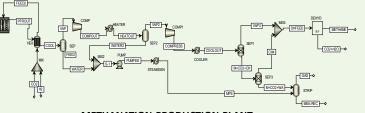

Study of the blue hydrogen production process involving a conversion of the

co-produced carbon dioxide into methane


Abdullah Al-Otaibi & Yousef Al-Mutairi & Majed Al-Ghamdi Supervised by: Dr. Bilel Hadrich February 2025

SIMULATION OF PROCESSES

The system relies on the ATR reactor, which converts methane, oxygen, and steam into syngas rich in hydrogen, supported by pre-heaters, heat exchangers, and a water-gas shift reactor to enhance yield and reduce emissions. The captured CO2 is then utilized in the PFR methanation reactor, where it is converted into synthetic methane using a nickel-based catalyst, with compressors and separators ensuring product purity.

BLUE HYDROGEN PRODUCTION PLANT

METHANATION PRODUCTION PLANT

Purchasing Cost

in millions of

dollars

0.61

508.3

45.5

0.880

0.880

0.880

0.880

15.2

8.63

5.71

3.76

3.46

594.69

ECONOMIC STUDY

Table 4 Capital cost of Blue Hydrogen

Code

M-101

K-101

H-101

C-101

C-102

C-103

C-104

R-101

R-102

R-103

V-101

V-102

Total capital cost

Equipment Type Equipment

Mixer

Multi

Compressor

Cooler

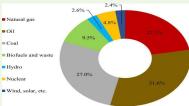
Reactor

Separator Flush drum

Table 5	Capital	cost of	Methanation
---------	---------	---------	-------------

		Purchasing		
Equipment Type	Equipment Code	Cost in		
		millions		
		of dollars		
	M-201	0.47		
Mixer	M-202	0.524		
	M-203	0.578		
Compressor	K-201	2.13		
•	K-202	2.4		
Reactor	R-201	0.105		
Heat Exchanger	E-201	0.139 0.0102		
Pump	P-201			
Cooler	C-201	0.88		
	H-201	0.73		
Heater				
Treater	H-202	1.36		
Vessel	V-201	0.26		
	V-202	0.26		
	V-203	6.41		
	V-204	3.33		
	V-205	0.562		
Total ca	20.1482			

Best G.P. 2025


ABSTRACT

Blue hydrogen is a promising low-carbon energy source, produced efficiently through Autothermal Reforming (ATR) while capturing over 91% of CO_2 emissions. This study enhances sustainability by converting captured CO_2 into methane, reducing waste and maximizing resource utilization. With its economic feasibility and alignment with Saudi Vision 2030, blue hydrogen serves as a key transitional fuel, leveraging existing natural gas infrastructure while paving the way for a cleaner energy future.

OBJECTIVE

- •Efficient Blue Hydrogen Production using ATR with CCUS to minimize CO₂ emissions.
- **•Sustainable Hydrogen Process** by converting CO₂ into synthetic methane via the Sabatier reaction.
- •Cost Optimization through CO₂ recycling and reduced raw material consumption.
- •Supporting Saudi Vision 2030 by promoting low-carbon hydrogen solutions.
- •Future Expansion Potential to meet rising demand in petrochemical and energy sectors.

Figure 1 Distribution of global acoal supply of primary energy by fuel type in 2020

Equipment Design

The system utilizes the ATR reactor (R-100) at 30 bar and 950°C to convert methane, steam, and oxygen into hydrogen-rich syngas, with a nickel-based catalyst inside the Plug Flow Reactor (PFR) ensuring maximum efficiency. An internal heat management system minimizes external energy demands. The heat exchanger (E-101), a counterflow shell-and-tube system with a 169.9 m² heat transfer area, optimizes heat recovery and reduces thermal losses. The flash drum (V-101) separates 99% pure methane from water and CO2 through pressure and temperature variations. This integrated design enables sustainable blue hydrogen production, efficient CO2 utilization, and enhanced economic feasibility.

Table 2 Heat Exchanger (E-101)

Table 3 Autothermal Reactor (R-100)

				(===)						
E-101			Reaction		Data for Reactor		Data for Tube			
Q (kW)	7571	Number of tubes	270		Symbols	Final output	Symbols	Final output	Symbols	Final output
Shell pass	1	Tube arrangement	Square		Kreforming (m3/mol*s)	2.1675*10-s	V (m3)	20.784	V (m3)	0.1278
Tube pass	2	Tube pitch (m)	0.0625		Koxidation (m3/mol*s)	1.0318*10-s	Time (s)	310.790	N (number)	540
Heat transfer Area (m²)	169. 9	Bundle dimeter (m)	1.295		Rreformin (mol/m3*s)	0.369	D (m)	2.066	D (m)	0.0762
Tube din	ension	Shell dimeter (m)	1.373							
d _o (mm)	50	Baffle spacing (m)	0.55		Roxidation (mol/m3*s)	0.0067	h (m)	7.198	L (m)	0.0519
		Baffle cut	25%		-FA(total) (mol/m3*s)	0.375	A (m2)	46.725	A (m ²)	6.7088
di (mm)	46	Length (m)	1.488				Thickness	219	Thickness	9.05226
u: (m/s)	4.64	us(m/s)	22.07		\times	\times	(mm)		(mm)	

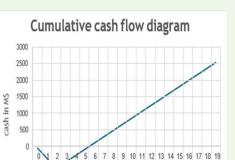


Figure 2 Cumulative cash flow diagram

CONCLUSION

Blue hydrogen production via ATR with CO_2 methanation achieved 99.99% hydrogen purity, capturing 91% of CO_2 , and producing 819,831 tons of H_2 and 303,320 tons of CH_4 annually. Economic analysis estimates a cost of \$1.23–\$1.66 per kg and a payback period of 5 years, 9 months. This process enhances sustainability, supports Saudi Vision 2030, and strengthens the clean hydrogen economy.