programmer.
do4 indicates the status of control output 4 with programmer.
do5 indicates, if the controller is in manual or automatic mode, or the yl condition with switching controllers (1.595).
do6 indicates, if the controller uses the external or the internal set-point, or status y2 with switching controllers (5.597).

5.7.7 Input and output survey

\square allocation of analog inputs / outputs and circuit boards

process inputs	circuit board		process outputs	circuit board	
	A	C (option)		P	C (option)
INP1	X		OUT1	X	
INP3		X	OUT2	X	
INP4		X	OUT3		X
INP5	X		OUT4	X	
INP6	X		OUT5	X	

\square allocation of digital inputs / outputs and circuit boards

control inputs	circuit board		
	A	B (option)	C(option)
di1	X		
di2	X		
di3		X	
di4		X	
di5		X	
di6		X	
di7		X	
di8			X
di9			X
di10			X
di11			X
di12			X

control outputs	circuit board	
	B (ontion)	C (option)
do1	X	
do2	X	
do3	X	
do4	X	
do5		X
do6		X

Function allocation of analog inputs

	$\mathbf{X 1}$	$\mathbf{X 2}$	$\mathbf{X 3}$	Ext. set-point	Ext. set-point offset	Auxiliary variable z	Position feedback	OVC	Min/Max selection
INP1	\mathbf{X}								
INP3		\mathbf{X}				\mathbf{X}			\mathbf{X}
INP4			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	
INP5		\mathbf{X}		\mathbf{X}	\mathbf{X}				
INP6				\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		

Function allocation of control inputs

Functions	di1	di2	di3	di4	di5	di6	di7	di8	di9	di10	di11	di12
Wint / Wext	X	X										
Tracking on / off		X										X
ΔW on / off	X	X									X	
w/ W2	X	X										X
Auto / Man	X	X										
PI/ P	X	X										
Y/Y2	X	X										
Controller on / off	X	X										
Programmer Run / Stop				X								
Programmer Reset					X							
Selection of programs						X	X					
Remote / Local			X									
Parameterset								X	X			
OVC+ (Three-point stepping controller)										X		
OVC- (Three-point stepping controller)											X	
disabling ${ }^{1)}$	X	X										
OVC off/on										X		

Function allocation of outputs

Functions	OUT1	OUT2	OUT3	OUT4	OUT5	do1	do2	do3			do6
Controller output 1	X	X	X	X	X					X	
Controller output2	X	X	X	X	X						X
Alarm 1	X	X		X	X						
Alarm 2	X	X		X	X						
Alarm 3	X	X		X	X						
Alarm 4	X	X		X	X						
Process values ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x}$ eff)	X		X								
Set-points (w, weff, wext, $\mathrm{dw}_{\text {ext }}, \mathrm{w}_{\mathrm{p}}$	X		X								
Control deviation (xw)	X		X								
Correcting variable $\mathbf{Y}_{\text {pid }}$	X		X								
Position feedback (Yp)	X		X								
Contr. outputs 1				X	X	X					
Contr. outputs 2				X	X		X				
Contr. outputs 3				X	X			X			
Contr. outputs 4				X	X				X		
Program end				X	X						
Status auto/man										X	
Status Wint/Wext											X

1) auto/manual key disabling, set-point adjustment, controller switch-off, value adjustment and programmable controller operation.

6 Set-point functions

6.1 Terminology

W	internal set-point
we	external set-point
wp	programmer set-point
W2	second (internal) set-point
Weff	effective set-point
SWi/e	signal source for "internal/external" set-point switch-over
Sw/W2	signal source for "weff / W2" set-point switch-over
SWdon	set-point offset switch-on
S Wd	signal source for set-point offset
W d	set-point offset type
SWext	signal source for external set-point
WTrac	tracking function switch-on
STrac	signal source for tracking
WSel	automatically selected lowest or highest set-point

6.2 General

The following set-point functions are selectable during configuration C. 100 using parameter WFunc.
In addition to the described effective set-points, switching over to the second set-point W2 is possible.
Switch-over is via signal source $\mathrm{Sw} / \mathrm{W} 2$ determined in configuration parameter C.190.
\square Set-point $(\mathrm{WFunc}=0)$
With set-point control, the set-point is determined by internal set-point \mathbf{W}.

\square Programmer (WFunc = 2)
With programmer control, the set-point is determined by the internal programmer $\mathbf{W p}$. Switching over to the internal set-point \mathbf{W} is possible and must be done via the signal source SWi configuration parameter [. 19 B .

\square Set-point with external offset (WFunc = 3)
With set-point control with external offset, the effective set-point is determined by internal set-point \mathbf{W}, however, it can be affected by external offset $\mathbf{d W}$. The type of offset (additive or factor) is determined during configuration [. 185 by parameter \mathbf{d}. The offset is switched on via signal source Sblorion determined in
 configuration parameter 5.198.

Set－point／cascade with internal offset（WFunc＝4）
With set－point／cascade control with internal offset，switching over between internal set－point \mathbf{W} and external set－point $\mathbf{W e}$ is possible． Switching over is done via signal source S以它它 determined in configuration parameter 5.19 I.
External set－point We can be affected by an internal offset dW．The
 offset type（additive or factor）is determined during configuration ［． 4515 by parameter The offset is switched on via signal source Sherm determined in configuration parameter［． 19 A ．

－Set－point／cascade with external offset（WFunc $=5$ ）

Set－point／cascade with external offset permits switch－over between internal set－point \mathbf{W} and external set－point $\mathbf{W e}$ ．Switch－over is via signal source SWi External set－point We can be affected by an external offset dWe．The
 offset type（additive or factor）is determined during configuration ［． 155 by parameter configuration parameter［． 19 B ．

\square Programmer with internal offset（WFunc $=6$ ）

With program control with internal offset，the set－point is determined by internal programmer $\mathbf{W p}$ ．
The programmer value can be affected by an internal offset $\mathbf{d W}$ ．The set－point offset type（additive or factor）is determined during
 configuration 5 ． 6 by parameter 0 ．The offset is switched on via signal source SWorion determined in configuration parameter 5．19：The resulting set－point or internal set－point \mathbf{W} can be selected．Switching over is done via signal source $\bar{S} \mathbf{\omega} \mathbf{i}$ e determined in configuration parameter［1．197．

\square Programmer with external offset（WFunc $=7$ ）

With program control with external offset，the set－point is determined by internal programmer $\mathbf{W p}$ ．
The programmer value can be affected by an external offset $\mathbf{d W}$ ．The type of set－point offset（additive or factor）is determined during

 in configuration parameter $[.19 \mathrm{I}$ ．This set－point can also be affected by an external offset dWe． Switching over between the resulting set－point and internal set－point \mathbf{W} is also possible and must be done via signal source \boldsymbol{S} ， 1 i

6.3 Detailed set-point function block diagrams

The following set-point function block diagrams illustrate the interactions of configuration parameters and possible control operations.

Fig.: 15 Set-point control with external offset [. 1 [日

Fig.: 16 Setpoint / cascade control with offset [.10日 ; WFurnc=4 5

6.4 Safe set-point W_{2}

Second set-point W2 can always be activated with highest priority.
In the past, W2 was called "safe set-point". Whether W2 can have safety functions, or whether it is only a pre-defined start position in defined process conditions is determined only by the way it is used and integrated into an automation concept.
Dependent of configuration, switch-over to set-point W2 is possible via interface, front operation, timer or one of control inputs di1, di2 or di12 (\rightarrow L. 195 $)$.

Second set-point W2 is handled with priority. If W2 was selected anywhere (front panel, interface or the relevant control input), switching over at another facility is not possible.

6.5 External set-point Wext

Dependent of configuration, switching over between internal and external set-point via interface, front panel operation or one of control inputs dil or di2 is possible (\rightarrow L. 195). For making the external set-point effective, a 1 signal (24 V) must be connected on the int/ext contact. For activating the internal set-point, a 0 signal (0 V) must be applied to the int/ext contact.
Analog input "Wext" is connected to INP5, however, it can be configured also for INP4 (galvanically isolated) or INP6 (yp input) \rightarrow L. 18:), if necessary. Signal pre-processing (Func1, Func2) permits adjustment of the required set-point or correction characteristic as a function of the input signal.

Internal set-point W has priority. If the internal set-point was selected anywhere (front panel, interface or the relevant control input), switching over to external set-point We at another facility is not possible.

Set-point functions

6.6 Set-point offset

The Set-point offset (internal dW or external dWe) can be added to the effective set-point or multiplied by it
 temperature-dependent supply temperature control". Set-point offset as a factor can be used e.g. for split load or O 2 correction.
Dependent of configuration, the set-point offset can be triggered via interface, front panel operation, or via one of control inputs di1, di2 or di11 \rightarrow [.190; Sdlorit). For activating the set-point offset, a 1 signal (24 V) must be connected to the relevant contact.
For de-activating the set-point offset, a 0 signal $(0 \mathrm{~V})$ must be applied to the contact.
Analog input "S Wd" is connected to INP5, however, it can be configured also for INP4 (galvanically isolated) or INP6 (yP input) (\rightarrow [. 180; Sold $)$, if necessary. Signal pre-processing (Func1, Func2) permits adjustment of the required set-point or correction characteristic as function of the input signal.
(dependent of configuration: \rightarrow INP5 [.370, INP4[.42] or INP6 [.470)
(i)
"Offset activated" has priority. With selection "offset active" at anywhere (front panel, interface or the relevant control input), switching over at another facility is not possible.

6.7 Bumplessness

6.7.1 Set-point change

Set-point change in both direction is always bumpless. The effective set-point Weff approaches the modified set-point (target) linearly, whereby gradients Grw+ and Grw- adjustable at parameter level determine the slope. The gradient function is also active with programmer, however, it is not effective as long as the program profile causes slower set-point changes than the adjusted gradients. Hereby, the gradient setting can be used as safety function with incorrectly adjusted programmer.
For second set-point W2, an independent gradient Grw2 which is valid for the two switch-over directions was introduced.
The gradient function is switched off with Grw+ and Grw- or Grw2 set to "----".
Fig.: 18 Ramp function with set-point change

6.7.2 Set-point switch-over (w/w2, Wext/Wint, w/wp, Controller 'On')

Control with the new set-point starts linearly from the instantaneous process value. The slope of the ramp is determined dependent of direction by Grw+, Grw- or Grw2. This is also valid, if the process value at switch-over time is out of the adjustable set-point range W0/W100 (e.g. during start-up).
(i) In this case, controller 'On' means controller power supply switch-on. For activating the gradient with controller signal " $\mathrm{SCOf} \mathbf{f}=\mathrm{On}$ Grworn must be used $(\rightarrow$ see also page 59).
Fig.: 19 Ramp function with set-point change

6.8 Tracking

6.8.1 Set-point tracking (\rightarrow [. 185)

When switching over between the various set-points (We and WP), undesirable set-point steps may occur. These steps can be attenuated using the set-point tracking function.
With set-point tracking, the we/wp used so far is stored as internal set-point 'w' when switching over from we or $\mathrm{wp} \rightarrow \mathrm{w}$. When switching back ($\mathrm{w} \rightarrow$ we or wp), start-up is dependent of Grw $+/$ - we or wp setting (see \rightarrow Fig.: 20).
The actual controller behaviour, process value or set-point tracking, is determined in configuration code

Dependent of configuration, this setting can be triggered via interface, front-panel operation or one of control inputs di2 or di12 $(\rightarrow$ โ. 9 I). However, only the switch-over type is prepared at this faciliy, without selecting between internal and external set-point.
For preparing the bumpless switch-over, a 1 signal (24 V) must be connected to the external contact. For direct switch-over, a 0 signal $(0 \mathrm{~V})$ must be applied to the contact.

Bumpless switch-over has priority. With bumpless switch-over selected anywhere (front-panel, interface or relevant control input), switch-over at another facility is not possible.
Fig.: 20 Set-point tracking with switch-over to internel setpoint

Set-point functions

6.8.2 Process value tracking

The set-point may be far away from the instantaneous process value (e.g. during start-up). In this case, the process value tracking function can be used for attenuation of the step which may occur. Process value tracking causes storage of the process value as set-point, whereafter line-out to the actually required set-point is done slowly according to parameters Grw $+/$-.
Whether process value or set-point tracking is required is determined in configuration code C. 106 - WTrac. Dependent of configuration, this setting can be made via interface, front panel operation or one of control inputs di2 or di12 (\rightarrow [.195).
However, the type of switch-over is only prepared at this facility, without actually selecting between external and internal set-point.
For preparing bumpless switch-over, a 1 signal $(24 \mathrm{~V})$ must be connected to the relevant contact. For direct switch-over, a 0 signal (0 V) must be applied to the contact.

Bumpless switch-over has priority. With bumpless switch-over selected anywhere (front panel, interface or relevant control input), switching over at another facility is not posible.
Fig.: 21 Process value tracking with switch-over to internal set-point W

6.8.3 MIN/MAX selection WSel

Dependent of set-point WSel configuration, effective set-point Weff can be prevented from being below or above the value determined by analog input INP3 (\rightarrow L. 15) .
This function can be used, for instance, during combustion control, whereby excess air is indispensable (crosswise interlocking of air and fuel supply).
The \min / \max selection can be activated also with set-point functions varying from those shown below.
Fig.: 22 Min/Max selection with internal offset Fig.: 23 Min/Max selection with external offset

7 Process value calculation

7.1 Standard controller

Fig.: 24 Standard conroller
The process variable measured via analog input INP1 and processed, if necessary, using functions Func1 and Func2 is used as process value x by the controller.

7.2 Ratio controller

Process control frequently requires various components to be mixed into a product. These components must be mixed according to a given ratio. The main component is measured and used as reference for the other components. With increasing flow of the main component, the flow of the other components will increase accordingly. This means that process value x used by the controller is determined by the ratio of two input variables instead of being measured as one process variable.
For optimum combustion, the fuel-air ratio must be controlled. With stoichiometric combustion, the ratio is selected so that there are no residues in the waste gas. In this case, the relative instead of the physical ratio is displayed as process value and adjusted as set-point 1 . If the transmitters used by the controller use a stoichiometric ratio, $l=1$ is exactly met with restless combustion. With a process value display of 1,05 , the instaneous air excess is clearly 5%.

For selecting a ratio controller, the $[\Sigma \Psi P=1$ in L. 4 an must be entered. Moreover, configuration words

7.2.1 Conventional ratio control:

Calculation so far required scaling of the ratio variables for a range of $0 \ldots 100 \%$ ($\mathrm{x} 0, \mathrm{x} 100$).
If this method shall remain unchanged, factor " s " must remain unchanged with respect to factory setting " $s=1$ ". In this case, the control deviation is formed according to relation

$$
x w=(x 1+N 0)-\lambda \cdot x 2
$$

In this case, the physical (\%) and the relative ratio are identical so that the displayed process value $\mathrm{x} 1 / \mathrm{x} 2$ also corresponds to the relative ratio. Everything is as usual. The individual flow rates can be displayed with unit "\%" at the extended configuration level.

7.2.2 Additional possibilities of ratio control with KS92/94

The two requirements, i.e. control of the relative ratio and display of the material flow rates in physical units are met by means of the material-specific (stoichiometric) factor "s". For display of the individual material flow rates in physical units (e.g. $\mathrm{Nm}^{3} / \mathrm{h}$) at the extended operating and display level, the two flow rates available as mA signals are scaled in physical units, i.e. they can also be displayed directly, e.g. in $\mathrm{Nm}^{3} /$ h. Set-point $\mathrm{W}_{\text {eff }}$ effective as a relative ratio is multiplied by the stoichiometric factor (e.g. s = 10). This means that "stoichiometric" material flow ratios can be used for calculating the control deviation. The instantaneous (controlled) process value is calculated from the physical ratio, multiplied by $1 / \mathrm{s}$ and displayed as a relative value.
(see also Fig.: 26, example: standard ratio control)

Selecting the individual material flow rates:

For display of the individual material flow rates in physical units, the "extended operating level" must be selected. At this level, the individual inputs, e.g. INP1 for x 1 and INP3 for x 3 can be shown on display 2 (set-point display).

The effective Xp refers to the process value range ($\mathrm{x}_{0} \ldots \mathrm{x}_{100}$) of input x 1

7.2.3 Example for standard ratio control:

Fig.: 25 Stöchiometric combustion
Standard ratio control at the example of a stoichiometric combustion.
Analog input INP1 is con figured for $4 \ldots . .20 \mathrm{~mA}$ with
 ($\left[. E^{2}: 1\right.$ and $\left[. L^{2}: \Sigma^{3}\right)$ are allocated to input variables 4 mA (x0) and 20 mA (x100). Atomizing air N0 is added to this input. Selection between INP3 and INP5 (L. 18: ; S 2) as second ratio input is possible. This input is also configured for $4 \ldots 20 \mathrm{~mA}$ and $\mathrm{m}^{3} / \mathrm{h}$ (gas) (5.305 5.4 na$)$. x 0 and x 100 values 0 and 100 (L.3:1/[.4 : 1 and $[.3$ (2) $[.4: 3)$ are allocated to the input variables.

