KINGDOOM OF SAUDI ARABIA Ministry of Education Al Imam Mohammad Ibn Saud Islamic University College of Science Department of Physics

SYLLABUS

Course Code	Course Num.	Course Name	Credit Hours	Lec.	Lab.	Tut.	Private study	Pre-requisites	Course Level	Language
РНҮ	332	Statistical Physics	3	2	0	2	5	PHY 230, STA 111	6	English

A. Course Description

This course presents the mathematics and quantum mechanics needed to understand statistical thermodynamics. It covers several important topics, including a mathematically sound presentation of statistical thermodynamics; the kinetic theory of gases including transport processes; and thorough, modern treatment of the thermodynamics of magnetism.

B. Course Outcomes

At the end of this course the student will be able to:

- 1. Define and discuss the concepts of macrostate and microstate of a model system.
- 2. Discuss the Boltzmann distribution and the role of the partition function.
- 3. Define the Fermi-Dirac and Bose-Einstein distributions; state where they are applicable; understand how they differ and show when they reduce to the Boltzmann distribution.
- 4. Apply the Fermi-Dirac distribution to the calculation of thermal properties of electrons in metals.
- 5. Apply the Bose-Einstein distribution to the calculation of properties of black body radiation.
- 6. Develop critical thinking and analytical problem-solving skills.

C. References

Required Textbook

Asheley H. Carter, *Classical and Statistical Thermodynamics*, Prentise Hall (2000).

Other references

- Lokanathan S. and Gambhir R.S., *Statistical and Thermal Physics: an introduction,* P. H. I. (1991).
- Patharia R. K., *Statistical Mechanics*, Oxford: Butterworth (1996).
- Mandel F., *Statistical Physics*, 2nd Edition, John Wiley (1988).

Course Website: http://www.imamm.org/

D. Topics Outline

- 1. **Review of Thermodynamics:** Laws of thermodynamics, entropy, Gibbs free energy, Helmholtz free energy, fundamental equations, Maxwell's relations and chemical potential, problems (Contact hours: 4).
- **2.** *Statistical Thermodynamics: Coin model and the most probable distribution, quantum mechanics and the microscopic world, density of states, microstates of a system (Contact hours: 8).*
- **3.** Classical Statistics of Maxwell-Boltzmann: Hypothesis, degenerate states, some useful relations, partition function for non-degenerate states, partition function for continuous states (Contact hours: 12).
- **4.** Velocity Distribution Function of Maxwell-Boltzmann: Average molecular speed, the root mean-square speed, most probable speed, equipartition of energy principle, molecules in a certain speed range (Contact hours: 12).

- **5.** Statistical Mechanics of Diatomic Gases: Vibration, rotational and translational motions (Contact hours: 8).
- 6. Quantum Statistics: Fermi-Dirac statistics, Bose-Einstein statistics, applications of Bose-Einstein statistics (Black body radiation, Bose-Einstein condensation, the properties of ideal Bose-Einstein gas) (Contact hours: 8).
- **7.** Statistical of Magnetic Materials: Qualitative description of magnetization, quantitative description of magnetization, Langevin's theory for magnetization (Contact hours: 8).

E. Office Hours

Office hours give students the opportinuity to ask in-depth questions and to explore points of confusion or interest that cannot be fully addressed in class.

F. Exams & Grading System

The semi-official dates of the exams for this course are:

- **Midterm 1:** 6th or 7th week.
- **Midterm 2:** 11th or 12th week.
- **Quizzes & Homeworks:** During the semester.
- **Final Exam:** 16th week.

Your course grade will be based on your semester work as follows:

Midterm 1: 20 %	Midterm 2: 20 %	Final Exam: 40 %

Quizzes, Homework, Attendance & Participation: 20 %

The grading distribution:

A+	Α	B+	В	C+	С	D+	D	F
[95, 100]	[90, 95)	[85, 90)	[80, 85)	[75, 80)	[70, 75)	[65, 70)	[60, 65)	[0, 60]

G. Student Attendance/Absence

Only three situations will be considered as possible excused absences:

- Occurrence of a birth or death in the immediate family will be excused. ("Immediate family" is defined by the University as spouse, grandparents, parents, brother, or sister).
- Severe illness in which a student is under the care of a doctor and physically unable to attend class will be excused. Students are not excused for a doctor's appointment. Do not make appointments that conflict with rehearsals. Notes from the University Health Center will be accepted.

Executive Rules for Study Regulations and Exams goo.gl/ykm7t3

