The course is intended to understand the underlying principles which distinguish robot control programs from computer programs. Their specific features are presented by introducing the general notion of situated agent. In the same perspective behavior-based systems are also considered: the direct coupling of perception to action and the dynamic interaction with the environment are discussed as a general method to implement autonomous robot control including legged and humanoid robotics. Multi-robot systems are also presented.

1. Provide the practical tools to understand and implement programs which are able to control autonomous vehicles.
2. Introduce the general notion of situated agent is presented by introducing behavior-based systems, the direct coupling of perception to action and the dynamic interaction with the environment.

- Situated Agents
- Autonomous Vehicles
- Dynamical Agents
- Implementing Behaviours
- Locomotion
- Experimental Activity

Text Books:
Grading:

The grading scale for this course is:

- 95 - 100 A+ Passing
- 90 - 94 A Passing
- 85 - 89 B+ Passing
- 80 - 84 B Passing
- 75 - 79 C+ Passing
- 70 - 74 C Passing
- 65 - 69 D+ Passing
- 60 - 64 D Passing
- 0 - 59 F Failing

Final grades will be determined based on the following components:

- 60% Semester Work
- 40% Final Exam

Students may not do any additional work for extra credit nor resubmit any graded activity to raise a final grade.

Late submissions will not be accepted for any graded activity for any reason.

Students have one week to request the re-grading of any semester work.

Attendance Policy:

Students should attend 80% of the overall course hours taught in the semester as per the University regulations.

If a student fails to achieve this portion, he/she shall not be allowed to appear in the final exam and shall be awarded “DN” grade and repeat the course.

Cheating and Plagiarism Policy:

The instructor will use several manual and automated means to detect cheating and/or plagiarism in any work submitted by students for this course.

When a student is suspected of cheating or plagiarism, the instructor raises the issue to the disciplinary committee.
Communications: Registered students will be given access to a section of the Blackboard Learning System for this course. Bb will used as the primary mechanism to disseminate course information, including announcements, lecture slides, assignments, and grades.

Communication with the instructor on issues relating to the individual student should be conducted using CIS email, via telephone, or in person.