

AL IMAM MOHAMMAD IBN SAUD ISLAMIC UNIVERSITY COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING

Course Information		
Course Code & Name	MATH226 LINEAR ALGEBRA TOTAL CREDITS: 3 (THEORY HRS: 3, TUTORIAL: 1)	
Prerequisite/s	MATH 106 Calculus II	

Course Description Basic concepts and techniques of linear algebra; includes systems of linear equations, matrices, determinants, vectors in n-space, and eigenvectors, together with selected applications, such as Markov processes, linear programming, economic models, least squares and population growth.

Textbook		
Title	Linear Algebra	
Author	Gareth Williams	
Publisher	Jones and Bartlett	

Course Contents		
Gauss elimination and Matrices	Linear equations and systems, Matrix notation, Method of elimination,	
	Row and row reduced echelon form of a matrix.	
	Matrix operations. Inverse of a square matrix by Gauss Elimination.	
	Factorization A=LU	
Determinants	Determinants and their properties, Cofactor expansions, Cramer's Rule.	
Vector Spaces, Linear independence, Basis	Introduction to vectors and matrices. Vectors in R ² and R ³ , Dot product, norm, distance, orthogonal vectors. Angle between two vectors.	
	Vector spaces, rank, Nullspace	
	Linear independence of vectors, Spanning subspace,	
	Basis and dimension, orthogonality, projection	
	Gram-Schmidt normalization,	
Eigenvalues & Eigenvectors	Eigenvalues & eigenvectors of a square matrix, characteristic polynomial of a square matrix; Matrix diagonalization. Application to differential equations	
Linear transformations	Basic definitions, the matrix of a transform, Coordinates and change of basis,	
	homomorphism and isomorphism, Diagonalization	
Applications	Matrices in Engineering, Graphs and Networks, Markov Matrices, Population, Gaussian Elimination in Practice	

Academic Coordinator

Official Stamp