

Course Specification (Bachelor)

Course Title: Fundamentals of Electric Circuits

Course Code: EE1221

Program: Electrical Engineering

Department: Electrical Engineering

College: College of Engineering

Institution: Imam Mohamad Ibn Saud Islamic University

Version: V5

Last Revision Date: 01-01-2025

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1 Cradit hours (2)

1. 0	1. Credit flours. (5)					
2. 0	2. Course type					
A.	□University	□College	⊠ Depa	rtment	□Track	□Others
B. ⊠ Required □Elective						
3. Level/year at which this course is offered: (3 rd level, 2 nd year)						

3. Level/year at which this course is offered: (3" level, 2

4. Course general Description:

Basic laws: Ohm's, KVL, KCL. Resistive networks. Circuit analysis techniques: nodal and mesh analysis. Network theorems: Thevenin's, Norton's, source transformations, superposition, maximum power transfer. Energy storage elements. Phasor technique for steady-state sinusoidal response. Transient analysis of first-order circuits. AC Power Analysis

5. Pre-requirements for this course (if any):

PHYS 1118

6. Co-requisites for this course (if any):

MATH1116, EE 1201

7. Course Main Objective(s):

The Course covers a variety of Electrical Engineering Fundamentals, which makes the student understand the many forthcoming subjects in his undergraduate studies; the course covers basic fundamentals of DC circuit analysis, transient analysis and starting of AC analysis.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	-	-
3	HybridTraditional classroomE-learning	-	-
4	Distance learning	-	-

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	-
3.	Field	-
4.	Tutorial	15
5.	Others (specify)	-
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understandin	g		
K1	Identify the electrical circuit elements and the way to calculate them.	1.1	Delivering Lectures Solve problems in groups during tutorial	Quizzes in class Midterm exam Final exam
K1	Identify the electrical circuit elements laws.	1.8	Delivering Lectures Solve problems in groups during tutorial	Quizzes in class Midterm exam Final exam
K1	Solve the electrical circuit using nodal and mesh analysis.	1.4	Delivering Lectures Solve problems in groups during tutorial	Quizzes in class Midterm exam Final exam
K1	Formulate the electrical circuits using Superposition, Source transformation, Thevenin and Norton theorems for DC circuits	1.6	Delivering Lectures Solve problems in groups during tutorial	Quizzes in class Midterm exam Final exam
K1	Formulate the electrical circuits using Superposition, Source transformation, Thevenin and Norton theorems for AC circuits	1.7	Delivering Lectures Solve problems in groups during tutorial	Quizzes in class Midterm exam Final exam
K1	Formulate the AC power analysis	1.2	Delivering Lectures Solve problems in groups during tutorial	Quizzes in class Midterm exam Final exam
2.0	Skills			

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
NA				
3.0	Values, autonomy, and respo	nsibility		
V2	Demonstrate ethical behavior among peers, and be punctual	4.3	Active participation during the course	Lecture attendance

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to CircuitsSI unitsVoltage, Current, Power and Energy	4
2	 Basic components and electrical circuits Sources, Resistance Ohm's Law 	8
3	Voltage and current laws Nodes and Branches Kirchhoff's Laws Single-loop Circuit Resistors in Series and Parallel Voltage Division Current division	8
4	 Basic nodal and mesh analysis Introduction Nodal Analysis The Supernode Mesh Analysis The Supermesh Node vs. Mesh Comparison 	8
5	 Circuit analysis techniques Linearity Superposition Source Transformations Thevenin and Norton Equivalents Maximum Power Transfer Delta-to-Wye Equivalent Circuits 	8
6	Capacitors and inductors Inductors Capacitors	8

9	AC power analysis Total	60
8	 Sinusoidal steady-state analysis Characteristics, Forced Response Complex Forcing Function The phasor Impedance and Admittance Node-Voltage Mesh-Current Methods Superposition Source Transformations Thevenin and Norton Equivalents 	8
7	Basic RL and RC circuit RL circuits RC circuits Unit-step, pulse functions. Natural and force response Driven circuits	4
	 Series and Parallel Combination 	

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	7 th week	20%
2.	Midterm 2	13th week	20%
3.	Quizzes	During the course	7%
4.	Homework	During the Course	7%
5.	Major Quiz	During the course	3%
6.	Oral Presentation about selected topics	End of term	3%
7.	Final Exam	Final Exam week	40%
8.	Midterm 1	7 th week	20%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References

1. C. K. Alexander and M. N. O. Sadiku, *Fundamentals of Electric Circuits*, Sixth Edition, McGraw-Hill, 2017.

Supportive References	 W. H. Hayt, Jr., J. E. Kemmerly, and S.M. Durbin, Engineering Circuit Analysis, McGraw-Hil, 2007, eighth edition Robert L. Boylestad, <i>Introductory Circuit Analysis</i>, Eleventh Edition. John O'Malley, <i>Schaum's Outline of Basic Circuit Analysis</i>, Second edition.
Electronic Materials	YouTube videos from Khan Academy
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	One classroom: fits up to 25 students with white board.
Technology equipment (projector, smart board, software)	A laptop computer connected to a projector to display PowerPoint presentations
Other equipment (depending on the nature of the specialty)	N/A

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect
Effectiveness of Students assessment	Students	Indirect
Quality of learning resources	Relevant Focus Group	Indirect
The extent to which CLOs have been achieved	Dept. Quality Committee	Direct
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	
REFERENCE NO.	
DATE	