Set-point Weff effective as a relative ratio is multiplied by the stoichiometric factor s (e.g. $s=10)($ L. 14) so that a "stoichiometric" flow ratio can be used for calculation of the control deviation. The instantaneous (controlled) process value is determined from the physical ratio, multiplied by $1 / \mathrm{s}$ and displayed as a relative value.

Fig.: 26 Ratio control (standard)

7.2.4 Material batching and mixing

The following examples are intended to show that various control possibilities can be used. This is necessary, since the materials to be mixed (e.g. paste) are not always directly measurable due to their consistency. Other cases may require a component to be controlled relatively to a total and not as a ratio to another component.

$\mathrm{w}=\mathrm{x} 1 / \mathrm{x} 2$

The first case is obvious. Almost everybody knows what happens during brewing. Yeast (x2) must be batched in a ratio to the original wort (x1). The set-point is adjusted in " $\%$ yeast", e.g. $w=3 \%$.
The ratio inputs are scaled in equal units. The control deviation is multiplied with " $s=0,01$ " and calculated according to equation $\mathrm{xw}=(\mathrm{x} 1+\mathrm{N} 0)-0,03 \mathrm{x} 2$ so that exactly 3% of yeast are batched with $\mathrm{xw}=0$.
Process value display is also in \%.
Constant N_{0} is without importance $\left(\mathrm{N}_{0}=0\right)$.

$w=x 1 /(x 1+x 2)$
In this example, water (x 1) must be batched as a percentage of the total (paste; $\mathrm{x} 1+\mathrm{x} 2$).
As the paste quantity is not available directly as a
measurement signal, the total is calculated internally from x1 and x 2 .
$\mathrm{N}_{0}=0$ must also be adjusted in this case.

$\underline{\text { Fig.: } 27 \text { Ratio control }=x 1 /(x 1+x 2)}$

$W=(x 2-x 1+N 0) / x 1$
Unlike the previous examples, yoghurt (x2) and the final product (x1) are measured in this case.

Fig.: 28 Ratio control $=(x 2-x 1+N 0) / x_{2}$

Process value calculation

7.3 Three-element control

With three-element control, process value calculation is according to equation
whereby term ($\mathrm{x} 2-\mathrm{x} 3$) is the difference between the steam and water flow rates.
Factor b for flow range matching used so far is omitted, because the mA signals are directly converted into physical units during input value processing ($\mathrm{x}_{0}, \mathrm{x}_{\mathbf{1 0 0}}$).
Main variable x 1 (level) is displayed on the process value display, however, switch-over to calculated process value x is possible at the extended operating level (start-up and set-up).
For selecting a three-element controller, the LEyP= in L. 10 H must be entered.

Fig.: 30 Block diagram for three-element control

7.4 Mean value

For controlling a process purposefully, the correct process value (for the product) must be used. When measuring e.g. the temperatures at two different points in a furnace, mean value formation can be used for process value determination.
The mean value is calculated according to equation: $x=(1-b) x 1+b x 2$.
Parameter b can be used for determining a weight ratio for the two signals.
If $b=0,5$ is entered, the arithmetic mean value is calculated.
Fig.: 31 Mean value formation (furnace)

8 Correcting variable processing

The following considerations in connection with correcting variable processing are valid for continuous controllers, two-point, three-point and three-point stepping controllers. The following diagram shows the functions and interactions of correcting variable processing.
Fig.: 32 Yp signal

8.1 Second correcting value

Similar to set-point processing, switch-over to a second preset correcting value Y2 is possible. The signal source for $\mathrm{y} / \mathrm{Y} 2$ switch-over must be selected with 191 .
Whether Y2 has safety functions, or whether it is only a pre-defined start position in defined process conditions is determined only by the use and integration into an automation concept.
$\mathrm{Y} 2 \rightarrow \mathrm{Y}$ switch-over is bumpless.

8.2 Correcting variable limits

Parameters Ymin and Ymax determine the limits of the correcting variable range within $0 \ldots 100 \%$. With three-point and continuous controller "split range", the correcting variable limits are within $-100 \ldots+100 \%$. The minimum separation of Ymin and Ymax is one digit.
Fixed correcting variable limits are specified with parameters ymin and ymax.
Fig.: 33 Fixed positioning limits

8.3 External correcting variable limiting (override control)

Either the lowest (OVC-) or the highest correcting value (OVC+) can be limited by an external current signal (INP4) (5. 105). Override control is used where bumpless switch-over to another controller when reaching defined process conditions, mainly according to other criteria, is required. The basic principle is that two controllers act on the same motor actuator.
Fig.: 34 Maximum value limiting

Fig.: 35 Minimum value limiting

8.4 Override control

8.4.1 Override control with continuous output

(i) Limiting control with three-point stepping output is possible by configuring a "continuous controller with position control" (\rightarrow section page 71) and by limiting the correcting variable via INP4 $(\rightarrow$ section 8.3$)$. For this, option card " C " is required.
Fig.: 36 Override control with continuous output

8.4.2 Override control with three-point stepping output

Override control with three-point stepping output can be realized in the same way, by configuring a
"continuous controller with position control" (L. 1 IL I).
Override control is also possible using a classical three-point stepping controller, however, option "C" is required for this limited controller. The positioning signals of the limiting controller must be connected as shown in Fig.: 37 opposite.
Selection which of the two controllers is activated in the process is made by the logic of the slave controller. The first "CLOSED pulse" coming from the limiting controller switches over to override control. The limited controller will be re-activated automatically, when further closing of the motor is required for the first time.
Via additional analog output OUT3 (option C), the motor position can also be transmitted as a mA signal to and displayed on the master controller.
Fig.: 37 Override control with 3-point stepping controllers

8.5 Bumpless A/M switch-over

Sudden process interventions by control mode switch-over are usually not desired. Excepted is purposeful switch-over $\mathrm{y} \rightarrow \mathrm{Y} 2$.
$\mathrm{A} \rightarrow \mathrm{M}$ switch-over is always bumpless; the last correcting value is frozen and can be changed manually. The $\mathrm{M} \rightarrow \mathrm{A}$ switch-over is different. Correcting value differences are compensated as follows: when switching over, the integral action of the controller is set to the correcting value Y_{M} output last plus correcting variable portions of the controller P and D action running in the background ($\mathrm{Y}_{\mathrm{I}}=\mathrm{Y}_{\mathrm{M}}+\mathrm{Y}_{\mathrm{PD}}$). Now, only the integrator, which slowly adapts the correcting variable to the stationary value according to the actual control deviation is active.
Until the D action has decayed completely, the adaption can be delayed or accelerated.
Fig.: 38 Bumpless switch-over

8.6 Motor actuator output action

For safety reasons, motor actuators may operate inversely, i.e. they may be self-opening in case of positioning signal failure (e.g. combustion air with furnaces). Although the process is clearly a "heating process", i.e. the controller action should be inverse, "direct" action would have to be adjusted.
Inverting motor actuators can be taken into account by reversing the action of positioning output OUT. With switching outputs (relay or logic) "direct" is the normally open and "inverse" the normally closed operating principle.
The controller output action is inverse, as usual (e.g. heating) or direct (e.g. cooling). Thereby, correcting variable display and increment/decrement keys correspond to the actual energy or mass flow direction.

Fig.: 39 Normal 'heating' - process

Fig.: 40 Normal 'cooling'- process

Fig.: 41 'Heating' process with inverting actuator

8.7 Positioning output switch-off

The controller positioning outputs can be switched off as a reaction to sensor error, via control input and by the timer of the real-time clock (configurable).

8.8 Controller output action with sensor break

Dependent of configuration, sensor break causes (L. 15 i)
-positioning output switch-off
-output of the lowest correcting value
-output of the highest correcting value
-output of the second correcting value Y2

8.9 Position feedback Yp:

The position feedback can be used for detection of the position e.g. of the motor actuator or of the valve. Position feedback Yp can be connected either as a potentiometric transducer or as a $0 / 4 \ldots 20 \mathrm{~mA}$ standard current signal.
Analog input Yp can be configured for INP6 $(\rightarrow$ [.455 $)$.
The position feedback must be calibrated. This can be done in two steps for X_{0} or X_{100}.

- Calibration for X_{0} :
 Now, bring the potentiometric transducer into the position for X_{0} (usually lower end position). The instantaneously valid value for INP6 appears on display 1. Press the selector key again to store this actual value as X 0 .
- Calibration for X_{100} must be done accordingly.

Select $\times 16 \mathrm{C}$. Press the selector key. The " \square " of the display $\times 1 \mathrm{c}$ c starts blinking. Now, bring the transducer into the position for X_{100} (usually upper end position). The instantaneously valid value for INP6 is shown on display 1 . Press the selector key again to store this actual value as $\mathrm{X}_{100}{ }^{\circ}$

Position feedback yP as a potentiometric transducer

As a potentiometric transducer, a potentiometer is connected mechanically to the potentiometer. The potentiometer must be connected to the controller terminals. Energization is via terminals 0% and 100%. The voltage proportional to the motor actuator position is tapped via terminal yp. Resistance Rtotal, inclusive of lead resistances, must not exceed 1 k [.
Position feedback yP as a $0 / 4 . . .20 \mathrm{~mA}$ standard current signal
The input resistance is 50 [.

9 Special Functions

9.1 Control using a disturbance signal

Control with measurable disturbances z is used to improve the dynamic behaviour of slow processes with long delay times. It is configurable (C 105) and can act either on the controlled process value or directly on the correcting variable without consideration of the control behaviour. Option C (INP 3) is required.

The pre-processed disturbance variable (Func1, Func2) can be used directly or after differentiation (parameter T_{dz}), whereby either both output actions, or only one are taken into account.
Fig.: 43

9.1.1 Yp signal

According to the latest standard of information, there are two reasons for using the position feedback (control with three-point stepping output).
In some installations, the controlled process value must be lowered by several percent with increasing load.
The reduction is identical with a "permissible tolerance".
Furthermore, advantages may be gained mainly in slow processes with long delay time (avoidance or reduction of overshoot with important load changes).
Example: steam boiler
Nominal pressure: $\quad \mathrm{P}_{\mathrm{N}}=18$ bar at 50% load
Pressure limits: $\quad 18,5$ bar no load
17,5 bar full load
Measuring range: $\quad 0 \ldots 20 \mathrm{bar} \bumpeq 4 \ldots 20 \mathrm{~mA}\left(\mathrm{X}_{0}, \mathrm{X}_{100}\right.$ of INP1)

Solution

Three solutions are possible. All required functions are provided as standard.
Simulation of an increased process value yp (INP 6) is calibrated as usual ($\mathrm{X}_{0}, \mathrm{X}_{100}$) and displayed as a position. As with every input, two-phase pre-processing is also provided in INP6. L. 105 selects auxiliary variable z via INP6 (with or without differentiation).

Scaling $m x+b$ is used to calculate the correction characteristic (for lowering the set-point, a positive m and a negative b must be adjusted):
$\mathrm{m}=(18,5-17,5) \mathrm{bar} / 100 \%=0,01$
b $=-1 \mathrm{bar}$
\square Lowering the set-point
 source of dWe. As the correction characteristic acts on the set-point, the polarity of m and b must be reversed. In this case, differentiation is not possible.

```
m= - 0,01
b}=+1\mathrm{ bar
```

Position feedback as standard signal
With yp measured via an external transmitter, connection of the current signal either as auxiliary variable z or as external set-point offset dWe to the relevant inputs and scaling it directly to the required correction range (z.B. $0 \ldots 100 \%=+1 \ldots-1 \mathrm{bar}$) with $\mathrm{X}_{0} / \mathrm{X}_{100}$ is possible.

Fig.: 44 Yp signal

Fig.: 45 Block diagram for Yp signal

9.2 "Rapid Recovery"

After short-term mains failure or plant trouble, the process might have deviated from its working point only minimally. With controller start without previous knowledge, the working point will be redetermined by evaluating the control deviation. As the control deviation might be very small, this will take rather a long time, i.e. there will be a "drop". If the controller knows its old working point, start is possible using the right correcting variable for this working point, i.e. the working point will be reached again much earlier.

This is ensured by the "Rapid Recovery" function, which is divided into two independent functions. Function "Y storage and Y tracking" ensures the approach to the correcting variable required for the working point. With higher deviations of the control variable from the target set-point, function " X tracking" ensures smooth set-point line-out to the target set-point starting from the actual control variable.

9.2.1 Y storage

For this, the controller continuously stores data on the actual working point (correcting variable, control variable, target set-point) in the capacitor-buffered RAM, which even provides back-up with mains failure of more than 6 hours. After mains failure or plant trouble, safe data on the working point are available. These data will be used by the controller to return to the working point sooner.
After power failure or plant disturbance, the controller goes to the correcting variable of the old working point automatically and starts controlling at the correcting variable. This is of particular advantage especially with three-point stepping controllers.
This function will show good results, if the interruption was "short". As the term "short" must be considered in relation to the process time behaviour, however, the change of process value and set-point up to which Y calibration is required after power failure can be adjusted via the parameters. This is done using new parameter XwOnY. With three-point stepping controller without position feedback and signallers, this function is not provided!

Parameter	Range	Default
XwIn'	$----0 \ldots . .9999$	---- (function switched off)

U-tos "Y calibration is done with: $\{x<$ XwOnY and $\{\mathrm{w}<\mathrm{XwOnY}$

9.2.2 Set-point ramp after switch-on

The second rapid recovery sub-function is the set-point ramp. If the process value still deviates from the set-point by a value exceeding the adjustable parameter $\mathbf{M} \boldsymbol{\square} \boldsymbol{\square} \boldsymbol{4}$ after controller enabling (according to configuration [19: 5L LFF $=$ On \rightarrow see page 102), control to the set-point is via parameter GrwOn.

Parameter	Range	Default
Xubn\%	----, 0.... 9999	---- (function switched off)
Growror	----, 0.... 9999	---- (function switched off)

[-8 A set-point ramp is activated when: $\quad \mathrm{xw}>\mathrm{XwOnX}$

9.3 $\mathrm{DAC®}=$ Actuator monitoring

"DAC® ensures operating safety Digital Actor Control monitors the actuator safety and detects problems before there would be an increased control deviation. Monitoring is done for blockage, defective motor or capacitor or for other actuator problems affecting its function. The DAC function is available for three-point stepping controllers with position feedback, continuous controllers with position control and continuous controllers with position feedback."

\square Introduction

With all controller types featuring position feedback Yp, the motor actuator can be monitored for functional troubles. With these controllers ($\mathrm{Cfunc}=08,09,12$), the actuator function is monitored completely. Monitoring is possible for:

- defective motor
- faulty phase sequence,
- defective motor capacitor (faulty rotary direction),
- defective power transmission to spindle or gearing,
- excessive backlash due to wear,
- jammed control valve due to e.g. foreign bodies.

The function can be enabled via parameter DAC ® :
DHC: 0 : no DAC
1: DAC function checking

\square Description

Unless correct Yp change detection is possible despite the output of closing or opening pulses, there is a trouble. The trouble is displayed and the controller goes to manual operation, i.e. no pulses are output any more.

Display	Signification	Possible causes
Blowe	No reaction	- blocking - Cable break
Dir*er	No reaction	- Defective motor - capacitorPhase error - Wrong polarity
Y'ail	Yp Error	- Potentiometer defective or not connected

Signalling

For detected actuator error signalling, a limit relay can be switched.
G600, G6zO, G640 and C660 were extended by $\mathrm{Src}=24 /$ actuator error

\square Positioning value limiting

As already provided with the present $\mathrm{KS} 92 / 94$ version, Yp monitoring for $\mathrm{Y}_{\min }$ and $\mathrm{Y}_{\max }$ remains available. When exceeding these limits, no further pulses in the relevant direction are output. The DAC® function ensures that no limits are exceeded even in case of one or several actuator or potentiometer errors. Due to the measurement cycle, however, limit exceeding by a very low value dependent of actuator speed and inertia cannot be prevented.

Reset after actuator error
With actuator error detection, the controller switches to "manual mode" and displays the error:

When the plant trouble was removed, the operator must inform the controller accordingly. For this, press key Δ or $\boldsymbol{\nabla}$ and/or switch the controller to "automatic mode". If the actuator error continues, the controller detects it and switches off again. In any case, the controller must be switched back to automatic mode by the operator!

\square Operating limits

3-point stepping controller with position feedback or continuous controller with position control

- The Yp change must be higher than $2 \Omega / \mathrm{sec}$ or $0,1 \mathrm{~mA} / \mathrm{sec}$! Example: motor actuator with travel time $\mathrm{Tm}=60 \mathrm{sec} \rightarrow$ resistance change R 120Ω
- Conductive plastics potentiometers must be used, because their reliability and linearity is much better than with wire potentiometers.
- Any change of the motor actuator movement must cause a potentiometer resistance change.
- Drives with a high backlash are detected as defective.

Continuous controllers with position feedback

- The position fed back may have a maximum deviation of 10% after filtering with $\mathrm{T}=20 \mathrm{sec}$.

\square Automatic Yp-calibration

To facilitate operation, the automatic Yp calibration was introduced. The controller changes its output to determine the two end positions and actuator travel time Tm .

- Start:
- During manual operation, select parameter SPLIL and set it to 1 .

