PHY 631 - Mathematical Methods in Physics

Course Code & Number	Course Name	C.H.	Lec.	Lab.	Tut.
PHY 631	Mathematical Methods in Physics	4	4	0	0

Syllabus

Vector Analysis in Curved Coordinates and Tensors: Orthogonal coordinates, Differential vector operator, Special coordinate systems, Circular cylinder coordinates, Spherical polar coordinates, Tensor analysis, Contraction, Direct product, Quotient rule, Pseudotensors, Dual tensors, General tensors, Tensor derivative, Operators.

Group Theory: Introduction to group theory, Generators of continuous groups, Orbital angular momentum, Angular momentum coupling, Homogeneous Lorentz group, Lorentz covariance of Maxwell's equations, Discrete groups, Differential forms.

Infinite Series: Fundamental concepts, Convergence tests, Alternating series, Algebra of series, Series of functions, Taylor's expansion, Power series, Elliptic integrals, Bernoulli numbers, Euler–Maclaurin formula, Asymptotic series, Infinite products.

Functions of a Complex Variable: Complex algebra, Cauchy–Riemann conditions, Cauchy's integral theorem, Calculus of residues.

The Gamma Function (Factorial Function): *Definitions, Simple properties, Digamma and polygamma functions, Stirling's series, The beta function.*

Differential Equations: Partial differential equations, First-order differential equations, Separation of variables, Frobenius method.

Sturm–Liouville Theory-Orthogonal Functions: Self-adjoint ODEs, Hermitian, Gram–Schmidt orthogonalization, Green's function.

Integral Transforms: Integral transforms, Development of the Fourier integral, Fourier transform-inversion theorem, Fourier transform of derivatives, Laplace transforms, Laplace transform of derivatives.

Integral Equations: Integral transforms, Generating functions, Neumann series, Separable Kernels, Hilbert-Schmidt theory.

References

- G.B. Arfken, Mathematical Methods for Physicists, 2005.
- H.W. Wyld, Mathematical Methods for Physics, Perseus Books Publishing, 1999.
- R. Courant, D. Hilbert, Methods of Mathematical Physics, John Wiley and Sons, 1st Edition, 1965.

