

Design and Development of Sustainable Energy Harvesting System through Thermoelectric Generator and Vortex Tube (TeG-VT) Turki Alhijab, Ali Alqababnah, Nawaf Alhazani, Abdulaziz Alajlan

ABSTRACT

- > Computational Fluid Dynamics (CFD) analysis using ANSYS Fluent software is applied to simulate the flow behaviors in Straight and Curved Vortex Tubes under different inlet pressure conditions.
- Finite Element Simulations of **Thermoelectric Generator (TeG)** are performed using COMSOL software to predict the electric current flow under different temperature gradients
- > Experimental setup of **TeG-VT** system is developed for sustainable energy *harvesting* and to validate simulation results
- > Promising results, around 96 °C temperature difference and 520 mV from single TeG, are found

MOTIVATION

- **Energy storage** is one of the challenging and ambitious topics in the entire scientific and research community
- Multiple energy storing technologies are introduced in the past decades like batteries, long duration flywheels, high energy capacitors, and superconducting magnetic storage → *sustainability is absent in many*
- Vision 2030 projects hover around "Development of Sustainable Energy Resources"

OBJECTIVES

Main objective of this research is to *design, fabricate, and test a TeG-VT* **system** that can generate **sufficient power** to operate **electronic sensor** *networks* in low accessibility, hard to reach locations such as deep oil/gas/water wells, & spot cooling with energy harvesting in manufacturing process

VORTEX TUBE & TeG

Vortex tube is a mechanical device that separates a compressed gas stream into hot and cold air streams without any moving parts [1]

TeGs are devices that convert heat energy into electrical energy using directly Seebeck effect, when two different experience a conductive materials temperature gradient

Supervisor: Dr. Rashid Khan

Mechanical Engineering Department, College of Engineering, IMSIU

MATHEMATICAL MODELING

TeG schematic

 $\frac{\partial(\rho v_i)}{\partial t_i} = 0$ (Continuity equation) ∂x_i $\frac{\partial}{\partial x_{j}} \left[\mu \left(\frac{\partial v_{i}}{\partial x_{j}} + \frac{\partial v_{j}}{\partial x_{i}} - \frac{2}{3} \delta_{ij} \frac{\partial v_{k}}{\partial x_{k}} \right) \right] - \frac{\partial P}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \left(-\rho \overline{v_{i}' v_{j}'} \right)$ (Navier–Stokes equation) $\partial(\rho v_i v_j)$ $\frac{\partial(\rho v_i k)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + G_k + G_b - \rho \varepsilon - Y_M$ (Turbulence kinetic energy) $\frac{\partial(\rho v_i \varepsilon)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + C_{1\varepsilon} \frac{\varepsilon}{k} (G_k + C_3 G_b) - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k}$ (Turbulence dissipation rate) $\mu_t = \rho C_\mu \frac{\pi}{s}$ $P = \rho RT$

FINITE ELEMENT MODELING

Geometry specification of SVT			
Parameter	Dimension		
Working tube length (L)	400 mm		
Inner tube diameter (D)	19.05 mm		
Cold exit diameter (d_c)	9.53 mm		
Inner Nozzle diameter (d_n)	4.00 mm		
Nozzle height	13.37 mm		
Mean hot exit diameter (d_h)	18.025 mm		
Hot exit area (A_h)	$58.17 \ mm^2$		
Nozzle total inlet area (A_n)	$25.13 mm^2$		

Geometry	specification	of CVT
deometry	opeemeation	

J 1			
Angle (degrees)	Radius (mm)	Length (mm)	
110	208.34	167.22	
150	152.78	228.03	
180	127.32	273.63	
270	84.88	410.45	
310	73.93	471.26	
340	67.4	516.86	

Discretization of models

- Non-structured mesh was built to reduce total
- number of elements
- First step: Sweep meshing for tube body
- Second step: Apply inflation to enhance mesh density
- Third step: Tetrahedral mesh on remaining sections

Hot ex Walls

Boundary conditions				
Boundary Type	Boundary Conditions	Value		
Inlet	Pressure inlet	2-6 bar (total)		
Cold exit	Pressure outlet	1 bar (static)		
Hot exit	Pressure outlet	1.19 bar (static)		
Opera	ating pressure	0 [bar]		
Walls	Adiabatic with no-slip	Heat flux = 0 $W m^{-2}$		

It is observed experimentally in SVT that maximum *temperature difference, 96.10 °C and voltage, 520.40 mA* are at 6 bar inlet pressure

- bar 180°, $\Delta T = 41.79$ °C. (fixed radius)
- require tunning to reduce error

[1] S. Y. Khan, U. Allauddin, S. M. F. Hasani, R. Khan, and M. Arsalan, "A CFD analysis on the effect of tube curvature, hot flow control valve profile, and inlet swirl on the thermal performance of curved vortex tubes," [2] C. D. Fulton, "Ranque's tube," J. Am. Soc. Refrig. Eng., vol. 58, pp. 473–479, 1950.

CONCLUSIONS

 \checkmark SVT simulations show that 4 bar inlet pressure is optimum, $\Delta T = 39.69 \text{ °C}$

 \checkmark CVT simulations show that 6 bar at 310° is the optimum, $\Delta T = 39.77$ °C (fixed length), and 5

Simulation results are not far from experimental observations for multi TeG system, however;

REFERENCES