- Procedure:

Y1 is activated, until no changes are measured any more via Yp. The measurement value is stored as щOr. Subsequently, Y2 is activated, until Yp does not change any more. This measured value is stored as $\boldsymbol{\operatorname { L O O }} \mathrm{C}$. The duration of adjustment from 0 to 100% is measured and stored as T_{m}. Like

Display	signification	Possible causes
	Calibration error	- Potentiometer too small - Not connected - Potentiometer polarity error

- Operating limits:

The motor actuator must be able to withstand a short-term (3-4sec) operation close to its limits without damage! Otherwise, the operating limits specified for DAC are applicable (see above).

10 Alarm processing

Up to four alarms can be configured. These alarms are allocated to the individual outputs. Generally, each of the outputs OUT1, OUT2, OUT4, OUT5 (unless used by other signals) can be used for limit value or alarm signalling.
Each of the 4 limit values LIM1 ... LIM4 has 2 trigger points LimH (Max) and LimL (Min), which can be switched off indivudally (parameter "----"). The switching difference $L \times S \sigma$ of each trigger point is adjustable.
Fig.: 46 operating principle of relative limit contact LimH/LimL

(1) normally closed, (2) normally open (selection in 5.500 ff ; mode). LimL and $\mathbf{L} \mathbf{i m H}$ correspond to values (L.50 ff; $\mathbf{S i}^{\mathbf{r}} \mathbf{c}$), at which there will be an alarm. .
Fig.: 47 operating principle of relative limit contact $\mathrm{LimH} / \mathrm{LimL}$

(3) normally closed, $\mathbf{4}$ normally open (selection in $5.50 \mathrm{ff} ; \mathbf{H a d e}$). $\mathbf{L} \mathbf{i m L}$ and $\mathbf{L} \mathbf{i m} \mathbf{m}$ correspond to control deviations which cause the alarm.
Limit values below the set-point must be specified with negative polarity sign.
The variable to be monitored can be selected separately for each alarm via configuration:
The following variables are available:

- effective process value (Limit contact)
- control deviation (Limit comperator)
- process value x1
- process value x 2$\}$ Input + eventually signal pre-processing (Func $1 / 2 \rightarrow$ page 26 a. 63)
- process value $x 3$ \}
- auxiliary variable z
- externals set-point we
- external set-point offset dWe
- effective set-point Weff
- position feedback Yp
- controller output
- override control OVC
- selectable set-point input WSel
- pre-processed process value inputs INP1 ... INP6 (after input conditioning \rightarrow page 26 a. 63)
- net program time
- gross program time
- program rest time

The alarm function is also configurable:

- switched off
- sensor monitoring: signalling with sensor error of the selected signal source
- sensor monitoring / measurement value alarm:
- sensor monitoringg / measurement value alarm with suppression after set-point change and start-up
- Measuring value alarm
- Measuring value alarm with suppression after set-point change and start-up

10.1 Alarm 1 / (limit 1)

The function of this alarm is determined in configuration parameter 5.5 ar.
Alarm signalling is via output OUT4, if this was determined as Srose 29 in the configuration 5.59.

10.2 Alarm 2 / (limit 2)

The function of this alarm is determined in configuration parameter 5.5 E.
Alarm signalling is via output OUT5, if this was determined as Sres $=25$ during configuration 5.59 .

10.3 Alarm 3 / (limit 3)

The function of this alarm is determined in configuration parameter 5.5 a .
Alarm signalling is via output OUT1, if this was determined as $\overline{G r}=27$ by configuring 5.5010.

10.4 Alarm 4 / (limit 4)

The function of this alarm is determined in configuration parameter 5.5 a .
Alarm signalling is via output OUT2, if Srose 28 was determined by configuring 5.53 B .

11 Optimizing the controller

11.1 Process characteristics

In order to tune the controller to the process, the process characteristics must be determined. During self-tuning, these process data are determined automatically by the controller and converted into control parameters. In exceptional cases, however, manual determination of these process data may be necessary. For this, the response of process variable x after a step change of correcting variable y can be used (see Fig. 48). Usually, it is not possible to plot the complete response curve (0 to 100%), as the process must be kept within certain limits.
The maximum rate of increase $v_{\text {max }}$ can be determined from the values T_{g} and $x_{\max }$ (step from 0 to 100%) or t and x (partial step response).

$$
\begin{aligned}
& \mathrm{y}= \text { correcting variable } \\
& \mathrm{Y}_{\mathrm{h}}= \text { control range } \\
& \mathrm{Tu}= \text { delay time }(\mathrm{s}) \\
& \mathrm{Tg}= \text { recovery time }(\mathrm{s}) \\
& \mathrm{V}_{\max }= \mathrm{X}_{\max } / \mathrm{Tg}=\Delta \mathrm{x} / \Delta \mathrm{t}=\text { max. rate of } \\
& \text { increase of process value } \\
& \mathrm{X}_{\max }= \text { maximum process value } \\
& \mathrm{X}_{\mathrm{h}}= \text { adjustment range of controller } \times 1 \mathbf{0} \overline{\mathrm{Q}}-\mathrm{XV} \\
& K=\frac{V m a x}{X h} \cdot \mathrm{Tu} \cdot 100 \%
\end{aligned}
$$

11.2 Controller characteristics

The control parameters can be determined from the values calculated for delay time Tu , max. rate of increase vmax, control range Xh and characteristic value K according to the formulas given below. Precise adjustment should be done as specified in the table. Increase Xp , if line-out to the set-point oscillates.

General formulas			
Behavior	Xp[\%]	$\mathrm{Tv}[\mathrm{s}]$	Tn[s]
(D)PID	1,7 K	2 Tu	2 Tu
PD	0,5 K	Tu	$\infty=0000$
PI	2,6 K	0	6 Tu
P		0	$\infty=0000$
3 -point stepping controller PID			
	1,7 K	Tu	2 Tu

Reference values			
Parameter	Control	Disturbance	Start-up behaviour
Xp bigger smaller	stronger damping reduced damping	slower line-out faster line-out	slower reduction of duty cycle faster reduction of duty cycle
$\begin{array}{r} \text { Tv bigger } \\ \text { smaller } \end{array}$	reduced damping stronger damping	stronger reaction weaker reaction	earlier reduction of duty cycle later reduction of duty cycle
Tn bigger smaller	stronger damping reduced damping	slower line-out faster line-out	slower reduction of duty cycle slower reduction of duty cycle

 shown in Fig.: 49.
Fig.: 49 Direct / inverse switch-over principle

11.2.1 Signallers

This configuration can be used for processes with small T_{u} and slow $v_{\text {max }}$. Control oscillations are determined by :
$X_{0}=x_{\max } \cdot \frac{T_{u}}{T_{g}}+X_{S d}=v_{\max } \cdot T_{u}+X_{S d}$
The signal function corresponds to limit signalling, whereby the set-point is the limit value. The trigger point is symmetrical on both sides of the set-point; hysteresis $\mathrm{X}_{\mathrm{sd} 1}$ is adjustable.
The signaller with two outputs has an additional "pre-trigger point". The separation between this point and the set-point is adjustable using parameter LW (including polarity).

As no manual function is possible with a signaller, calibration (resistance transducer) is only possible by configuration changing e.g. for two-point controller.

Configuration	Effective controller parameters		
$\begin{aligned} \text { L. } 10 \mathrm{OH} ; \mathrm{CF}= & 00 \text { (signaller with } 1 \text { output) } \\ & 01 \text { (signaller with } 2 \text { outputs) } \end{aligned}$	XSod	Signaller switching difference	0,1 ... 999,9
	LW	Trigger point separation of additional contact	-999 ... 9999
	$x \operatorname{da}$	Switching difference of additional contact	0,1 ... 999,9

11.2.2 Two-point controller

Cycle time T_{1} must be adjusted at configuration level.
It corresponds to the minimum cycle time with 50% duty cycle.
For optimizing according to the control response, the hints given in Fig. 3 must be followed.

$P D$ behaviour $(T n=\infty)$
The working point is in the centre of proportional band $X_{p 1}$ at 50% duty cycle. For keeping the process constant, a certain amount of energy dependent of the set-point is necessary. This results in a permanent control deviation, which will increase with higher values for $X_{p 1}$.

DPID behaviour
By means of the integral action, the process is lined out without permanent offset.

The static characteristic of a two-point controller is identical with the one of the continuous controller. The difference is that a duty cycle is output instead of a linearly variable current signal (relay contact, $0 / 20 \mathrm{~mA}$ logic signal or $0 / 24 \mathrm{~V}$ control output).
Working point Y_{0} and cycle time T_{1} at 50% duty cycle are adjustable. The shortest step is 100 ms .

Configuration	Effective controller parameters		
C. 1 an; C-Linc $=02$ (two-point controller)	Y2	Additional correcting variable	-105 ... 105 [\%]
	Ymin	min. correcting variable limiting	-105 ... 105 [\%]
	Ymbe	max. correcting variable limiting	-105 ... 105 [\%]
	Y区	working point of correcting variable	-105 ... 105 [\%]
	YF1	proportional band 1	0,1 ... 999,9 [\%]
	Th1	integral action time	0 ... 9999 [s]
	Tul	derivative action time	0 ... 9999 [s]
	T1	switching period	0,4 ... 999,9 [s]

11．2．3 Three－point controller

Adjust cycle times T_{1} and T_{2} at configuration level．They correspond to the minimum cycle times at 50% duty cycle． For optimizing according to the control response，the hints given in Fig． 3 must be followed．

$P D / P D$ behaviour（ $T n=$ ）

The adjustment range reaches from 100% heating（Y1）to 100% cooling（Y2）．
The proportional bands must be matched to the different heating and cooling rates．For keeping the process lined out，a certain amount of energy dependent of set－point is necessary．This results in a permanent offset， which will increase with higher $\mathrm{X}_{p(1,2)}$ ．
DPID／DPID behaviour
By means of the integral action，the process is lined out without permanent offset．
The transition from trigger point 1 （heating）to trigger point 2 （cooling）is without neutral zone．The proportional bands must be matched to the different heating and cooling rates（Fig．4）．
The drawings in Fig．：52 show the static characteristic for inverse and direct action．Direct／inverse switch－over only causes the exchange of the outputs for＂heating／cooling＂．The terms＂heating＂and ＂cooling＂are used for all similar processes（batching acid／lye，．．．）．The neutral zone is adjustable separately for the trigger points（ $\mathrm{X}_{s h 1}, X_{s h 2}$ ），i．e．it need not be symmetrical on both sides of the set－point．
The type of positioning signals is selectable：
－heating switching，cooling switching
－heating continuous，cooling switching
－heating switching，cooling continuous
Combination＂heating continuous＂and＂cooling continuous＂is covered by＂continuous split range＂．
With inverse controller output action，＂heating＂is allocated to output OUT1 and＂cooling＂is allocated to output OUT2．As the controller versions provide only OUT1 with current signal，＂heating switching；cooling continuous＂seems to be possible only via OUT3（option C）．With＂direct＂action，however，cooling is allocated to OUT1 and heating is allocated to OUT2，so that option C is not indispensable．

Configuration	effective controller parameters		
$\begin{aligned} \text { L. ADT CFLAT: }= & 03 \text { (three-point controller } \\ & \text { Heating /cooling switching) } \\ & 04 \text { (three-point controller heating } \\ & \text { continuous cooling switching) } \\ & 05 \text { (three-point controller heating } \\ & \text { switching cooling continuous) } \end{aligned}$	《sト1	neutral zone（ $\mathrm{Xw}>0$ ）	0，0 ．．．999，9［\％］
	X Fr 2	neutral zone（ $\mathrm{Xw}<0$ ）	0，0 ．．．999，9［\％］
	Y2	additional correcting variable	－105 ．．． 105 ［\％］
	Ymiヶ	min．correcting variable limiting	－105 ．．． 105 ［\％］
		max．correcting variable limiting	－105 ．．． 105 ［\％］
	Y区	working point of correcting variable	－105 ．．． 105 ［\％］
	KF 1	proportional band 1	0，1 ．．．999，9［\％］
	XF 2	proportional band 2	0，1 ．．．999，9［\％］
	Th1	integral action time	0 ．．． 9999 ［s］
	Tu1	derivative action time	0 ．．． 9999 ［s］
	T1	cycle time 1	0，4 ．．．999，9［s］
	T2	cycle time 2	0，4 ．．．999，9［s］

11.2.4 $\Delta / Y / o f f$

The principle is identical with the control behaviour of a signal function with additional contact.
Output OUT2 is used for switching over between " Δ " and "Y". Output OUT1 switches the heating power on and off.

Configuration	Effective controller parameters		
	LW	trigger point separation of additional contact	-999 ... 9999
	8saz	signaller switching difference	0,1 ... 999,9
	Y2	additional correcting variable	-105 ... 105 [\%]
	Ymiヶ	min. correcting variable limiting	$-105 \ldots 105$ [\%]
	Ym. $\mathrm{M}_{\text {\% }}$	max. correcting variable limiting	-105 ... 105 [\%]
	$\mathrm{XF} \cdot 1$	proportional band1	0,1 ... 999,9 [\%]
	Th1	integral action time	0 ... 9999 [s]
	Tu1	derivative action time	0 ... 9999 [s]
	T1	cycle time 1	0,4 ... 999,9 [s]

11.2.5 Three point stepping controller

In order to match the adjusted $\mathrm{X}_{p 1}$ to the motor actuator travel time, the travel time T_{m} must be adjusted. The smallest positioning step of the controller is 80 ms .
Dependent of configuration (1.19 ; $\boldsymbol{S P} \mathbf{I} / \bar{P}$), the feedback can be switched off.
Adjusting the neutral zone
The neutral zone $\mathrm{X}_{S h}$ can be increased with excessively frequent relay switching. Note, however, that an increased neutral zone will cause a decrease of the control sensitivity.
Therefore, we recommend to optimize switching frequency (wear of motor actuator) and control sensitivity.

Fig.: 54
Static operating principle of the three-point stepping controller

Three-point stepping controllers can be operated with or without position feedback Yp.
Yp is not required for operation. Fig.: 54 show the static characteristics of the three-point stepping controller with inverse and direct configuration.

The hysteresis shown in this diagram is practically negligible, however, it can be calculated from the adjustable min. pulse length $\mathrm{T}_{\text {pulse }} \geq 100 \mathrm{~ms}$.
$X_{s h}=\frac{\text { Tpuls }}{2} \cdot 0,1 \cdot \frac{X p}{T m}$
 $\mathbf{M p}$. By variation of $\mathbf{M} \mathbf{s h}$, the required min. pulse length $\mathbf{T} \boldsymbol{P} \mathbf{I} \mathbf{l} \mathbf{s}^{*}$ can be reached:
$X_{s h}=12,5 \cdot X p \cdot \frac{\text { Tpuls }}{T m}-0,75$

Correcting variable limit with three-point stepping controllers

With 3-point stepping controller with position feedback, the output is limited to ymin and ymax. Checking if the Yp value is higher than ymax or lower than ymin is done exclusively. If this is the case, further closing or opening pulses are suppressed. Due to the actuator inertia and measurement of potentiometer via INP6 (800 ms), the limits may be exceeded insignificantly.

Configuration	Effective controller parameters		
$\begin{aligned} \text { C. } 10 \mathrm{AD} ; \text { EFunc }= & \begin{array}{l} 07 \text { (Three-point stepping } \\ \\ \text { controller without feedback) } \end{array} \\ & 08 \text { (Three-point stepping } \end{aligned}$	人心	neutral zone	0,2 ... 999, 9 [\%]
	TFuls	Min. pulse length	0,1 $\ldots 2,0$ [s]
	Tm	Actuator travel time	$10 . . .9999$ [s]
	Y2	additional correcting variable	-105 ... 105 [\%]
	Ymin	min. correcting variable limiting	-105 ... 105 [\%]
	Ymax	max. correcting variable limiting	-105 ... 105 [\%]
	XF 1	proportional band 1	0,1 ... 999,9 [\%]
	Tril	integral action time	0 ... 9999 [s]
	Tu1	derivative action time	0 ... 9999 [s]

11.2.6 Continuous controller

The static characteristic corresponds to the one of the already described two-point controller.
The continuous controller in split-range operation is comparable to the three-point controller. The neutral zone can also be adjusted separately.

Fig.: 55
Static operating principle of continuous controller

With a continuous controller with position feedback, the actually flowing positioning current can be measured and displayed via INP6. Yp is not used either.
Maximum and minimum output current are adjustable:
$-\mathrm{y}=0 \ldots 100 \%$ (min. current)
$+y \geq-y+10 \% \quad$ (max. current)
The working point is adjustable $\mathrm{y}_{0}=0 . .100 \%$.
In order to operate the instrument as a P or PD controller, $\mathrm{T}_{n}=$ can be set by means of contact FB or by setting $\mathrm{T}_{n}=0$. For optimizing according to the control response, the hints given in Fig. 8 must be followed.

With contact FB closed, manual \rightarrow automatic and automatic \rightarrow manual switch-over is bumpless! Transition to the new correcting variable is with the adjusted integral action time T_{n}.

