

# SYLLABUS

| Course<br>Code | Course<br>Num. | Course Name                     | Credit<br>Hours | Lec. | Lab. | Tut. | Private<br>study | Pre-requisites | Course<br>Level | Teaching<br>Language |
|----------------|----------------|---------------------------------|-----------------|------|------|------|------------------|----------------|-----------------|----------------------|
| MAT            | 661            | Coding Theory<br>& Cryptography | 4               | 3    | 0    | 1    | 8                | MAT 623        | 3-4             | English              |

#### A. Course Description

This course describes the most important ideas and theoretical results in linear codes and their construction. It also introduces to cryptography.

#### **B.** Course Outcomes

At the end of this course the student will be able to know the basic topics in Coding Theory and Cryptography: Linear Codes and their constructions, Public key cryptosystems, Hash Functions and Signature Schemes, the cryptographic standards DES and AES.

## C. References:

*D. Hankerson & others*, Coding Theory and Cryptography: The Essentials; Marcel Dekker, 2<sup>nd</sup> Ed., 2000.

## **Required Textbook**

- 1. S. Ling, <u>C. Xing</u>, Coding Theory: A First Course; Cambridge University Press, 1<sup>st</sup> ed. 2004.
- 2. *J. van Lint*, Introduction to Coding Theory; Springer 3<sup>rd</sup> Ed. 1998.
- 3. S. Lin, D. Castello, Error Correcting Codes; Prentice Hal, 2<sup>nd</sup> ed. 2004.

Course Website: Google Classroom Webpage: http://www.imamm.org/



#### **D.** Topics Outline

- 1. **Basics and Linear Codes:** Error Detection, Correction And Decoding, Hamming Distance And Distance of a Code, Mld Reliability, Linear Codes and Their Basis, Generator Matrix and Parity-Check Matrix, Equivalence of Linear Codes, Encoding with Linear Codes, Cosets of Linear Codes and The Coset Leader, Nearest Neighbor Decoding.
- 2. **Bounds and Constructions of Linear Codes**: Optimal Codes, Extended Codes and Parity-Check Matrices, Bounds for Codes and Their Types, Perfect Codes, Hamming Codes and their Use, Golay Codes, Reed-Muller Codes and Their Use.
- 3. Cyclic Codes and other Codes: Cyclic Hamming Codes, BCH Codes and their use, Codes Over GF(2<sup>n</sup>), Reed-Solomon Codes, Quadratic-Residue Codes, Hadamard Matrix Codes, Nordstrom-Robinson Code, Preparata Codes and Kerdock Codes, Propagation Rules Of Constructing Linear Codes, First Order and Higher Reed-Muller Codes, Subfield Codes.
- 4. Classic Cryptography: Encryption Schemes, Symmetric Key Encryption, Fiestel Cipher and DES.
- 5. **Public-Key Cryptography** (PKC): Algorithm and Complexity, Quadratic Residues and Quadratic Reciprocity, Primality Testing, Discrete Algorithm, Hash Functions, RSA, Provable Security and Elgamal, Cryptography Protocols (Diffe Hellman, Zero Knowledge and Coin-Tossing).

## E. Office Hours

Office hours give students the opportunity to ask in-depth questions and to explore points of confusion or interest that cannot be fully addressed in class.

## F. Exams & Grading System

The semi-official dates of the exams for this course are:

- **Midterm:** 8<sup>th</sup> or 9<sup>th</sup> week.
- **Quizzes & Homework:** During the semester.
- **Final Exam:** 16<sup>th</sup> week.

| Your course grade will be based on your semester work as follows: |
|-------------------------------------------------------------------|
|-------------------------------------------------------------------|

| Midterm : 30 %                                            | Final Exam: 40 % |  |  |  |  |  |
|-----------------------------------------------------------|------------------|--|--|--|--|--|
| 4 Quizzes + 4 Homeworks, Attendance & Participation: 30 % |                  |  |  |  |  |  |

The grading distribution:

| $\mathbf{A}^+$ | Α        | $\mathbf{B}^+$ | В        | $\mathbf{C}^+$ | С        | F       |
|----------------|----------|----------------|----------|----------------|----------|---------|
| [95, 100]      | [90, 95) | [85, 90)       | [80, 85) | [75, 80)       | [70, 75) | [0, 70) |



#### G. Student Workload:

| #  | Teaching/learning<br>activities | Contact<br>Hours Frequency |    | Total<br>Contact<br>hours | Self-study<br>hours | Total self-<br>study<br>hours | Student<br>Learning<br>Time |
|----|---------------------------------|----------------------------|----|---------------------------|---------------------|-------------------------------|-----------------------------|
| 1  | Lecture                         | 3                          | 15 | 45                        | 1.5                 | 22.5                          | 67.5                        |
| 2  | Tutorial                        | 1                          | 15 | 15                        | 3                   | 45                            | 60                          |
| 3  | Lab\Practical                   | 0                          | 0  | 0                         | 0                   | 0                             | 0                           |
| 4  | Homework                        | 0                          | 4  | 0                         | 1.5                 | 22.5                          | 22.5                        |
| 5  | Quiz                            | 0.25                       | 4  | 1                         | 1                   | 4                             | 5                           |
| 6  | Test (Midterm)                  | 2                          | 1  | 2                         | 12                  | 12                            | 14                          |
| 7  | Final Exam                      | 2                          | 1  | 2                         | 12                  | 12                            | 14                          |
| To | otal                            |                            |    | 65                        |                     | 118                           | 183                         |

Independent self-study =  $118/15 \cong 8$  hrs per week

#### H. Student Attendance/Absence

Only three situations will be considered as possible excused absences:

- Occurrence of a birth or death in the immediate family will be excused. ("Immediate family" is defined by the University as spouse, grandparents, parents, brother, or sister).
- Severe illness in which a student is under the care of a doctor and physically unable to attend class will be excused. Students are not excused for a doctor's appointment. Do not make appointments that conflict with rehearsals. Notes from the University Health Center will be accepted.

# Executive Rules for Study Regulations and Examsgoo.gl/ykm7t3

