

Analysis and Design of Reinforced Concrete Building Using Fiber Reinforced Concrete.

Presented by :

- **1- Feras Majed Morra**
- 2- Abdulaziz Al- Zamil
- 3- Abdulrahman Ghalep

Supervisor : Dr. Tauqir Ahmed.

<u>Contents :</u>

2

- Introduction
- Methodology
- Production of fibers
- Casting and testing of specimens
- Modeling in ETABS
- Cost comparison

Reinforcement concrete structures are common for many reasons such as: availability of materials, easy in construction, durability, and less thermal conductivity, etc.

Concrete containing cement, water, aggregate and fibers is called as fiber reinforced concrete.

3

Casting of Specimens

To check the performance of Curly Fibers, we prepare the specimen

With ordinary concrete

9

With ordinary concrete and admixtures

> With FRC (admixture is use to increase the workability)

name of	W/C	Type of Ag mix	Ceme nt (Kg)	Wate r (Kg)	Admixtur	Fiber	
mixing		Fine (Kg)	Coarse (Kg)			e (gram)	(grain)
Ordinary concrete	0.35	7.07	10.66	7.43	2.82	0	0
Concrete with air content	0.35	7.07	10.66	7.43	1.9	37.15	0
Concrete with Fiber and air	0.35	7.07	10.66	7.43	1.9	37.15	118
content							

10

Methodology

Production of fiber

Casting and testing of spacemen

Modeling in ETABS

Cost comparison

Casting of Specimens (Cont.)

Admixture Brand Name: Maseterglenium

Mixing of concrete

Washing of Aggregate

11

Methodology

Production of fiber

Casting and testing of spacemen

Modeling in ETABS

Cost comparison

Casting of Specimens (Cont.)

14

Methodology

Production of fiber

Casting and testing of spacemen

Modeling in ETABS

Cost comparison

Testing of Specimens (Cont.)

The test results are automatically recoded

□ Compressive strength is improved due to addition of admixtures

introduction Methodology Production of fiber Casting and spacemen

Modeling in ETABS

Cost comparison

Test on concrete specimen with admixture (Brittle failure)

17

Methodology

Production of fiber

Casting and testing of spacemen

Modeling in ETABS

Cost comparison

Test on FRC specimen (Ductile Failure)

20

Application of ETABS for Simple Cases

Case-1

- ETABS is use to model simple beam and frame
- The output of ETABS is compared with manual calculation in terms of SF & BM

	Shear fo	rce	Binding moment			
Joints	consistent deformations	ETAB	consisten t deformati ons	ETAB		
А	-50.63	-48.80	303.75	297		
В	258.75	240.33	303.75	297		
С	-191.25	-192.46	365.77	370.17		

introduction	Methodology	Production of fiber	Casting and testing of spacemen	Modeling in ETABS	Cost comparison
--------------	-------------	---------------------	---------------------------------------	----------------------	--------------------