Configuration	Effective controller parameters		
C. 180; [-FLInc $=10$ (continuous controller)	KSh1	neutral zone ($\mathrm{Xw}>0$)	0,0 ... 999,9 [\%]
	X CH	neutral zone ($\mathrm{Xw}<0$)	0,0 ... 999,9 [\%]
11 (continuous controller	Y2	additional correcting variable	-105 ... 105 [\%]
Split range)	Ymin	min. correcting variable limiting	-105 ... 105 [\%]
12 (continuous controller	Ymbe	max. correcting variable limiting	-105 ... 105 [\%]
with Yp feedback)	$\mathrm{XF}_{\mathrm{F}} 1$	proportional band 1	0,1 ... 999,9 [\%]
	$\mathrm{X}_{\mathrm{F}} \mathbf{2}$	proportional band 2	0,1 ... 999,9 [\%]
	Tri	integral action time	0 ... 9999 [s]
	Tu1	derivative action time	0 ... 9999 [s]

11.2.7 Continuous controller with position control

This is basically a cascade. A tracking controller with three-point stepping behaviour which operates with Yp as process value (INP6) is used with the continuous controller. The advantages of this combination are in the availability of all functions which are possible with continuous controllers, such as

- working point adjustment
- adjustable correcting variable limits
- override control
- use of a disturbance at the positioning output
- Switch-over to a second correcting value Y_{2}

The disadvantage might be that the control availability depends on the Yp potentiometer, which is subject to wear. This fact is taken into account by automatic switch-over to three-point stepping control without position feed-back in case of potentiometer error.

Fig.: 56 Continuous controller with position controller

Configuration	Effective controller parameters		
$\begin{array}{r} \text { C. AOB; CFLATE = } 09 \text { (continuous controller } \\ \text { with position controller) } \end{array}$	TFuls	min. pulse lehgth	0,1 ... 999,9 [s]
	Tm	actuator travel time	$10 . . .9999$ [s]
	X心ト1	neutral zone ($\mathrm{Xw}>0$)	0,0 ... 999,9 [\%]
	X x +2	neutral zone ($\mathrm{Xw}<0$)	0,0 ... 999,9 [\%]
	Y2	additional correcting variable	-105 ... 105 [\%]
	Ymin	min. correcting variable limiting	-105 ... 105 [\%]
	Ymbx	max. correcting variable limiting	-105 ... 105 [\%]
	$\mathrm{XF}_{\mathrm{F}} 1$	proportional band 1	0,1 ... 999,9 [\%]
	Th1	integral action time	0 ... 9999 [s]
	Tu1	derivative action time	0 ... 9999 [s]

12 Optimizing the controller

12.1 Self-tuning

For determination of the optimum process parameters, self-tuning is possible. Self-tuning can be started and finished via the system menu during automatic or manual mode.

Moreover, self-tuning can always be cancelled by pressing the manual/automatic key $\mathbf{0}^{\mathbf{~}}$ on the controller front.

Self-tuning preparations:

- Control behaviour PID,PI,PD or P can be selected by the user by switching off $\mathrm{Tn}=0$ or $\mathrm{Tv}=0$ before self-tuning start.
- Determine which parameter set must be optimized ($\mathrm{F} \mathbf{O} \mathrm{F} \cdot \mathbf{t}$).
- Determine the stable correcting variable ($\mathrm{V} \boldsymbol{\mathrm { O }} \mathrm{F} \cdot \mathrm{m})$.
- Determine the set-point step ($-\mathbf{H} \mathrm{OF}$.).

12.1.1 Process-at-rest monitoring:

Process-at-rest monitoring is at any time. The process is at rest with the process value within a tolerance band of $\pm \Delta \mathrm{X}=0.5 \%$ during more than 60 seconds. When the monitored variable leaves this tolerance, the monitoring time counter is reset to zero. With e.g. PiR detected during control operation and output of a widely varying stable correcting variable Yortm when starting the self-tuning, waiting until the full PiR time has elapsed is
 necessary.
With extended PiR monitoring, monitoring is done for a regularly varying instead of a constant process variable!
 determine the mode of 'process-at-rest' detection. One of the following modes can be selected:
$\operatorname{grad}(\mathrm{x})=0$:
\mid Process at rest is detected, when x is constant.

$\operatorname{grad}(\mathrm{x}) \leq 0=$ const \& inverse :	Process at rest is detected, when x decreases regularly with a controller with inverse action.
$\operatorname{grad}(\mathrm{x}) \geq 0=$ const \& direct :	Process at rest is detected, when x increases regularly with a controller with direct action.
$\operatorname{grad}(\mathrm{x}) \neq 0:$	$\begin{array}{l}\text { Process at rest is detected, when } \mathrm{x} \text { varies regularly. In this case, continuation of this constant } \\ \text { change as long as identification lasts must be ensured. }\end{array}$

12.1.2 Set-point reserve:

As a pre-requisite for realization of the self-tuning procedure, the separation of set-point and process value must be higher than 10% of W0...W100 before output of the correcting variable step! The set-point reserve is realized either automatically by reduction of the correcting variable during the PiR phase or by manual set-point or process value changing (manual mode).

12.1.3 Start during automatic operation:

After self-tuning start, stable correcting variable 'OFt. is output. After detection of 'process at rest' (PiN), the correcting variable step $\mathrm{O}_{\mathrm{F}} \mathrm{t}$. is output and the parameter determination procedure is realized. The set-point can always be changed, whereby the gradient function for set-point adjustment is switched off.

12.1.4 Start during manual operation

Self-tuning start during manual operation can be done only, if the controller was switched to manual mode via its front panel or via the interface.
During switch-over to manual operation, the correcting variable output last is stored as manual correcting variable. When starting the self-tuning, this correcting variable is used and output as temporary stable correcting variable. After reaching MiR, the optimization is started. Pre-requisite for optimization start is a sufficient set-point reserve (\rightarrow page 73).
'Process at Rest' (MiR) can be reached already when starting, i.e. the waiting time is omitted. As during automatic mode, the set-point can always be adjusted.

Fig.: 59 Start by increasing the setpoint

Fig.: 60

After successful self-tuning, switch-over to automatic mode is automatic. The process characteristics are available as parameters Tu1,Vmax1. The parameters for the required control behaviour are determined on the basis of these characteristics.

If self-tuning is finished with an error ($\mathbf{H} \boldsymbol{G} _$_F), the stable correcting variable is output, until self-tuning is finished by the user via the system menu, front panel key 윶 or via the interface.

12.1.5 Self-tuning procedure with heating:

(2-point, 3-point stepping, continuous controller)
After reaching 'process at rest', the process is started with a correcting variable step and Tull and Vmax 1 are determined from the process reaction, if possible, at the reversal point of the step response.

12.1.6 Self-tuning procedure with heating and cooling processes:

(3-point / split-range operation)
Self-tuning starts as with a "heating" process. After the self-tuning end, the controller is determined from the calculated parameters. These parameters are used for lining out to the pre-defined set-point, until MiR is reached again. For determining the "cooling" parameters, a set-point step is output, in order to determine Tu 2 and Vmax2 using the step response. Based on these parameters, the parameters for split-range operation are also determined for cooling. When cancelling the cooling attempt, the parameters for 'heating' are also used for 'cooling'. Error (Fable) signalling is omitted.

Fig.: 61

When starting the optimization with a three-point stepping controller, the correcting variable is always reduced completely and YOF. T . M is output, if the instantaneously effective correcting variable ap cannot be measured.
For keeping the process within safe limits, the set-point is monitored continuously for out-of-limits.
4
Whilst self-tuning is running, the override control function is switched off! Ie.: Ypid is within the limits for Ymin and Ymax.
4
With controllers, self-tuning is withfunction, i.e. $\mathrm{Y} 2=0$.

HSG1/2	Signification or error cause	Possible solution
0	No attempt was made or attempt cancelled by switching over to automatic.	
1	Cancellation: Wrong action of correcting variable, X does not change towards W.	Change controller output action.
2	Finished:Self-tuning was successful (reversal point found; safe estim	nation)
3	Cancellation: The process does not react or reacts too slowly (change of $\Delta \mathrm{X}$ below 1% during 1 hour)	
4	Finished : (low reversal point) Cancellation: Stimulation insufficient (reversal point found; unsafe estimation)	Increase set-point steplyort.
5	Cancellation: Optimization cancelled due to exceeded set-point risk.	Increase separation of process value (X) and set-point (W) during start-up.
6	Finished: Optimization cancelled due to exceeded set-point risk (re estimation).	ersal point not reached so far; safe
7	Cancellation: Insufficient output step, $\Delta \mathrm{Y}<5 \%$.	
8	Cancellation: Set-point reserve insufficient or set-point exceeded during PiR monitoring	Change stable correcting variable Y OF F .m.

Unless control is functioning properly as required despite self-tuning, proceed additionally as described in section 12.2 (page 9, Optimizing empirically). Moreover, the specifications on further parameters must be taken into account.

12.2 Optimizing empirically

If process data are missing, empirical optimization by means of self-tuning or by manual attempts is possible. When attempting empirical optimization, the following information should be taken into account:
\square Ensure that correcting variable and control variable will never reach inadmissible values!!!
\square In order to have comparable results, the conditions for the attemps should be always identical.
\square The attempt procedure must be oriented at the target of optimization: control behaviour or disturbance behaviour.
\square The controller working point must be equal with the attempts.
When using the control parameters for the first time, they must be adjusted as follows:

- Xp as high as possible: to the highest adjustable value,
- Tv relatively high: max. the time needed by the process until a clear process reaction starts.
- Tn high: max. the time needed by the process for the overall reaction.

The time requirement for empirical optimization is rather high. In order to have a reasonable result within a relatively short period of time, we recommend proceeding as described below:
(1) Adjust $\mathrm{Tn}=\mathrm{Tv}=0$ and Xp as high as possible (P controller). Reduce Xp from attempt to attempt, as long as control is sufficiently stable. If control becomes too unstable, increase Xp slightly and continue with (2).
(2) Measure the permanent control deviation: If it is sufficiently low, self-tuning is finished successfully (P). If it is too high, PD control is better for the process (adjust a relatively high Tv and continue with (3)).
(3) Reduce Xp from one attempt to the next one, as long as control is sufficiently stable. If control gets too unstable, continue with (4).
(4) Reduce Tv and find out if control can be re-stabilized sufficiently. If this is the case, continue with (3), otherwise increase Xp slightly and continue with (5).
(5) Find out if $\mathbf{X p}$ was reduced considerably during procedures (3) and (4). If this is the case, continue with (6), otherwise PI control is recommendable for the process (set Tv to 0 and continue with (7).
(6) Measure the permanent control deviation. If it is sufficiently low, self-tuning is completed successfully (PD). If it is too high, PID control is preferable for the process (stop changing Xp and Tv and continue with (7).
(7) Adjust a high Tn value and reduce it as long as control is sufficiently stable. If control gets too instable, increase Xp slightly, and self-tuning is completed successfully (PID or PI).

Empirical optimization is improved considerably by using a recorder (or engineering tool trend function) for control variable (process value X) related to time requirement and quality and evaluation of the test results is facilitated significantly.

The method descibed above can be generalized only with restrictions and does not lead to a clear improvement of the control behaviour with all processes.

Changing working point (Y0), trigger point separation (Xsh) and cycle times (Tp1 and Tp 2) leads to results which may or may not be satisfactory. With 3-point stepping controllers, Tm must be set to the real travel time of the connected motor actuator.

12.3 Selectable adaptation (only KS94)

For certain applications, matching the control parameter set to the actual process status may be reasonable. For this, KS94 is provided with max. 4 control parameter sets, which can be selected via various signals. With default configuration, only one parameter set is available (Lan; DCratr $=0$). With DCQint $\mathrm{r}^{2}=1 / 4 / 5 / 7$, KS 94 switches over automatically between the max. 4 parameter sets. The switch-over points are pre-determined via adjustable trigger points. Parameter $\boldsymbol{\square} \boldsymbol{s} \boldsymbol{- d}$ determines the hysteresis for all three switch-over functions.

Fig.: 62 Switching over parameter-sets via controller signals

Switch-over via		Description					
0	no function	only the actual parameter set is effective					
1	control / disturbance \|behaviour	parameter set 0 with control behaviour, parameter set 1 with disturbance behaviour. Disturbance behaviour is detected, when the absolute value of control deviation $(\|\mathrm{xw}\|)$ is $<$ Trig1. Self-tuning can determine only parameter set 0 for control behaviour.					
2	Operation	Switch-over is by changing parameter ParNr (Contr \rightarrow CPara \rightarrow ParNr). In order to reach the parameter quickly, the parameter should be at „extended operating level"!$(\rightarrow \text { section } 4.4 \text { page } 20)$					
3	Control inputs	Switch-over is via digital inputs di8 and di9 on options card C Which parameter set is active with which input allocation is shown in the table opposite parameter	di8	0	1	0	1
			di9	0	0	1	1
			Parameter	0	1	2	3
4	Set-point (weff)	Switch-over is at adjustable trigger points of the set-point signal (see Fig.: 62)					
5	Process value (Xeff)	Switch-over is at adjustable trigger points of the process value signal (see Fig.: 62)					
6	\| correcting variable(y)	Switch-over is at adjustable trigger points of the correcting variable (see Fig.: 62)					
7	control deviation (xw)	Switch-over is at adjustable trigger points of the control deviation (see Fig.: 62)					

13 Programmer

13.1 General

13.1.1 Programmer definition

The KS9x programmer has 1 analog output and 4 control outputs (1...4) (digital).
A survey of the most important features:

- 3 programs (recipes; KS92 only 1 program!) each with ...
- 1 analog output, 4 control outputs
- 20 segments
- individual segmentation
- common preset (to "time" or "segment start")
- common control commands (run, stop, reset)

Control outputs are not firmly coupled to the analog output segmentation. They are provided with individual segmentation, which is common for the control outputs. This means that number of segments and overall time (sum of segment times) of analog output and control output can be basically different.

Fig.: 62 Programmer definition

With respect to control signals and programmer visualization, the analog output is the master output. I.e. control commands act on the analog output (profile). Control outputs are forcibly tracked:

- Run/stop
- Preset and preset value (program time or segment start)
- Reset

The analog output also determines the displays:

- status (run/stop, reset, preset)
- program set-point
- actual segment no.
- elapsed times (net/gross program times; rest time)

13.1.2 Segment parameter entry

The number of segments is generally fixed to 20 for all outputs. Whether all or only part of the segments are used is determined only by the entry of segment parameters (time, value). The first segment time $T p_{i+1}$ which follows on segment See defined last is adjusted with "----" (气 -32000) and completes the entry sequence so that the request for entry is completed.

.

 Entry of segment times $T p_{i}: 0 \ldots 9999$ minutes without decimal points!Entry sequence per recipe at parameter level (display 2):
\square Change mode \quad Whin "step/ramp"
\square Preset mode Fronde "program time/segment start"
\square Number of following program FFlext.
\square Bandwidth LE:-
\square Bandwidth LC+
\square Reset value WF (analog output)
\square Set-point profile

- Segment times TF1 ... TF20 [min]
\square Reset value $\mathrm{D} \overline{\mathrm{D}}$ (control outputs)
\square Control outputs 1 ... 4

- Set-points DF1 ... DF2®

The set-points of control outputs are adjusted in one adjustment procedure using the 4 decimals of display 2 (" 0 " = off; " 1 " = on):

e.g. control output \rightarrow	1	2	3	4
	0	1	0	1
	off	on	off	on

- Segment times Td 1 ... Td 2@ [min]

13.1.3 Parameter presetting (default)

When configuring "programmer" for the first time (L. In), all segments are at first inactive (switched off when leaving the configuration level. The programmer outputs the reset value Wp 0 (factory setting $=0$) and reacts only on control commands (run, preset, ...), after the parameters of at least one segment were set.
A programmer the parameters of which were already set can be switched off by configuring it accordingly. With re-activation, the previously adjusted parameters are effective again.
With start (run), the programmer starts from the instantaneous process value with the gradient of the first segment. Elapsed time and rest time are matched accordingly (cf. "search mode", \rightarrow page 86).
Fig.: 63 Search mode at first segment after program start

13.1.4 Time display

Segment times are adjusted and displayed in full minutes without digits behind the decimal point!
Gross, net and rest time are displayed on the front panel (display 2) in hours . minutes (extended operating level \rightarrow page 88). Times above 99 h .59 min are rounded off and displayed in full hours; minutes are omitted.
 refer to the future (tRest), are rounded off to the next higher full hour.
Rest time t.Rest $=56.45=\quad 66 \mathrm{~h} 45 \mathrm{~min}$
Limit values (alarm 1...4) can act also on program time t.Erut/thet or on rest time tRest.
Time-related limit values are adjusted dependent of configuration (LETOff; DF) either

- with four digits in full hours e.g.: $132=132 \mathrm{~h}$, or
- with 2 digits and two digits behind the decimal point, e.g.: $55.75=66 \mathrm{~h} 45 \mathrm{~min}$

Fig.: 65 Programmer time signification

13.1.5 "Flat ramps"

The algorithm for determination of the increments with ramp-shaped change mode within a segment is designed so that low set-point changes with high set-points can be realized also with high segment time (e.g. crystal growing; from ti=600 ${ }^{\circ} \mathrm{C}$ to $\mathrm{ti}+1=612^{\circ} \mathrm{C}$ in 600 h).

