Homework 1

A $25-\mathrm{kVA}, 440 / 220-\mathrm{V}, 60-\mathrm{Hz}$ transformer has the following parameters:

$$
\begin{array}{lll}
R_{1}=0.16 \Omega & R_{2}=0.04 \Omega & R_{\mathrm{cl}}=270 \Omega \\
X_{1}=0.32 \Omega & X_{2}=0.08 \Omega & X_{\mathrm{mI}}=100 \Omega
\end{array}
$$

The transformer delivers 20 kW at 0.8 power factor lagging to a load on the low-voltage side with 220 V across the load. Find the primary terminal voltage.

Solution The voltage across the load is taken as reference phasor; thus,

$$
\mathbf{V}_{2}=220 \angle 0^{\circ} \mathrm{V}
$$

For a load $P_{2}=20,000 \mathrm{~W}$ at 0.8 power factor lagging, the secondary current is computed as follows:

$$
\mathbf{I}_{2}=\frac{20,000}{(220)(0.8)} \angle-\cos ^{-1} 0.8=113.64 \angle-36.9^{\circ} \mathrm{A}
$$

The transformer turns ratio is $a=440 / 220=2$. Thus, the secondary voltage and current and the winding resistance and reactance are referred to the primary side as follows:

$$
\begin{aligned}
a \mathbf{V}_{2} & =2\left(220 \angle 0^{\circ}\right)=440 \angle 0^{\circ} \mathrm{V} \\
\mathbf{I}_{2} / a & =\left(113.64 \angle-36.9^{\circ}\right) / 2=56.82 \angle-36.9^{\circ} \mathrm{A} \\
a^{2} R_{2} & =(2)^{2}(0.04)=0.16 \Omega \\
a^{2} X_{2} & =(2)^{2}(0.08)=0.32 \Omega
\end{aligned}
$$

Referring to the phasor diagram of Fig. 4.13, the primary induced voltage is calculated as follows:

$$
\begin{aligned}
\mathbf{E}_{1} & =a \mathbf{V}_{2}+\left(\mathbf{I}_{2} / a\right)\left(a^{2} R_{2}+j a^{2} X_{2}\right) \\
& =440 \angle 0^{\circ}+\left(56.82 \angle-36.9^{\circ}\right)(0.16+j 0.32) \\
& =458.2+j 9.07=458.3 \angle 1^{\circ} \mathrm{V}
\end{aligned}
$$

The shunt branch currents are

$$
\begin{aligned}
\mathbf{I}_{\mathrm{c}} & =\mathbf{E}_{1} / R_{\mathrm{c} 1}=(458.2+j 9.07) / 270=1.7+j 0.03 \mathrm{~A} \\
\mathbf{I}_{\mathrm{m}} & =\mathbf{E}_{1} / j X_{\mathrm{m} 1}=(458.2+j 9.07) / j 100=0.09-j 4.58 \mathrm{~A} \\
\mathbf{I}_{\mathrm{e}} & =\mathbf{I}_{\mathrm{c}}+\mathbf{I}_{\mathrm{m}}=1.79-j 4.55 \mathrm{~A}
\end{aligned}
$$

Thus, the primary current is

$$
\begin{aligned}
\mathbf{I}_{1} & =\mathbf{I}_{\mathrm{e}}+\mathbf{I}_{2} / a \\
& =(1.79-j 4.55)+\left(56.82 \angle-36.9^{\circ}\right)=61.04 \angle-39.3^{\circ} \mathrm{A}
\end{aligned}
$$

Therefore, the primary voltage is found from

$$
\begin{aligned}
\mathbf{V}_{1} & =\mathbf{E}_{1}+\mathbf{I}_{1}\left(R_{1}+j X_{1}\right) \\
& =(458.2+j 9.07)+\left(61.04 \angle-39.3^{\circ}\right)(0.16+j 0.32) \\
& =478.1+j 18=478.4 \angle 2.2^{\circ} \mathrm{V}
\end{aligned}
$$