Design of Slabs

A	в	c	D	E	F	G	н	1	J	к	L	м	N	0	P	0	R	s	т	0 1	w w	×	Y	
Marballager	1.3734	kn/mz																						
P.C.C	1.4126																							
Water proffing	0.0																							
R.c.c	3.1	3.7	4.3																					
Flooring	3.936																							
t	125 mm		150mm		175mm						ab													
D.L	7.036	KN	7.636	KN	8.236	KN			$t_{\min} = h_{\pi}$	=	2.2.	0.01												
L.L	2.5	KN	2.5	KN	2.5	KN				3.	3.3a +	8.3D												
oecause it is	sequa	re the	distrit	ution	ofslat	loads are tw	o wau acco	rdina to Al	1-318-200	15 so 1	ve nee	d to fir	da ar	od e to	heln	us to d	istribu	ite the	load in	X avis ar	od Y avi			
because the r	contin	uituof	load c	listribu	uation i	in the slab th	e value of :	ang to At	51-510-200	0 30,7			a a		neip		ISUIDC		ioaa ii			-		
	0.42		Jaul	asundu	acorn	in the stab th			<u> </u>	-			-			-						-		
β	0.27						m	= 1.0	m=0.87	20	m	= 0.76												
t	125 mm		150mm		175mm		simple	span	exenor sp		and a	and span												
Wu	12.44	KN/m²	13.16	KN/m²	13.88	KN/m²	V	- 0.1	7 [f]	bd														
₩.a	5.226	KN/m²	5.529	KN/m²	5.831	KN/m²	V _c	= 0.1	/√Jc	Da														
W.p	3.36	KN/m²	3.554	KN/m²	3.748	KN/m²	V		10 6	11														
							v _u	- max	10.0 W	L}														
the resiseting of	fshear							Φ=0.7	5 w	β b														
φv.					97.83	KN																		
V.a					24.49	KN					Pass	0.002												
۷.,					15.74	KN		ь	1000	mm	PHAX	0.018												
						1/01		4	150	mm	-													
v.					24.49	KN		4	140	mm														
			for a	lithe V.	<φ¥.														4.3	and a second	-	~		
																			Tu	o Snane		- w_×l	2 TO	
																			24	o spans	24	· (k)	and a	
																			N	A	1		4	
The mor	ment in 3	X,Y direc	tion fo	r L = 7m		the P will be use	As (mm²)	Spacing (mr	NO of Bar	Dia(mm	0								-			6	10	
M _{en}	28.57	kN.m	Р	0.003	k=10	0.00346535	519.802546	125	7	10	1								Mo	re than t	wo spar	15 ATT		
																			1110	(1)	1	12		
M.p	18.37	kN.m	Р	0.003	k=10	0.002535884	355.023818	200	5	10									2ª	R	~		X	
										L									A	A >	10	11		
M _{en}	23.81	kN.m	Р	0.003	k=12	0.002872287	430.843115	150	6	10	-								B	130		1.1		
	15.21	kbles	-	0.002	k-12	0.002105052	294 707224	250	-	10	-													
I × I p	10.01	KINLIN	P	0.002	K=12	0.002100002	234.007221	200		- ¹⁰	+			1	As ≥ 1	Temp.	steel							
Ma	11.9	kN.m	Р	0.001	k=24	0.0018	270	250	4	10	1				Min. S	Spacin	ng≥ø	main	steel	≥ 4/3 ma	x agg.	≥ 2.5 c	m (1ir	n)
															Max.	Spaci	ng ≤ 3	$t \le 4$	5 cm (17in)				
M.p	7.653	kN.m	Р	0.001	k=24	0.0018	252	250	4	10														
											-					-								

Foundation design is not scope of this study

22

Steps to Model Concrete Structure in ETABS

24

Steps to Model Concrete Structure in ETABS

Pa 4

25 Steps to Model Concrete Structure in ETABS

Methodology

Production of fiber

Casting and testing of spacemen

Modeling in ETABS

Cost comparison

26

The models after design

Building with 4 floors

Using fiber concrete

Building with 6 floors

Design using ordinary concrete

Design column using fiber

Design column and beam using fiber concrete

Building with 8 floors

Design using ordinary concrete

Design column using fiber

Design column and beam using fiber concrete

Span length is 5m, 6m and 7m

3x9 = 27 models

Methodology

Production of fiber

Casting and testing of spacemen

Modeling in ETABS

Cost comparison

27

Detail of Structure Models

	# Samples	Models name	No.of floors	Length of span(m)	Column with fiber	Beam with fiber
	1	5M4F-NF-B-NF	4	5	Х	Х
	2	5M6F-NF-B-NF	6	5	Х	Х
	3	5M8F-NF-B-NF	8	5	Х	Х
	4	5M4F-F-B-NF	4	5		Х
	5	5M6F-F-B-NF	6	5	\checkmark	Х
/	6	5M8F-F-B-NF	8	5	\checkmark	Х
	7	5M4F-F-B-F	4	5	\checkmark	\checkmark
	8	5M6F-F-B-F	6	5		\checkmark
	9	5M8F-F-B-F	8	5		\checkmark
	10	6M4F-NF-B-NF	4	6	Х	Х
	11	6M6F-NF-B-NF	6	6	Х	the:
	12	6M8F-NF-B-NF	8	6	. XinC	X
	13	6M4F-F-B-NF	4	6	mleting	Х
	14	6M6F-F-B-NF	6	~ c.O		Х
	15	6M8F-F-B-NF	8	6	V	Х
	16	6M4F-F-B-F	4	6	40/119	\checkmark
	17	6M6F-F-B-F	6	6 📶		\checkmark
	18	6M8F-F-B-F	8	6		\checkmark
	19	7M4F-NF-B-NF	4	7	Х	Х
	20	7M6F-NF-B-NF	6	7	Х	Х
	21	7M8F-NF-B-NF	8	7	Х	Х
	22	7M4F-F-B-NF	4	7	\checkmark	Х
	23	7M6F-F-B-NF	6	7	\checkmark	Х
	24	7M8F-F-B-NF	8	7		Х
	25	7M4F-F-B-F	4	7		
	26	7M6F-F-B-F	6	7		
	27	7M8F-F-B-F	8	7		

Methodology

Production of fiber Casting and testing of spacemen

Modeling in ETABS

Cost comparison

28

Completing the Analysis and Design

After completing the analysis and design of 27 models in ETABS, comparison is made in terms of cost and time period

Due to addition of fibers the time period is slightly improved

Thus, do to addition of fibers structures becomes soft.