13.1.6 Programs (recipes)

Number of selectable programs
The required program (recipe) can be selected differently (program number $\mathrm{F} F \mathrm{Ho}$):

- front panel operation
- serial interface
- control inputs (di6, di7)

Due to the limited number od displays and for keeping command of the operation, KS92 is only provided with one program of the described length.
KS94 contains max. 3 programs (recipes) with 20 segments.
Fig.: 64 Recipe selection

Programmer

Recipe selection

Recipe selection can be done via front panel (extended operating level, "P检"), serial interface or control inputs (configuration [1. 12 L). Max. 3 programs (KS94) are selectable via control inputs.

Modification of the recipe number ($\mathbf{F} \boldsymbol{H} \mathbf{O}$) with already running programmer does not lead to cancellation of the instantaneous recipe. Only "reset" cancels the current recipe and leads to the start Wp0 of the new recipe.

Following program

- Automatic transition to the next process phase, or
- Waiting for enable (start signal)

The adjusted programs (recipes) can be selected manually or executed "as a sequence" automatically. Parameter "FHExt." indicates the number of the program to be used for continuation of the operation after completion of the previous program (switched off; FFVEXt. = ' $\square \square$ '). Thus an overall process can be divided into max. three sections (process phases). In this case, the max. overall length of a program thus defined is 60 segments! Thus automatic repetition of one or several programs is also possible.
Control commands, operation and display relate exclusively to the instantaneously running, active program segment. The gross running time $t \operatorname{Br}^{-}-1$ t. is the overall time (including pauses) from the start of the first program segment.

Fig.: 66 Following programs

Repetition of a program sequence in the

13.1.7 Change mode ramp/step

Whether the set-point (analog output) change shall be a step or a ramp is determined by a common parameter Wrion valid for all segments of a recipe at parameter level (default: ramp).

- Step:

The set-point changes to value Wpi immediately at the beginning of segment Segi and remains unchanged during segment time Tpi.

- Ramp:

The set-point changes linearly within time Tpi from start value Segi (= end value Wpi-1 of the previous segment Segi-1 ; in the first segment $=$ process value x) to the end value of segment Wpi. For the first segment, the following gradient is applicable: $\frac{W p 1-W p 0}{T p 1}$

- Gradient priority:

With configuration ramp with gradient priority, controller start-up is always followed by a search run, which may lead to a time reduction in the first segment. In general, the time is adapted at each search run and the gradient remains constant.

Fig.: 67 Gradient priority:

- Time priority

In ramp with time priority configuration, controller start-up will always be followed by a search run, which may lead to a change of the start set-point in the first segment. In general, the gradient is matched with each search run and the time remains constant.

13.1.8 Preparation for operation and end position

Each program starts with a start position $W_{0} 0$, which is valid after resetting or setting up the programmer for the first time, until further

Fig.: 68 Time priority
 changes are made.
With program start from the rest position, the first programmer segment starts from the instantaneous process value at the time of the start command ("ramp" with the gradients ($W p_{1}-W p_{0}$) / $T p_{1}$). With step change mode, the set-point of the first segment is activated immediately.

- the programmer uses the set-point of the last segment until further changing (Fig.: 69) or continues automatically with the following program (if a following program was entered in "Flvext."), or
- goes to rest position Wp0 (Fig.: 70) or starting position of the following program (if a following program was entered in "Fr|ext") at program end. The program can be started either by Run (activation or de-activation of the control input or via front panel operation)) or Preset.

Reset generally leads to the start (Wp0) of the selected program (parameter PNo).
Programmer RUN (START) / STOP can be input without option via di1/2 (L. 95) or via di4 (HW option B)

- Start signal via di1 (or di2)
di1 is a combination of control commands internal/external, reset and run and is used when di4 is not available. di1 $=0$ switches the controller to internal set-point W ; the programmer is reset (reset, Wp0). With dil $=0 \rightarrow 1$: the programmer is running when the operation/interface is set to "run/start"; the controller uses program set-point Wp .
(i) This function is possible only with int./ext. switch-over via di1/2. It is not possible with int./ext. switch-over via the controller front panel.
- Run/stop via di4 (and timer, [. 192)

The programmer runs ($\operatorname{di} 4=1$) and is stopped at di4 $=0$. Operating mode internal/external remains unchanged.

Programmer

Fig.: 69 Profile with stop at end position

Fig.: 70 Profile with automatic reset at program end

13.1.9 Control signals and status messages

Control signals (reset, stop, ...) can be entered via control inputs (static) or via serial interface or via the front panel system menu (dynamic; edge-triggered) with equal priority

Run/start is required with program end with reset. If necessary, control input run/start must be switched off and on again.

The programmer stores the last status of control commands (capacitor-buffered RAM) so that operation from several points is generally possible.

Control signal priority

Priority	Description	Status			
1	Reset	1	0	0	0
2	Preset	$0 / 1$	1	0	0
3	Stop	$0 / 1$	$0 / 1$	1	0
Result					
$0 / 1=$ any status					

13.1.10 Pre-requisites

For the following descriptions of the operating principle, the following setpoint-related pre-requisites which are already defined for controllers are applicable:

- general limitation of the rate of set-point change to the values adjusted for parameters Grw+ and Grw-. The gradients are adjustable with 3 digits behind the decimal point!
- storage of the external set-point We or of program set-point Wp (or of process value X; tracking: 1.15 : $\mathrm{WTr} \boldsymbol{\mathrm { T }} \mathrm{C}$) as internal set-point W.
Tracking can be activated only when switching back to the internal set-point! The relevant conditions are configurable (ㄷ.190: STr:
a) Tracking not effective, or
b) tracking generally effective with $\mathrm{We} \rightarrow \mathrm{W}$ or $\mathrm{Wp} \rightarrow \mathrm{W}$, or
c) as b), however, contact di2 or di12 is closed additionally.

13.2 Changes in the program sequence

Whilst the program is running, set-points and times (on-line) can be changed. Moreover, segments which were not available so far can be appended. The actual segment number remains unchanged. Unless the actual segment is changed, the relative elapsed time in the segment remains unchanged.

\square Past changes

A change of values and times in the past (already executed segments) is activated only after re-start (after previous reset).

\square Future changes

Future changes (segments which are not reached so far) are activated immediately. With changes of segment time, the "rest time" is re-calculated automatically.
\square Present changes
Changes of the actual segment time, which imply a step back into the past (e.g. reduction of segment time Tpi to lower values than the relative time already elapsed in this segment)cause a program step to the start value of the next segment. Set-point differences are compensated bumplessly with the gradients Grw+/Grw- already adjusted at the controller; the programmer continues running.
Changes of the target value of the actual segment cause the segment gradient to be re-calculated once for this program run, in order to re-calculate the new target value in the remaining segment time. These (and all other) rates of change are limited by the pre-set set-point gradients Grw+/Grw-. With a program reset and start or with preset to an earlier time, the final segment gradient is re-calculated.

13.3 Bandwidth monitoring

When leaving the bandwidth (LC+ = max. limit; LC- = min. limit) the programmer is stopped. The program continues running, when the process value is again within the pre-defined bandwidth. Fig.: 71 only shows the operating principle of the static program profile. Actually, however, the curve is delayed accordingly in the stop times.

$$
\begin{array}{ll}
\text { Parameter: } & \text { LC }+ \text { max. limit } \\
& \text { LC- min. limit }
\end{array}
$$

Fig.: 71 Bandwidth monitoring

On instruments with software option 'Programmer' bandwidth monitoring is also effective with programmer not configured (controller operation). Parameters LI:- and LE+ are adjustable in the set-point parameters. Current set-point ramps (Grw + /Grw-) are stopped when leaving the band!

13.4 Manual programmer operation

The function of front panel key A / M (융) was already defined for controller operation (adjustable in the parameters; FK 르)). The adjustment range of this parameter contains the following points:

- 园-key without function
- Automatic / manual
- Wp / W (wext / wint)

Key 园 switches the programmer to internal set-point W adjustable with the arrow keys and back. In this case, key 0° is used for internal/external switch-over, whereby the programmer continues running in the background for the duration of "manual operation". In the programmer reset position, key $\frac{\square}{\mathbb{N}}$ switches over between $\mathrm{Wp} 0 \leftrightarrow \mathrm{~W}$.
Run \rightarrow W switch-over is bumpless with the controller configured for tracking (storage of We or Wp as internal set-point W; 1.15 and 5.19 A$)$. After switching back from manual $(W) \rightarrow$ Run, the programmer starts from the instantaneous process value and searches the end value of the segment with gradient (Wpi -Wpi-1) / Tpi active when switching back (search mode).

Search mode is started automatically after mains recovery, if the program was in run mode before mains failure and with "search mode" configured (L. 12 I ; F Wrollor).
Within the presently active segment, the program is continued at the point (time mark in future or past) at which process value and program set-point are equal. Relative program time in segment and rest time are corrected accordingly. If searching in the actual segment is not successful, the programmer behaviour is as follows (Fig.: 72, b...f):

The programmer repeats the actual segment, with:	The programmer skips the actual segment and starts at the beginning of the next segment, if:
the gradient $=0$, or, if the gradient >0 and $\mathrm{X}>\mathrm{Wi}$, or	
if the gradient >0 and $\mathrm{X}<\mathrm{Wi}-1$, or	if the gradient <0 and $\mathrm{X}<\mathrm{Wi}$
if the gradient <0 and $\mathrm{X}>\mathrm{Wi}-1$.	

Bumplessness is achieved by controller gradient limitation Grw+ / Grw-.
Fig.: 72 Automatical search mode

13.6 Behaviour after mains recovery and after removal of sensor errors

13.6.1 Memory loss (RAM)

With memory loss, the last program set-point and the time elapsed so far are not available any more. Therefore, the programmer is reset in this case. The controller uses set-point $\mathrm{Wp}=\mathrm{Wp} 0$ and waits for further control commands:

- Start via contact or operation (system menu / serial interface)
- Preset

13.6.2 Memory (RAM) available

P'wrotr	Behaviour
$\underline{\square}$	The program is continued at the point of failure (Fig.: 73 c). Starting from the instantaneous process value, the effective set-point runs towards the program set-point with the relevant gradient Grw+/-. The programmer continues running, as long as bandwidth monitoring does not respond.
1	The programmer goes to manual mode (Fig.: 73 b). Despite applied control signals, the process value is stored as internal set-point W (with X-tracking configured) and the programmer waits for operator intervention. The program continues running. Without tracking, the internal set-point is effective.
2	Automatic search mode in the actual segment and program continuation (Fig.: 73 a). For unsuccessful search mode, see chapter !
3	Automatic search mode in the actual segment (Fig.: 73 a). With unsuccessful search mode the programmer goes to manual mode (Fig.: 73 b) and the process value is stored as internal set-point W (with X-tracking configured). Without tracking
4	Program continuation in the segment, in which the programmer would have been without power failure. This function requires the KS9x real-time clock! Searching (Fig.: 73 a) and program continuation are in this segment. For unsuccessful search mode

Fig.: 73 Behaviour after mains recovery and sensor fault
a) Automatical search mode

b) process value transfer and wait

c) Continue program

13.7 Preset

Preset sets the programmer to a defined point which is determined according to (Frone by

- by a preset program time ("preset to time" F'rone = 1).

Preset value and command can be preset at the extended parameter level (\rightarrow page 89) and via serial interface. Any set-point differences are removed bumplessly with the controller gradients Grw+/-.

13.8 Sensor fault

With primary variable sensor fault, the programmer is stopped. After removal of sensor faults, the programmer behaviour is as after power failure $(\rightarrow$ 13.6.2 $)$.

13.9 Programmer displays

13.9.1 "Display 1"

The actual process value is always displayed on display 1 .

13.9.2 "Display 2"

The actual set-point is displayed at operating level on display 2.
At extended operating level, program times and actual programmer recipe number are displayed on display 2 (5.12円; F'Sel = 0).

Format of "display 2": "B6.5马" hours . minutes
With display overflow (>99 hours) only the full hours are displayed. The minute display is omitted: " 188 "

13.9.3 "Text 1"

At operating level, the selected unit is displayed in Text1. At extended operating level, the following displays relevant for the programmer can be selected $(\boldsymbol{\Delta} \boldsymbol{\nabla})$:

- program time THEt. (without pause times)
- program time TBr^{-r}. (incl. all pause times)
- rest time TRest.
- recipe number Filk-
- controller status St.et.e

13.9.4 "Text 2"

\square Continuous display
The continuous display in "Text 2 " is configurable (5.80]; Text. 2). With program controller, the elapsed net program time TNetto can be displayed as Bargraph 0...100\%. The dark part of the bargraph represents the rest time TRest, which is displayed right beside the bargraph. For TRest <100 hours the rest time is displayed in hours \cdot minutes. TRest. $>99 \mathrm{~h}$ is displayed in full hours.
\square Status indication
At extended operating level, KS94 text line "Text 2" is used as additional status display. "Text2" contains 16 characters, which are classified as follows.

13.10 Programmer operation

Programmer operation (run, stop, reset, preset) is in menu1 via digital inputs or via interface (monitoring program).

Fig.: 74 Programmer operation via front keys

A preset time (parameter setting: F'mone $=1$) can be entered in
hours + minutes (times <99.59) or only in hours (times >99.59).

13.11 Inputs and outputs, parameters, configuration

Analog inputs	Analog outputs
Process value (from controller)	Set-point Wp
Manual set-point (internal set-point W of controller)	Program time Tnet
Program selection via front panel/interface	Program time Tgross
	Rest time TRest
	Actual segment number Seg a (analog output) and Seg d (control output)
	Final value of actual segment

Control inputs	Control outputs
Run(start/stop (static)	end
Reset (flank)	e/i (ext./int.)
Failure (Fail)	reset
ext/int	stop/run
PrNr via digital inputs	
Preset via operation	Configuration
Parameter	Source of program selection (control inputs, front/interface)
Reset value Wp0	behrce of run/stop signal
segment parameters Wpi / Tpi	Behaviour after program end
Change mode Wmode "step / ramp" (valid for all segments; default: ramp)	
Function of A/M key FKey	Default display in "Text 2"
Bandwidth LC+	Bargraph TNetto = 0...100\%
Bandwidth LC-	
Preset mode Pmode "time / segment start" (for all outputs; default: preset to time)	
Preset value (system menu)	
Timer (parameter)	
Time (real-time clock; system menu)	

14 Timer

14.1 Definition

KS9x versions with built-in real-time clock (HW option B with RS422/485) can start automatically at a pre-set time. For this purpose, a time can be set (year, month, day, hour, minute): e.g. on 23/07/95 at 6.35 h

The timer comprises a switch-on time (start; $\mathrm{T}_{\mathrm{I}} \mathrm{x} \times$) and a switch-off time (stop; $\mathrm{TE}, \mathrm{X} \times$). Both switching times are adjusted absolutely (day ! month ! year ! hour ! minute). The switch-off time Tstop is generally adjustable, however, it is not evaluated with the programmer. The two trigger points can be used also for switching over w/W2, y/Y2 and for controller output switch-off (GOLIEE: [. 19 Iff). Timers are adjusted at parameter level. When entering a start time with an actual start time $<$ TStart 'Tim⿺ํ'‘ is displayed in Text1.

Timer function after mains recovery

The behaviour is dependent of whether the start time or start and stop time are already exceeded at the time of mains recovery:

- TStart $<$ actual time $>$ TStop

The timer output is activated immediately and the relevant action is triggered (program START)

- TStart $<$ TStop $<$ actual time

The programmer is started; the stop marker does not switch! Switch-over functions w/W2, and y/Y2 and controller output switch-off are activated during approx. 1s with these functions configured.

14.2 Entry of times and timers

Adjustment is sequentially via the front panel (time in the system menu, timer at parameter setting level) or via serial interface (saved in EEPROM). Adjustment can be started at any step so that year and month/day can be skipped. The entry sequence must be continued after starting. Cancelation is not possible.
The values are displayed in "display 2":

- 1st step: year 1971
- 2nd step:month •day 1.51
- 3rdstep:hour •minute anar

The time is capacitor-buffered (separate from the RAM buffer) for approx. 2 days! With memory loss, "El Ek " is displayed in Text 1 .

15 User-defined texts

15.1 Text1

 characters) can be entered via the engineering tool or via the serial interface and displayed in "Text 1 ".

15.2 Text2

Up to 12 free texts of 16 characters each (all displayable characters from 7-bit ASCII) can be entered with the engineering tool (or via the serial interface) and displayed alternately in "Text 2" and on the continuous display.

The display in "Text 2" can be activated from two sources (configurable; $\operatorname{can}, \mathrm{TExt} \mathbf{2}$):

- "internal status" (alarms, control outputs, recipes, bandwidth)
- Control inputs di1...di12

With several simultaneous statuses or control inputs, the relevant texts are displayed sequentially at intervals of 5 s :

User text 1 ! Bargraph! User text 2 ! Bargraph ! ... User text n! Bargraph! User text 1 ! ...
If the text display is triggered via control inputs di (5.8.5), the statuses of the control inputs will be read also if they are not used for controller/programmer function control!

Text	User texts (Text 2) can be activated by ...	
	... status	... digital inputs
1	LIM1	di1
2	LIM2	di2
3	LIM3	di3
4	LIM4	di4
5	Control output 1	di5
6	Control output 2	di6
7	Control output 3	di7
8	Control output 4	di8
9	Program 1	di9
10	Program 2	di10
11	Program 3	di11
12	Bandwidth LC+/-	di12

16 Configuration

16.1 General

The KS94 controller configuration for quick and easy function selection during subsequent operation is described in this section. During configuration, the required functions are selected from a large variety of available functions. The configuration determines the basic structure for solution of an application.

The configuration structure is designed so that determination of the required functions for a large number of applications is possible by adjustment of as few configuration words as possible. Moreover, the structure was designed flexible enough to permit additional configurations also for realization of special applications.

16.2 Basic structure

The first menu level permits selection of the main configuration group.
The user can be guided through all function configurations, or he can configure the specific functions required for his application directly.

For all 'complex' main groups, a two-level configuration concept which enables the user to select the 'correct' setting for his application by defining only one configuration word was determined. If necessary, special functions can be determined separately. For the 'normal user', however, the configuration words are preset to purposeful default values! For simplification, the hierarchic configuration dialogue is structured so that the user can and must adjust only the 'required' configuration words.

The user configuration dialogue is started via selector key \square and 'increment' / 'decrement' keys $\Delta \nabla$, like with the other KS $92 / 94$ operating levels:

- Press the selector key to select menu items / input values / input positions within a 'level' and to change over to the next higher level at the end of a 'level'.
- Press the 'increment' / 'decrement' keys for returning to a lower level and for modification of input values.

The configuration structure is shown on the two following pages (16 and 17). All possible configuration words are listed. Configuration words which are irrelevant for a function are not displayed during the dialogue!
Switch-over to a selection menu is possible from anywhere during configuration by pressing key $\square 3 \mathrm{~s}$.
Eriol: Return to configuration level
Mor:e․ \quad Activating the More function
Quit: Return to operating level
(configuration changes are not effective)
Exit: Return to operating level (configuration changes are effective and the controller
 is re-initialized).

Fig.: 76 Survey of configuration

00

16.3 Main groups

The following main configuration groups are available for KS9x controller configuration:

Eortr	Controller function	C. 180	...	5.139	\rightarrow page 99
Sourcosemer	Input allocation	[. 180	...	[.193	\rightarrow page 101
Infut.	Input function	5.350	...	[.487	\rightarrow page 103
Dutart.	Output function	[.5n4	...	$[.597$	\rightarrow page 107
Hlarm	Alarm function	[.598	...	[.55]	\rightarrow page 111
Turue	Self-tuning	5.780			\rightarrow page 112
DisF	User interface	[858			\rightarrow page 112
Hedx	Additional function	[.950	...	5.994	\rightarrow page 113

The main configuration groups are structured in a hierarchical order, whereby determination of a dialogue for prompting only the really relevant configurations is possible.

ENGINEERING TOOL 'ET/KS 94’

Engineering Tool ET/KS94 permits realization of all operations which are possible via the KS94 front panel on a PC, whereby controller configuration and parameter setting are facilitated considerably.

The engineering tool offers the following functions:
\square Creation and modification of the parameter set
\square Transmission of a parameter set to KS94
\square Read-out of a parameter set from a KS94
\square Long-term storage of various parameter sets on hard disk or floppy
\square Display of operating data

Connection of PC and KS94 controller is via an RS232/TTL adaptor cable, which must be ordered separately (ordering information \rightarrow see page 43 section 12). In conjunction with the ' $\mathrm{SIM} / \mathrm{KS} 94$ ' controller simulation, a graphic trend display of the real process data is available!

16.4 CONTR: Controller

This main group determines the controller structure and function, which is used as starting point for controller configuration for a particular application. The main controller configuration $[10 \mathrm{~L}$ leads to an
 before commissioning and corrected, if necessary. After determination of this word, no further settings are required for a large number of applications. Additional function adaptions are possible via configuration words L. 185 and the following configurations.

F 19 Main controller configuration 1:

CFunc (Control behaviour) $\rightarrow \mathrm{p}$	$\downarrow^{\text {a }}$ - CTEFE	\downarrow (Set-point function)
00: signaller 1 output 01: signaller 2 outputs 02: 2-pnt.controller 03: 3-pnt.controller (heating switching and cooling switching) 04: 3-pnt.controller (heating continuous and cooling switching) 05: 3-pnt.controller (heating switching and cooling continuous) 06: Δ / Y-off 07: 3-pnt.stepping 08: 3-pnt.stepping with Yp (INP6) 09: continuous with position controler 10: continuous 11: continuous split-range (only with Optin C; OUT1 and OUT3) 12: continuous with current feedback via Yp (INP6)	0: standard controller 1: ratio controller $(\rightarrow \overline{\mathrm{E}}, 1 \mathrm{G} \mathbf{F})$ 2: 3-element controller $\mathrm{X}_{\mathrm{eff}}=\mathrm{x} 1+\mathrm{a} \cdot(\mathrm{x} 2-\mathrm{x} 3)$ 3: mean value $\mathrm{x}_{\mathrm{eff}}=(1-\mathrm{b}) \cdot \mathrm{x} 1+\mathrm{b} \cdot \mathrm{x} 2$	0: set-point 1: set-point / cascade 2: programmer 3: set-point with ext. offset 4: set-point / cascade with internal offset 5: set-point / cascade with external offset 6: programmer with internal offset 7: programmer with external offset

Set-point functions:

(only with option C, Wext and not with 3-element controller)

0: Set-point tracking 1: Process value tracking	0: additive 1: factor	0: no selection 1: Max selection Weff 2: Min selection Weff

Ratio functions: (only with ratio controller)

Span start X0: (only with ratio controller)
Xmin:(min. process value limiting Xmin)
Numeric value: -999 ... 9999

โ. 109
 Span end X100: (only with ratio controller)

Xmax:(max. process value limiting Xmax)
Numeric value: -999 ... 9999 and Xmin Xmax

```
Mmax
            18,OB
    mig. limit. X
```

E, 19	Programmer configuration: (only with programmer configured)		FStrot. (Source for Run/Stop)
Pros MMMI Fros. carifis.			
F"Gel (Source for program selection)	(Behaviour with mains recovery)	\checkmark (Behaviour with program end)	
0 : program selection via operation 1: program selection via control input	0: continue program 1: stop program and switch over to Wint 2: continue program after automatic research	0 : continue with following program 1: following program and reset (start required)	0: start/stop and reset together ${ }^{1)}$. control with int/ext (without Option B) 1: start/stop and reset separate. (Option B)
	3: continue program after successful automatic research otherwise switch over to Wint 4: continue program at the time mark of mains recovery		

16.5 SOURCE: Input signal allocation

Input signal allocation is dependent of main controller configuration 'K. 1 g's this proposal must always be checked before commissioning and corrected, if necessary. Therefore, input signal allocation 'SOURCE' is no independent main item and considered as additional configuration of 'CONTR'.

F. 1 胃 Signal allocation analog signals:			
5×2 (Signal source for X 2 with ratio and three-element controller)	Sbext (Signal source for Wext with controller with external set-point)	$5 \mathrm{~d}$ (Signal source for W with controller with set-point offset	$\begin{gathered} 5 \text { z } \\ \text { (Signal source for } \\ \text { vauxiliary variable) } \\ \hline \end{gathered}$
0: X2 switched off 1: X2 of INP5 2: X2 of INP3	0 : Wext switched off 1: Wext of INP5 2: Wext of INP6 3: Wext of INP4	0 : dW switched off 1: dW of INP5 2: dW of INP6 3: dW of INP4	0: z switched off 1: z of INP3 2: z of INP6 3: z of INP4

Allocation of digital signals for set-point processing:

SWi\% (Set-point switch-over from internal to external) ${ }^{1)}$	STr:ac (Bumpless switch-over to int. setpoint with int./ext. switch-over)	Sodwon (Effective set-point offset)	$5 w / 2$ (Switch-over to set-point w2)
0 : only internal set-point 1: W/Wext via front 2: di1=external set-point 3: di2=external set-point 4: di1 $=$ internal set-point 5: di2 $=$ internal set-point	0 : no tracking ${ }^{2)}$ 1: tracking on 2: di2 = tracking on 3: $\operatorname{di12}=$ tracking on 4: di2 = tracking off 5: di12 $=$ tracking off	0 : no offset ${ }^{2)}$ 1: offset on 2: dil $=$ offset on 3: di2 $=$ offset on 4: dil1 $=$ offset on 5: dil = offset off 6: di2 $=$ offset off 7: dil1 = offset off	

1) With programmer configured, switch-over is between internal and program set-point.
2) Selectable via interfaces (e.g. engineering tool; operating data)

16.6 INPUT:

The signal inputs for the previously selected controller configuration are determined in this main group. The signal inputs required for the selected controller function are displayed in the menu for configuration. As during control function configuration, a large number of applications can also be covered by determining the main configuration. At the second level, special cases can be matched and adjusted by additional, optional configuration.Max. 5 signal inputs are provided on KS94. Analog inputs INP1, INP5 and INP6 are always provided; INP3 and INP4 are optional inputs.
All analog inputs (whether or not used for control) can be used for monitoring purposes
(e.g. alarm processing).

16.6.1 Signal input 1 / INP1 (main variable x1)

Configuration is for main variable x 1 . This signal input is a universal input for which extensive functions can be configured.

FII Main configuration:

\#E. 1 .
The main configuration word is used for determination of input sensor type and physical
INP1 unit. Additional input configurations can be determined using the additional configuration. main confly.

\downarrow	$\begin{aligned} & \text { T'EF:E } \\ & \text { (Sensor type) } \end{aligned}$	Urit. $\left(\text { Unit) }{ }^{1)}\right.$	DF (Number of decimals)
Thermocouple: 00: Type L $0 \ldots 900^{\circ} \mathrm{C}$ 01: Type J $0 \ldots 900^{\circ} \mathrm{C}$ 02: Type K $0 \ldots 1350{ }^{\circ} \mathrm{C}$ 03: Type N $0 \ldots 1300{ }^{\circ} \mathrm{C}$ 04: Type S $0 \ldots 1760^{\circ} \mathrm{C}$ 05: Type R $0 \ldots 1760{ }^{\circ} \mathrm{C}$ 06: Type T $0 \ldots 400^{\circ} \mathrm{C}$ 07: Type W $0 \ldots 2300^{\circ} \mathrm{C}$ 08: Type E $0 \ldots 900^{\circ} \mathrm{C}$ 09: Type B (0) ... 400 ... $1820^{\circ} \mathrm{C}$	Resistance thermometer: 20: Pt 100 -99.9 ... $850.0^{\circ} \mathrm{C}$ 21: Pt $100-99.9 \ldots 250.0^{\circ} \mathrm{C}$ 25: $2 \times$ Pt $100-99.9 \ldots 850.0^{\circ} \mathrm{C}$ 26: $2 \times$ Pt $100-99.9 \ldots 250.0^{\circ} \mathrm{C}$ Standard signals: 30: 0 ... 20 mA 31: 4 ... 20 mA 32: $0 \ldots 10 \mathrm{~V}$ 33: $2 \ldots 10 \mathrm{~V}$ Potentiometric transducer: 40: 0 ... 500 Ohm	$\begin{aligned} & \text { 0: at T' } \mathrm{HF} \cdot 30 \ldots 40 \\ & \text { 1: }{ }^{\circ} \mathrm{C} \\ & \text { 2: }{ }^{\circ} \mathrm{F} \end{aligned}$	0: no decimal point 1: 1 digit behind the decimal point 2: 2 digits behind the decimal point 3: 3 digits behind decimal point only with type: 20 ... 40

```
    5.2#! \0:
        (physical value at 0%)
        numeric value -999 ... }999
        select only with type=30 ... 40
Fhusic.ualue 6%
    5 5% x100:
    E.c#c
        (physical value at 100%)
        1##
        numeric value -999 ... 9999, X0 = X100!
    *189 IOB
    Fhusic.value 100%
    select only with type=30 ... 40
```

1) Unit settings for scaling of Typ $00 \ldots 26$. With Typ $30 \ldots 40$ the value is fixed to 0 . For this case the unit to be displayed will be configured by $\mathrm{L} \boldsymbol{\mathrm { Sa }} \mathrm{i}$.

Additional configuration:

Via the additional configuration, the default setting for the signal input can be changed or matched dependent of sensor type class.

Tkref
externel TC.

XFail:
(substitute value with sensor error)
numeric value: -999 ... 9999

Tfm:
(filter time constant for input value processing)
numeric value: 0.0 ... 999.9

Optional configuration 1:

The optional configuration can be used to determine the functions for two signal pre-processing levels.
Get. confi

0 : no function, signal is output directly
1: scaling (parameters: m,b)
2: linearization (segment points xs1,ys1 ...)
3: filter (parameter: Tf)
4: square root extraction with factor (parameter:gain)

0: no decimal point
LDF

1: 1 digit behind the decimal point
2: 2 digits behind the decimal point
3: 3 digits behind decimal point

1) The $\mathbf{F a i l}$ adjustment does not affect the controller behaviour. With sensor error, the controller behaviour is always as determined in L. if (Cfill). The signal behaviour with sensor error acts only on a configured alarm. With a process value, x 1 or INP 1 alarm configured, the signal goes e.g. to the upscale value (X100) with sensor error.

Linearization parameters:

The configuration parameters for linearization are stored as follows.

E.2e2	$\mathrm{x} \leq 1$	[.233	보1	value pair 1
E.234	$\mathrm{x}=2$	E.235	$\because \leq 2$	value pair 2
E.2e5	$\mathrm{x} \leq 5$	E.22	$\because E 3$	value pair 3
E.228	$\mathrm{x} \leq 4$	[.23]	! 54	value pair 4
E. 230	$\mathrm{x}=5$	E.23i	- 5	value pair 5
[.232	$\mathrm{x}=6$	[.233	956	value pair 6
E. 234	$\mathrm{xs}=7$	E. 235	- 8 \% 7	value pair 7
E. 235	x ¢ 8	E. 237		value p

Note that the input values (x-values) must be entered in ascending order. (xs $1<\mathrm{xs} 2<\mathrm{xs} 3 \ldots$...)

The range for these configuration words is within -999 and 9999 or '----' (switched off)!

For limiting the number of parameters, these functions can be used only once during pre-processing levels 1 or 2 ! Linearization segment points which are not required can be switched off by setting '----'.
16.6.2 Signal input 3 / INP3 (ratio variable $x 2$ or auxiliary variable z)

In this case, the signal is configured for ratio variable x 2 or auxiliary variable z , provided that option p.c.b. C is fitted in the controller and the function was selected during controller configuration.

The additional configuration can be used for changing or matching the signal input default setting for

The other configuration words for INP3 are explained in section（see following table）．

see	E．THi
＂	2．2日2
＂	［2］3
＂	E． 214
	E．23

without linearization（Func1／2：2）
16．6．3 Signal input 4 ／INP4（variable x3，ext．set－point Wext，override control ovc＋／－）
The signal for three－element variable x 3 or the galvanically isolated external set－point Wext or the override control signal ovc＋／－are configured with option p．c．b．C fitted in the controller and the function selected during controller configuration．
The configuration words for INP4 are explained in section and（see following table）．
Main configuration
X0
X100
Additional configuration
XFail
Tfm
O

see	2．378
＂	E．2］！
＂	E．3n2
＂	2．305
＂	［．2 13
＂	［．2 14
＂	［．23日
＂	［．2］！
＂	H．LE

16．6．4 Signal input 5 ／INP5（ratio variable x2，ext．set－point Wext）

The signal for ratio variable x 2 or external set－point Wext is configured with option p．c．b．not fitted in the controller and the function selected during controller configuration．The configuration words for INP5 are explained in section and（see following table）．

Main configuration ．4T日	see［．3日t	additional 0／2．．．10V（type：32／33）
X0 E．47	［．2］！	
X100［482	，E．2日2	
Additional configuration 2.485	，［．305	
XFail［． 43	［．21］	
Tfm 2.414	，E214	
Optional configuration 1 E．42	E．23日	without linearization（Func 1／2：2）

16．6．5 Signal input 6 ／INP6（auxiliary variable Yp，feedback Yp）

The signal for the auxiliary variable Yp or for the position feedbackk is configured，if this was selected during controller configuration．
The configuration words for INP6 are explained in section and（see following table）．

16.7 OUTPT:

16.7.1 Signal output 1 / OUT1

Used for configuring the source of output OUT1. This signal output is a universal output which can be configured for extensive functions.