Prices of Materials that used (SR)									
Fiber reinforce	Ordinary concrete	steel (SR/ Kg)							
concrete (SR / m3)	(SR / m3)								
492	430	5.1							

Methodology

Production of fiber

Casting and testing of spacemen

Modeling in ETABS

Cost comparison

31

Calculation of Quantities

			Calcu	lationof o	quantity of s	single beam				
					Inputs					
				Тор					spacing	
	В	н	L	bars	#of bars	Bot bars	#of bars	Stirrups	(mm)	
beam	250	650	7	13	10	10	14	10	150	
onc	Wt/m len	g(Kg/m)=	0.994	Wt/len	g(Kg/m)=	0.56	Wt/m len	g(Kg/m)=	0.56	
							length	(m)=	1.8	
					Outputs					
			steel	Top=	69.58	Kg				
			steel	Bot=	54.88	Kg				
			stiru	ips=	47.04	Kg				
Concrete			1.1375	m³		total steel		171.5	Kg	

Calculation the quantity of single beam

			Calcul	at	ionof qu	ant	tity of :	sing	le col	umn			
						Inp	outs						
	W1		W2	l	L		Dia b	ars	#of t	oars	Dia of sti	spacing (mm)	
		500	500)		3.8		29		18	10	150	
Wt/m leng	th(K	g/m)=	5.06	;				Wt/	m ler	ngth(Kg/r	n)=	0.56	
				Т							length	2	
						Out	puts						
	Lon	gitudr	nal steel		346.:	104	Kg						
		stiru	ups		28.3733	333	Kg						
				1	•								
					7M4F-	WF	(beam	NF)					
No of sto	ry	beam				colum				ımn	n		
		250•4	50 250+50	0	250*550	250	•250	275*	275	300*300	350*350		
3			2	4			12		4				
2			2	4			12		4				
1			2	4					12		4	1.418	
ground flo	oor		2	4					12		4		
total			9	6			24		32		8		
onc/elemen	nt(m3		0.87	5			0.2375	0.2	28738		0.4655		
teel/eleme	nt(kg		185.41	6		1	08.548	12	1.762		204.815		
otal concret	te W											102.6202	
Total Con	nc		8	4			5.7	9.1	19616		3.724	84	
Total stee	el		17799	9		26	05.152	389	6.384		1638.52	25939.99	

Calculation the quantity of column

Calculation of total quantity

Cost of building

Cost of different models

32

	# Samples	Models name	Ordinary concrete (m ³)	Concrete with fiber (m ³)	steel (Kg)	Cost of beam and column (SR)	Cost of beam and column (\$)
	1	7M4F-NF-B-NF	106.1162	0	28841.15	192719.8	51391.95
	4	7M4F-F-B-NF	18.62	84	25939.99	181628.6	48434.28
	7	7M4F-F-B-F	95.41728	0	25967.36	173463	46256.79
	2	7M6F-NF-B-NF	177.2083	0	46209.08	311865.9	83164.24
	5	7M6F-F-B-NF	33.5163	138.6	41549.73	294506.8	78535.15
	8	7M6F-F-B-F	159.5163	0	40216.36	273695.5	72985.45
	3	7M8F-NF-B-NF	265.5352	0	60464.66	422549.9	112680
	6	7M8F-F-B-NF	52.61152	218.4	54107.43	406023.6	108273
$\left[\right]$	9	7M8F-F-B-F	236.6706	0	56675.37	390812.7	104216.7

33 Variation in Cost for Different Models

Cost of beams and columns for different models (SR) 450000 and 400000 350000 300000 edms 250000 200000 colum 150000 100000 Cost of 50000 0 **Models names**

Due to addition of fiber, the cost was reduced

introduction	Methodology	Production of fiber	Casting and testing of spacemen	Modeling in ETABS	Cost comparison
34		<u>Sun</u>	nmary		
Stage -1					
• An arr	angement is r	nade to prep	are the curly stee	el fibers.	
• Differe	ent cube spec	imens were p	roduced and tes	sted in comp	ression
• Test re	sults shows the	at the these fil	oers are effective	e to produce	the
ductile	e behavior.				
Stage-2:					
• A serie	s of 27 model	s are designe	d by using ETABS	6 (with and wi	thout
fibers)					
• The m	odels are com	npared in term	ns of time period	and cost	
Results	s show that du	e to addition	of fibers time pe	eriod is increa	sed and

cost reduces.