5.5日B Main configuration:		
Sro (Signal source)	T'ョF• (Output stage)	Modind (Motor actuator output action)
00: output switched of 01: controller output Y1/Yout1 02: controller output Y2/Yout2 03: output Ypid 04: position feedback Yp 05: controlling deviation Xw 10: process value Xeff 11: X1 12: X2 13: X3 20: set-point W 21: external set-point Wext 22: external offset dWe 23: set-point Weff 24: programmer set-point Wprg 25: alarm 1 (limit1) 26: alarm 2 (limit2) 27: alarm3 (limit3) 28: alarm 1 (limit4)	$\begin{aligned} & \text { 0: relay (switching) } \\ & \text { 1: } 0 \ldots 20 \mathrm{~mA} \text { (continuous output) } \\ & \text { 2: } 4 \ldots 20 \mathrm{~mA} \text { (continuous output) } \\ & 3: 0 / 20 \mathrm{~mA} \text { (logic) } \end{aligned}$	```0: not selectable direct / normally open inverse / normally closed```

Additional configuration Out1:
Via the options configuration, the functionality for a signal post-processing stage can be determined. This configuration word is displayed only with the option enabled.
add. confis

Func (Function selection for signal output processing)	DF (decimal point for $\mathrm{xsi}, \mathrm{x} 0, \mathrm{x} 100$)
0 : no function, signal is output without change ($0 \% \ldots . .100 \%$) 1: scaling (reference values C. 510 and C. 511 are effective)	0: no decimal point 1: 1 digit behind decimal point 2: 2 digits behind decimal point 3:3 digits behind decimal point

16.7.2 Signal output $2 /$ OUT2

Used for configuring the source of output OUT2. This signal output is a universal output and can be configured for extensive functions.

16.7.3 Signal output 3 / OUT3

Used for configuring the source of output OUT3. This signal output is a universal output and can be configured for extensive functions.

OUT3 15 Main configuration:			
		T'ヨF• (Output stage)	Mode (Motor actuator output action)
00: none (output switched off) 01: controller output Y1/Yout1 02: controller output Y2/Yout2 03: controller output Ypid 04: position feedback Yp 05: control deviation xw 10: process value xeff 11: process value x 1	12: process value x 2 13: process value x 3 20: set-point Wint 21: ext. set-point Wext 22: ext. Offset dWe 23: set-point Weff 24: programmer Wprg	```0: switched off 1: \(0 \ldots 20 \mathrm{~mA}\) (continuous output) 2: \(4 \ldots 20 \mathrm{~mA}\) (continuous output) 3: \(0 / 20 \mathrm{~mA}\) (logic)```	0: not selectable direct / normally open 2: inverse / normally closed

x0:
(physical value at 0\%)
numeric value -999 ... 9999

Note that the input values (x-values) must be entered in ascending order. (xs1<xs2<xs3...)

The configuration parameters for linearization are stored as follows.

5.572	$x=1$	5.573	-	value par 1
5.574	$x=2$	5.575	- 52	value pair 2
5.575	$x \leq 3$	5.577	-	alue pair 3
5.578	$x \leq 4$	5.578	- 54	value pair 4
[.580	$x=5$	2.5日 1	- 5	value pair 5
[.582	$x=6$	[.58]	-E6	value pair 6
[.584	$x=7$	2.585	-	value pair 7
5.585	$x=8$	5.587	Hes	value pair 8

The range for these configuration words is within -999 and 9999 or '——_' (switched off)!

16.7.4 Signal output 4 / OUT4

Used for configuring the source of output OUT4. This signal output can be configured for extensive functions.

16.7.5 ignal output 5 / OUT5

Used for configuring the source of output OUT1.. This signal output can be configured for extensive functions.

Configuration

16.7.6 DO5,6 (digital control outputs)

Additional digital control outputs are configured!

16.8 ALARM:

16.8.1 Alarm 1 / (limit 1)

The function for alarm 1 is configured.

*Limit comparator (refered to set-point), all other versions are fitted with limit contact.

16.8.2 Alarm 2 (limit 2)

The function for alarm 2 is configured.

16.8.3 Alarm 3 (limit 3)

The function for alarm 3 is configured.
Main configuration [54 see [5\#\#
Selection is possible with OUT1 configured as alarm output.

16.8.4 Alarm 4 (limit 4)

The function for alarm 4 is configured.

Selection is possible only with OUT2 configured as alarm output

16.9 TUNE: self-tuning

The type of controller self-tuning and the type of controlled self-tuning can be adjusted!

16.10 DISP: User interface for operation

Configuration of display function signification via front panel

16.11 AUX: Additional functions

The interface function and operating frequency for suppression of interference on inputs are configured.

16.11.1 COM (serial interface)

16.11.2 Hardware

The hardware-related functions are configured.

16.11.3 Forcing signal input

16.11.4 Forcing digital input

Fdi1 M.MMR
Forcins intuls

Fdi 1 (Forcing digital input 1)	Fdi2 (Forcing digital input 2)	Fdi4
0: Controller value 1: Forcing	0: Controller value 1: Forcing	0: Controller value 1: Forcing

1) PROFIBUS: automatic baud rate detection

16.11.5 Forcing signal output

16.11.6 Forcing digital output

16.11.7 Hard-/Software Codenumber

The following configuration dates are not changeable. They show the hardware version ($[.99$ (u. $[.992)$ and the software version $(5.993$ u. $[.994$) of the instrument. Example: 940792331201

Example: 401215725320

16．12 Examples of configuration

Continuous controller
1 xw －alarm， 2 process value alarms

2－pnt．controller＋
2 process value alarms

Configuration，different from default

［． 100	$\begin{aligned} \text { EFAns } & =10 \text { (continuous) } \\ \text { CTAF } & =0 \text { (standard controller) } \\ \text { WFAns } & =0,1,4 \text { or } 5 \end{aligned}$
L． 200	T ＇IF $=$ sensor type
L．500	Sree $=01$（controller output yl）
［．530	$5 \times-=28($ alarm 4）

$[.590$

Sro＝ 25 （alarm 1）
6.59 Srose 26 （alarm 2）
$500 \mathrm{Erc}=02(\mathrm{xw}$－alarm $)$
［550 Src＝ 03 （process value x 1 ）
$[.540 \quad 5 \mathrm{G}=03$（process value x 1 ）
Sros＝ 28 （alarm 4）

Grce 26 （alarm 2）
Sr゙ロ＝ 03 （process value x1）
$\Xi ヶ-03$（process value x 1 ）
［． 100
CF Lance $=03$（3－pnt．stepping）
WFLnce $=0,1,4$ or 5
T＇IF＝sensor type
5.530
［．590
Cre $=01$（controller output y1）
Sre＝ 02 （controller output y2）
$5.59: \quad$ Grce 26 （alarm 2）
［520 Sre＝ 03 （process value x1）

3－pnt．stepping controller +
process value alarm

Ratio controller（continuous）
1 xw－alarm， 2 process value alarms

［． 100	CFunc $=10$（continuous）	5.530	Sre $=28$（xw－alarm）
	CT TEF $=1$（ratio controller）	［590	Srose 25 （alarm 1）
	WFAnce $=0,1,4$ or 5	5.591	Srose 26 （alarm 2）
［． 180	$5 \times 2=1$（INP5）	5.500	$5 \mathrm{Frc}=02$（xw－alarm）
5.200	T＇IF $=$ sensor type	［．550	$\zeta r=01$（xeff）
5.500	Sroce $01($ controller output yl）	［．540	Sros $=03$（process value x1）

C． 10 B CFLATE $=10$（continuous）
CTTAF $=1$（standard controller）
WFunce $=3$（programmer）
$530 \quad$ Sr\％＝ 28 （alarm 4）
［．59：Sro＝ 33 （program end）
［．500 Sro＝ 02 （xw－alarm）

Programmer（continuous）
1 xw －alarm

9407－9x4－x1xxx		
INP1	$\triangle_{y 1}>8$	OUT1
INP5	y^{2}	OUT2
INP6	$\rightarrow \square$	OUT4
INP3	\rightarrow－	OUT5
INP4	$\rightarrow 8$	оит3

$\left[\begin{array}{l}2.100 \\ 5.300 \\ 2.500 \\ 2.550\end{array}\right.$

$\begin{aligned} & \mathrm{CF} \\ & \mathrm{ET} \mathrm{~T}=11 \text { (sontinuous split-range) } \\ & \text { (standard controller) } \end{aligned}$	5.590 $[.591$
WFLince $=0,1,4$ or 5	5.600
T＇sF $=$ sensor type	5.560
Sros＝01（controller output y1）	
$5 \times-02($ controller output y2）	

Srose 25 （alarm 1）
Srce $=26$（alarm 2）
Srce $=02$（xw－alarm）
$\Xi r-03$（process value x 1 ）

Continuous contr．‘split－range’ 1 xw －alarm， 1 process value alarm

17 Parameters

17.1 General

This section gives a survey of the KS92/94 parameter data and general hints for parameter handling. The parameter operation and effect on the controller operation are described with the operating principle.
The parameter setting dialogue is realized via selector key \square and 'increment' / 'decrement' keys $\Delta \boldsymbol{\nabla}$, like at the other operating levels:
\square Press the selector key to select menu items / input values within one level and to change to the next higher level.

\squarePress the 'increment' / 'decrement' keys to return to a lower level or to change input values.

The controller parameter structure is given on the following page. All parameters are listed. Parameters which are not relevant for a function (configuration-dependent) are not displayed!
A selection menu can be displayed anywhere at parameter level by pressing key $\square>3 \mathrm{~s}$.
Erio: return to parameter level
M...k: mark the selected parameter for display at 'extended' configuration level.
Exit:
EDif: return to operating level. transition to configuration level.

17.1.1 Allocation of parameters to the 'extended operating level'

Up to 12 parameters can be allocated to the 'extended operating level' (see Fig.: 77), whereby the controller operation is simplified, since changing over to parameter level whenever one of these parameters must be changed is omitted.

Allocation: select required parameter, press 'selection' key \square during >3s ($\mathrm{F}^{\prime} \cdot \boldsymbol{\text { gr }} \cdot \mathrm{B}$ blinks)
Select Mark with 'up' key Δ and acknowledge with 'selection' key (see Fig.:).
Delete: select the required parameter at the extended operating level, press 'selection' key during $>3 \mathrm{~s}$

Fig.: 77 Marking a parameter
 (F':ヨr`ヨ blinks) and acknowledge with 'up' key $\boldsymbol{\Delta}$.
Selectle.jr' and acknowledge with 'selection' key \square (see Fig.:).

Hold: The Hold function can be used for selecting a parameter from the extended operating level for being visible continuously. For this, select the required parameter at the extended operating level, press 'selection' key Ω during >3s (F 'ar`.छ blinks) select Hold with 'up'

Fig.: 78 Deleting a parameter
 key Δ and confirm with 'selection' key \square (see Fig.:).

Applications:

During optimization, frequent access to defined parameters ($\mathrm{Xp} 1, \mathrm{Xp} 2, \mathrm{Tn}$ and Tv) is required.
\square During commissioning, limit value (LimH1, LimH2, ...) or measurement value corrections must be changed frequently.
\square With the parameter level disabled, access to the selected parameters is possible for the operator. Deleting a parameter from the 'extended operating level' must be done at this level (see Fig.4: 78)

Fig.: 79 Survey of parameters KS92/94

17．2 Set－point function

Text 1	Description	Range	Default
ここちFt．	Set－point parameter		
LE゙＋	Band width upper limit	0．．． 9999	＇－＿－＇（switched off）
LE゙ー	Band width lower limit	0．．． 9999	＇－＿－＇（switched off）
W6	lower set－point limit for Weff	－999 ．．． 9999	0
W1 G｜	upper set－point limit for Weff	－999 ．．． 9999	100
W2	additional set－point	－999 ．．． 9999	100
Gr－${ }^{\text {ar }}$	set－point gradient plus with W［w／min］	0．01 ．．． 99.99	＇－＿，（switched off）
Gr－${ }^{\text {ar }}$	set－point gradient minus with W［w／min］	0．01 ．．． 99.99	＇－＿＇（switched off）
Br－w2	set－point gradient with W2［w／min］	0．01 ．．． 99.99	＇－＿，（switched off）

17．3 Time function

Text 1	Description	Range
T1 1 「ご＊	Timer－parameters	
TS．Y	Start value：Year	0．．． 255
TS．MD	Start value：Month and day	Month：1．．．12；Day：1．．． 31
TS．Hr	Start value：Hour and minutes	Hour：0．．．23；Minutes：0．．． 59
TE．Y	Final value：Year	0．．． 255
TE． H ［	Final value：Month and day	Month：1．．．12；Day：1．．． 31
TE．H｜＇l	Final value：Hour and minutes	Hour：0．．．23；Minutes：0．．． 59

17．4 Programmer functions

REGF1 Programmer recipe 1

Analog				Digital			
Text 1	Description	Range	Def．	Text 1	Description	Range	Def．
	Change mode	0：Ramp1：Step2：Ramp（Time priority	0	［0］	Reset value control output 1．．4	0000．．1111	0000
				T日1	Time segment 1	0．．．9999［min］	\checkmark
				［1	control output $1 . .4$ for segm． 1	0000．．1111	0000
Proño	Preset mode	0：Segment start	1	Taj	Time segment $\overline{20}$	0．．．9999［min］	－
		1：Program time		［20］	control output 1．．4 for segm． 20	0000．． 1111	0000
FrıEくt．	Successive program	1.3 or＇－	\checkmark ，				
LE：－	Band width lower limit	0．．． 9999	\bigcirc				
LE：＋	Band width upper limit	0．．．9999	6 ，				
WFer	Reset value W0	－999．．． 9999	0				
TF＇1	Time segment 1	0．．． 9999 ［min］	\checkmark				
WFP1	Set－point segment 1	－999．．． 9999	0				
－－－							
TF＇20	Time segment 20	0．．． 9999 ［min］	\checkmark				
WF＇20	Set－point segment 20	－999．．． 9999	0				

REGFZ see programmer recipe 1
REGFS see programmer recipe 1

Parameters

17．5 Alarm function

Text 1	Description	Range	Default
LIfi	Alarm 1		
LimL1	Low limit	－999 ．．． 9999	＇＿＿＿＇（switched off）
LimH1	High limit	－999 ．．． 9999	＇＿＿＿＇（switched off）
LxSol	Switching difference	－999 ．．． 9999	0
LIF2	Alarm 2		
LimL2	Low limit	－999 ．．． 9999	＇＿＿＿＇（switched off）
LimH2	High limit	－999 ．．． 9999	＇＿＿＿＇（switched off）
LxSd2	Switching difference	－999 ．．． 9999	0
LIf3	Alarm 3		
LimLS	Low limit	－999 ．．． 9999	＇＿＿＇（switched off）
LimHS	High limit	－999 ．．． 9999	＇＿＿＿＇（switched off）
LxSods	Switching difference	－999 ．．． 9999	0
LIff	Alarm 4		
LimL4	Low limit	－999 ．．． 9999	＇－＿＇（switched off）
LimH4	High limit	－999 ．．． 9999	＇－＿＇（switched off）
LxSd4	Switching difference	－999 ．．． 9999	0

17．6 Self－tuning

Text 1	Description	R／W Range		Def．
Tいドリ	Optimization			
YOFtm	Correcting variable whilst process at rest	R／W	－105 ．．． 105	0
dropt	Step width during identification	R／W	5 ．．． 100	100
FOFt．	Parameter set to be optimized	R／W	0 ．．． 3	1
Trim	trigger point 1 （set $1 \leftrightarrow$ set 2）	R／W	－999 ．．． 9999 （Decimal point as configured in［．700；ODF）	
Tri $\boldsymbol{\text { P }}$	trigger point 2 （set $2 \leftrightarrow$ set 3 ）	R／W	－999 ．．． 9999 （Decimal point as configured in［．701；ODF）	
Trig ${ }^{\text {a }}$	trigger point 3 （set $3 \leftrightarrow$ set 4）	R／W	－999 ．．． 9999 （Decimal point as configured in［．700；ODF）	
Dres 1	Self－tuning result during heating	R	```0: Cancellation (during optimization preparation) Cancellation (wrong output action) Finished (successful optimization; reversal point found) Cancellation (process does not react or is too slow) Cancellation (reversal point found; estimation unsafe) Cancellation (reversal point not found; estimation unsafe) Finished (optimization cancelled due to exceeded set- point risk; reversal point not reached so far; estimation unsafe) 7: Cancellation (correcting variable too low \(\Delta \mathrm{Y}<5 \%\)) 8: Cancellation (set-point reserve too low)```	
OREこ2	Self－tuning result during cooling	R	$0 \ldots 8$（see ORes 1 ）	
T－1	Delay time heating	R	000，0 ．．．999，9 s	
Umax	V max heating	R	000，0 ．．．999，9／s	
KF1	Process amplification heating	R	000，0 ．．．999，9	
T－2	Delay time cooling	R	000，0 ．．．999，9 s	
$U_{m} \cdot \times 2$	Vmax cooling	R	000，0 ．．．999，9／s	
KF2	Process amplification cooling	R	000，0 ．．．999，9	

17．7 Control algorithm

Text 1	Description	Range	Default
CP＇ヨr＇ヨ	Controller parameters		
TF－	Min．pulse length	$0.1 \ldots 999.9 \mathrm{~s}$	0.3
Triol	Actuator response time	$10 \ldots 9999 \mathrm{~s}$	30
Y 2	Additional correcting value	－105 ．．． 105%	0
Y「iriol	Min．correcting variable limiting	－105 ．．． 105%	0
Y「0． X	Max．correcting variable limiting	－105 ．．． 105%	100
Y星	Correcting variable working point	－105 ．．． 105%	0
F＇Er－${ }^{\text {Pr }}$	Actual parameter set	0 ．．． 3	
XS酎	Switching difference of additional contact	0．1 ．． 999.9	1
L\0	Trigger point separation of additional contact	－999 ．．． 9999	0
X	Switching difference of signaller	0．1 ．． 999.9	1
XSF2	Neutral zone（Xw >0 ）	0.0 ．．． 999.9 \％	0
人家1	Neutral zone（ $\mathrm{Xw}<0$ ）	0.0 ．．． 999.9 \％	0
X三卜	Neutral zone	0.2 ．．． 999.9 \％	0.2
ら巨t．	Parameter set 0		
XF1－	Proportional band 1	0.1 ．．． 999.9 \％	100
KF\％－	Proportional band 2	0．1 ．．． 999.9 \％	100
Tri 或	Integral action time	$0 \ldots 9999 \mathrm{~s}$	10
Tu1 6	Derivative action time	$0 \ldots 9999$ s	10
T1 或	Duty cycle 1	$0.4 \ldots 999.9 \mathrm{~s}$	5
T2 6	Duty cycle 2	0.4 ．．． 999.9 s	5
Sこt1	Parameter set 1		
XF1 1	Proportional band 1	0.1 ．．． 999.9 \％	100
XF2 1	Proportional band 2	0.1 ．．． 999.9 \％	100
Tril 1	Integral action time	$0 \ldots 9999 \mathrm{~s}$	10
Tw1 1	Derivative action time	$0 \ldots 9999 \mathrm{~s}$	10
T1 1	Duty cycle 1	$0.4 \ldots 999.9 \mathrm{~s}$	5
Tこ 1	Duty cycle 2	$0.4 \ldots 999.9$ s	5
らこちこ	Parameter set 2		
KF1 2	Proportional band 1	0.1 ．．． 999.9 \％	100
KF 22	Proportional band 2	0．1 ．．．999．9 \％	100
Tri 2	Integral action time	$0 \ldots 9999$ s	10
Tw1 2	Derivative action time	$0 \ldots 9999 \mathrm{~s}$	10
T1 2	Duty cycle 1	$0.4 \ldots 999.9 \mathrm{~s}$	5
T2 2	Duty cycle 2	$0.4 \ldots 999.9 \mathrm{~s}$	5
らほtら	Parameter set 3		
KF1 ${ }^{\text {S }}$	Proportional band 1	0.1 ．．． 999.9 \％	100
KF2 3	Proportional band 2	0.1 ．．． 999.9 \％	100
Tri $\square^{\text {W }}$	Integral action time	$0 \ldots 9999 \mathrm{~s}$	10
Tu1 3	Derivative action time	$0 \ldots 9999 \mathrm{~s}$	10
T1 $\mathrm{S}^{\text {T }}$	Duty cycle 1	$0.4 \ldots 999.9 \mathrm{~s}$	5
T2 3	Duty cycle 2	$0.4 \ldots 999.9$ s	5
『だロソ	Rapid Recovery（controller on）		
X6In＇\％		0 ．．． 9999 ＊	＇－＿，
		0 ．．． 9999 ＊	＇－＿，
Cr－60ヶワ	set－point gradient with X tracking active	0，01 ．．．99，99／min	＇－＿，

＊Decimal point position of adjustment range as for main variable X1．

17．8 Input processing

17．8．1 Process value handling

Text 1	Description	Range	Default
Istu			
Tidz	Differentiation time constant for z	0 ．．． 9999 s	10
＋16	Zero offset／ratio	－999 ．．． 9999	0
\square	Factor a／3－element control	－999 ．．． 9999	1
\square	Factor b／mean value control	－999 ．．． 9999	0.5

17．8．2 Signal pre－processing

Text 1	Description	Range	Default
IFP＇1	Signal processing for INP1		
X1in	Measurement value correction	－999．．． 9999	0
X1out．	Measurement value correction	－999．．． 9999	0
X2in	Meaurement value correction	－999．．． 9999	100
\％20ut．	Measurement value correction	－999．．． 9999	100
M	Scaling：gradient m	0 ．．． 9.999	1
\square	Scaling：offset b	－999 ．．． 9999	0
－ヨiヶ	Square root extraction：gain	0 ．．． 9.999	1
Tf	Filter：filter time constant	0 ．．． 999.9 s	0.5
IFPr 3	Signal pre－processing for INP3		
m3	Scaling：gradient m	0 ．．． 9.999	1
E．S	Scaling：offset b	－999 ．．． 9999	0
ヨヨinす	Square root extraction：gain	0 ．．． 9.999	1
Tf： 3	Filter：filter time constant	0 ．．． 999.9 s	1
IFP＇4	Signal processing for INP4		
04	Scaling：gradient m	0 ．．． 9.999	1
$\square 4$	Scaling：offset b	－999 ．．． 9999	0
93in4	Square root extraction：gain	0 ．．． 9.999	1
Tf4	Filter：filter time constant	0 ．．． 999.9 s	0.5
ITNF＇5	Signal processing for INP5		
45	Scaling：gradient m	0 ．．． 9.999	1
6．5	Scaling：offset b	－999 ．．． 9999	0
9日in5	Square root extraction：gain	0 ．．． 9.999	1
Tf：	Filter：filter time constant	0 ．．． 999.9 s	0.5
INF＇G	Signal processing for INP6		
M6	Scaling：gradient m	0 ．．． 9.999	1
E6	Scaling：offset b	－999 ．．． 9999	0
ヨヨinG	Square root extraction：gain	0 ．．． 9.999	1
Tf6	Filter：filter time constant	0 ．．． 999.9 s	0.5

17．9 Miscellaneous

Text 1	Description		Range				Def．
Н＇心．	General						
FEごヨ	Function of front panel key 圆．		1：automatic／manual 2：Wext／Wint				1
Blck 1	EBlow	extended operating level	0：free	1：blocked	2：blocked by di1	3：blocked by di2	0
	HElou	auto／man－key	0 ：free	1：blocked	2：blocked by di1	3：blocked by di2	0
	CElou	controller off	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0
	WE100	setpoint	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0
Bl心k2	FElou	programmer preset	0 ：free	1：blocked	2：blocked by di1	3：blocked by di2	0
	FElou	programmer run／stop／reset	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0
	OEloc	selftuning	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0

17．10 Signals

Signl	Description	Range	Def．
Set．Ft．	Setpoint signals		
Wint．	Internal set－point		
Wext	External set－point		
dwext．	External correction		
du	Set－point offset	－99，9 ．．．999，9	0
Wことく1	Min／max set－point		
Coritre	Controller signals		
Y	Correcting value		
YF	Position feedback		
Xb	Control deviation		
$\times 1$	Main input x1		
$\times 2$	Auxillary input x2		
$\times 3$	Auxillary input x 3		
\pm	Auxillary variable		
OW0：	External correcting variable limiting		
Xeff	Effectiv process value		
InFut．	Input signals		
I $\|\cdot\| F 1$	Input 1		
INF＇1r	Raw measure 1		
INF＇G	Input 6		
INF＇Gr	Raw measure 6		
Prove	Programmer signals		
WF	Programmer setpoint		
t－Er｀t．	gross time（inc．all pause times）		
tMet	net time（without pause times）		
trest．	Rest time		
Pror	Programmer no．	1 ．．． 3	1
Clock	Current time		

18 Versions

18.1 Industrial controller KS92

18.2 Industrial controller

18.3 Input and output allocation with pre-configured units

The signal (e.g. X1, Y1, alarms) allocation to the inputs and outputs for the relevant pre-configuration (factory setting) is given in the following table. Allocation can be altered at any time via front panel or interface and should be corrected before commissioning, if necessary.

Order numbers and pre-configured instrument functions							

Inputs

INP1	X1				
INP3	-			-	X2
INP4	-				X3
INP5	X2; Wext; Wd			X2; Wext; Wd	-
INP6	Auxiliary variable ' Z '				-
di1	W/Wext				
di2	Auto/Man				
di3	Local / Remote				
di4	Programmer start /stop				
di5	Programmer reset				
di6	Program selection / Select prg. 1				
di7	Program selection / Select prg. 2				
di8	Select parameter set 1				
di9	Select parameter set 2				
di10	OVC+ (3-pnt stepping)				
di11	OVC- (3-pnt stepping) w/dW				
di12	Tracking				

Outputs

OUT1	Y1			-		Y1	
OUT2	-	-	Y2	Y1	-	Y2	-
OUT3	Xeff						
OUT4	Alarm1			Y2	Alarm1		
OUT5	Alarm2						
do1	Programmer output 1						
do2	Programmer output 2						
do3	Programmer output 3						
do4	Programmer output 4						
do5	Auto/Man						
do6	W/Wext						

19 Terminology explanation

Anti-Reset-Wind-Up

A measure which prevents the controller integrator from going into saturation

Working pointY0

See section from page
The working point of a P or PD controller indicates the correcting variable output to the process with process value $=$ set-point. Although this value is only important for P and PD controllers, it may be of interest also with controllers with integrator (automatic working point).

Automatic operation

See section from page
Normal controller operation. The controller uses the adjusted control parameters for process control. Automatic operation is effective after switching to automatic operation (di1/di2) via a digital input AND selecting automatic operation via front-panel key 원. Contrary: manual operation

Bandwidth control

See section from page
With program control or gradient control, there may be quite important control deviations due to the process inertia. To prevent these deviations, the control deviation is monitored, in order not to exceed a preset tolerance band. As soon as the control deviation is out of the tolerance band, the set-point change is stopped.

Three-element control

See section from page
Particularly suitable for processes in which load changes would be detected too late (e.g. level control for steam boilers). In this case, a disturbance variable is used at which the mass balance (steam removal, feed water) is evaluated, subtracted and added to the control variable (after differentiation, if necessary).

Feed-forward control

See section from page
Particularly suitable for processes with long delay time, e.g. pH control. An auxiliary variable is used at which the evaluated, differentiated or delayed value of an analog input is added directly to the controller output to avoid the controller time behaviour.

Gradient control

See section from page
Particularly suitable for processes which do not tolerate energy shocks or quick set-point changes. Set-point changes are bumpless in both directions, because the effective set-point always runs towards the changed set-point (target set-point) by means of gradient Grw+ or Grw-. For the second set-point w2, gradient Grw2 is effective in both directions, also after switch-over $\mathrm{w} \rightarrow \mathrm{w} 2$.

Manual operation

When switching over to manual operation, the automatic control loop operation is interrupted. Transition between automatic \rightarrow manual and vice versa are bumpless. Manual operation is effective after switching over to manual via a digital input (di1/di2) OR after selecting manual operation via front-panel key Contrary: automatic.

Cascade control

Particularly suitable for temperature control of e.g. steam boilers. A continuous master controller (load controller) provides its output signal as an external set-point to the cascade controller, which alters the correcting variable.

Override control (OVC)

See section from page
Limitation of the smallest (OVC-) or of the highest (OVC+) correcting variable to the value of an analog input. This limitation control can be used e.g. if control shall be continued by another controller after reaching defined process conditions. Transition from unlimited r limited correcting variable and vice versa are bumpless.

Program control

See section from page
The effective set-point follows the programmer profile. For this, the controller must have been switched to Wext.

Process at rest

See section from page
For a clear self-tuning attempt, the control variable must be at rest. Various rest conditions can be selected:

Ramp function

See section from page
Set-point changes are in ramps instead of stepwise. See gradient control.

Rapid Recovery

See section 9.2 from page 59
The controller knows its working point, it can start with the right correcting variable for this working point, i.e. it will return to its working point much earlier.

Control parameters

See section from page
For optimum function, the controller must be matched to the process dynamics. The effective parameters are $\mathbf{M P 1}, \mathbf{T M}, \mathbf{T} \boldsymbol{W}$ and $\mathbf{T} \mathbf{O}$. Dependent of controller operating principle, the following parameters can be
 Tpuls and Tm (with 3-point stepping controllers).

Control behaviour

See section from page
In general, quick line-out to the set-point without overshoot is an advantage. Dependent of process, various control behaviour types are required:
\square Easily controllable processes ($\mathrm{k}<10 \%$) can be controlled using PD controllers,
\square processes with (k 10...22\%) can be controlled with PID controllers
\square and difficult processes ($\mathrm{k}>22 \%$) can be controlled with PI controllers.

Controller OFF

With the controller switched off, the switching outputs do not deliver any pulses and the continuous outputs are 0%.

Self-tuning

See section from page
For optimum operation, the controller must be matched to the process requirements. The time required for this can be reduced considerably, whereby the controller uses the process characteristics to determine the control parameters for quick line-out the set-point without overshoot.

Soft manual

Normal manual operation: during transition from automatic r manual, the last correcting variable remains active and can be adjusted via keys Δ / ∇. The transitions from automatic \rightarrow manual and vice versa are bumpless.

Set-point switch-over

See section from page
In general, the following set-points are possible: internal $\mathrm{w}_{\text {int }}$, second internal set-point w_{2} and external set-point wext. With program control, external set-point wext must be selected. The analog set-point is provided by the programmer.

Correcting variable

See section from page
Particularly suitable for processes where load changes cause process value drops. The set-point (preferential) or process value change is load-dependent. The evaluated and filtered correcting variable is added to the set-point.

PI/P switch-over

During optimization of slow processes, e.g. larges furnaces, the controller I action can cause problems: after start-up optimization, line-out may take a long time. With disturbance behaviour optimization, there may be considerable overshoot. This can be prevented by switching off the I action during start-up or in case of high control deviations (e.g. by means of a limit contact which is effective for the control deviation) and by switching it on again only after the set-point was nearly reached. To prevent a permanent control deviation, the difference between limit contact and set-point must be higher than the permanent control deviation.

Tracking

See section from page
Switching over from external or program set-point to internal set-point can cause set-point or correcting variable step changes. By using the tracking functions, transition is bumpless.
Process value tracking: after switch-over, the effective process value is stored as internal set-point.
Set-point tracking: after switching over, the external or program set-point used so far is stored as internal set-point.

Ratio control

See section from page
Particularly suitable for control of mixtures, e.g. fuel-air mixture for ideal or stoichiometric combustion. For taking e.g. the atomizer air into account, zero offset $\mathbf{N} \mathbf{Q}$ can be added.

$X / x w$ differentiation

Dynamic changes of process value or set-point affect control in various ways.
X differentiation : for better control, process value (disturbance) changes are used dynamically to improve control, i.e. the controller disturbance behaviour is used.
Xw differentiation: Process value (disturbances) and set-point changes are used dynamically to improve the control result, i.e. in this case, the improvement is dependent of both disturbance and control behaviour.

20 Index

A

Alarm processing 63
Auto/man switch-over 55
additional functions 113
B
Bandwidth monitoring 85
Bumpless switch-over
Auto/man 55
y-->Y2 55
C
Configuration
Outputs 107
Inputs 103
Inputsignal allocation 101
Controller 99
Structure 95
Continuous controller 71
Continuous controller with position control . 72
Control using a disturbance signal 57
D
Digital inputs 35
Digital outputs 38
Display 1. 19
Display $2 ~ 19$
E
Electrical connections 13
F
Front view 19
Function library
Filter (LAG1) 30
Linearization (CHAR) 29
Scaling (SCAL) 29
Square root (SQRT) 30

G

Galvanic isolation 25
Gradient function
Grw- 46
Grw+. 46
Grw2. 46
I
Input 0/2... 10 V 33
Input conditioning
Filter .
27
Input circuit monitor. 26
Linearization. 26
Measurement value correction 28
Scaling 26
Interface
Switch-over bus -->front panel 17
Switch-over front panel --> bus 17
L
Local 17
M
Mean value 52
MIN/MAX selection 48
Mounting 11

0

Operation 19
Menu 1.. 3 21
Parameter and configuration level 21
The operating level 20
Operation (local) 17
Output action 55
Override-control 54
OVC- 54
OVC+ 54
P
PC interface 17
Process characteristics 65
Process value tracking 48
programmer search mode 86
Programmer
Change mode ramp/step 83
control signals and status messages 84
Parameter entry 80
Preparation for operation 83
recipes 81
R
Rapid Recovery 59
Ratio controller 49
Remote 17
Remote/local 17
Resistance thermometer 32

 S
 Safe set-point W2. 45
Second set-point W2 45
Self-tuning
Messages 76
Process-at-rest monitoring 73
Set-point reserve 73
Sensor break. 56
Set-point tracking. 47
Signal input
INP1 31
INP3 34
INP4 34
INP5 34
INP6 35
Signal output
OUT1 36
OUT2 36
OUT3 37
OUT4 38
OUT5 38
Signallers 66
Standard signal 0/4.. 20 mA 33
Status indication 88
Stoichiometric combustion 49
T
Thermocouple 31
Three point stepping controller 70
Three-element control 52
Three-point controller 68
Time. 91
Tracking
Process value tracking 48
Set-point tracking 47
Triangle / star / off 69
Two-point controller 67
U
User-defined texts in "Text2" 93
W
W2 - second set-point 45
Y
Yp signal 57

[^0]: * Versions with integrated supply voltage (connection example look at page)

