

Key Learning Outcomes for Chemistry Programs

2024

بِسْمِ اللَّهِ الرَّحْمَـٰنِ الرَّحِيمِ

Introduction

Based on the mandate of the Education and Training Evaluation Commission (ETEC), issued by Royal Decree No. 108, dated 14/2/1440 H, ETEC is mandated to "building systems for evaluation and accreditation - including institutional and programmatic - in education and training, including rules, standards, frameworks and indicators and its terms, procedures, approval, and application." And based on the authority's keenness to build and develop high-quality national academic programs, the authority has worked on preparing specialized academic standards for BSc Chemistry programs.

The standards contribute to setting the minimum curriculum requirements of Chemistry undergraduate programs to ensure their academic quality, and to assure their ability to produce highly qualified professionals in the field of Chemistry with the knowledge and skills required by the market and the national needs, in line with best practices and academic requirements for this field.

Goals

The main goal of this work is to develop specialized Learning Outcomes (SLOs) that should represent the minimal achieved by Chemistry students at graduation. It will direct programs, course design and organization, building the curriculum map including the appropriate teaching and learning strategies, assessment tools, evaluation strategy, and link academic and professional aspects.

Methodology

This document describes the minimum knowledge units (KUs) and learning outcomes (LOs) in the field of Chemistry, which graduates are expected to obtain upon completion of the program. The KU-specific learning outcomes specify the minimum of what students should know or be able to do after successfully completing the KU.

The methodology follows the following phases:

- 1. Identifying International Benchmarks.
- 2. Identifying Program Key Learning Outcomes.
- 3. Identifying Curriculum General Criteria
- 4. Identifying the General Knowledge Units.
- 5. Identifying the Specialized Knowledge Units for each General Knowledge Unit.
- 6. Identifying the Specialized Learning Outcomes for each Specialized Knowledge Unit.

It is important for educational institutions to take into account the depth and expansion; and to include LOs related to communication skills and values in the curricula. Educational institutions can offer the desired elective KUs that are relevant to their programs and students can choose from them to complete their graduation requirements. It is important to note that a KU is not necessarily a credit course. A KU may be covered by one or more credit courses and a credit course may cover one or more KUs partially or completely. The KUs are derived from analyzing of nine QS high ranked and two local University international and local programs (see Appendix A).

This document was developed by the ETEC in cooperation and coordination with different entities in the field of Chemistry, such as three local chemistry departments representing three local universities, Ministry of Energy, Saudi Space Agency, Ministry of Industry and Mineral Resources, National Industrial Development and Logistics Program, Saudi Geological Survey and Saudi Standards, Metrology, and Quality Organization.

Scope and Uses

This document covers the bachelor's degree programs in the field of Chemistry. The document can be used and applied to Chemistry programs offered by higher educational public and private institutions in Saudi Arabia.

Terms

ETEC: Education and Training Evaluation Commission – Saudi Arabia.

Knowledge Units: Thematic groupings that encompass multiple related topics, where the topics cover the required curricular content for each KU. Each KU contains a set of learning outcomes.

Essential Knowledge Units (EKUs): The required topics in Math, Physics and Computer Programming.

General Knowledge Units (GKUs): Knowledge Units that introduce students to the main topics in Chemistry. All students majoring in any field of Chemistry should complete these GKU's.

Key Learning Outcomes (KLOs): It describes what students are expected to know and will be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program.

Learning Outcomes (LOs): Phrases describing what a learner should know, understand, and be able to do at the end of the program. They represent the bottom line of the learning process.

NQF: National Qualifications Framework.

Specialized Key Learning Outcomes (SLOs): The specificity needed for interpretation of the general criteria as applicable to a given discipline.

Specialized Knowledge Units (SKUs): Knowledge Units that introduce students to intermediate and advanced topics in a major.

Students Professional Development Domain (SPDD): Knowledge and skills domain at the advanced level of chemistry curriculum that incorporate applied chemistry courses with students' projects to develop students' work-oriented and professional skills.

Chemistry Experience Units (CEUs): It is learner-centered experience Units under SPDD where students should demonstrate and practice values, develop responsibility, ethical and scientific conduct, employment skills such as in leadership, management and organizational skills, networking, engagement with literature, oral and written communication. All activities involved under chemistry experience units are regarded as students work projects.

Applied Chemistry Units (ACUs): It is Applied Knowledge and Skills Units under SPDD that introduce students to chemical industries, and a broad variety of alternative scientific, business, and technical sectors associated with it. ACUs provide a range of required elective chemistry and non-chemistry courses to develop students' knowledge and skills in certain areas of chemistry-related labor market.

Key Learning Outcomes

As discussed in Appendix B, the alignment of NQF domains with standardized chemistry curriculum domains obtained from international benchmarking proposed three learning domains applicable to chemical sciences and their employment market in the Kingdom. These three domains are (i)

Knowledge, (ii) Practical Skills, (iii) Students Professional Development. The Practical Skills domain is composed of two subdomains (i) Laboratory Skills, (ii) Classroom Skills. Students Professional Development domain is achieved through two major curriculum units (i) Chemistry Experience Units, (ii) Applied Chemistry Units. The chemistry program curriculum should be structured across the abovementioned domains, knowledge, and skills units. Chemistry program learning outcomes should also be developed to strictly cover those domains. Therefore, on successful completion of a bachelor's degree in chemistry, graduates should be able to:

- **KLO1** Demonstrate a critical understanding of the key and core knowledge of the main branches of chemistry and related fields, as outlined GKUs and SKUs.
- **KLO2** Identify the interdisciplinary nature between chemistry branches to interpret and evaluate the practical applications of the essential facts, concepts, principles, and theories of chemistry.
- **KLO3** Predict and interpret chemical and physical changes that organic and inorganic materials undergo using appropriate chemical information, data, and rules.
- **KLO4** Practice health and safety regulations while handling chemicals and performing laboratory activities with the capability to conduct a sufficient risk assessment.
- **KLO5** Conduct accurate quantitative and qualitative measurements using standard chemical instrumentation and software and report experimental results with appropriate interpretation, calculations, and reasonable conclusions.
- **KLO6** Synthesize and characterize organic and inorganic materials using appropriate procedures, instrumentations, and chemical apparatus.
- **KLO7** Develop a systematic and reliable experimental record via precise observations of measurements and changes and assessment of the limit of accuracy of experimental data.
- **KLO8** Apply principles, laws and theories of chemistry and related physical and mathematical equations to solve complex chemical problems with appropriate approximation, precision, accuracy, and statistical validity.
- **KLO9** Solve chemical problems related to different applications of chemistry through critical thinking to develop appropriate rational, explanations and answers.
- **KLO10** Plan, execute and report project work by employing knowledge learned, practical skills developed previously in the program with effective use of chemical literature and retrieval of chemical methods.
- **KLO11** Present chemical data and reports scientifically in written and oral communication with proper scientific conduct and ethical responsibility.
- **KLO12** Lead and manage chemistry project work effectively, and demonstrate self-discipline, decisionmaking capabilities and engagement in team working to build a working network in chemistry related fields.
- **KLO13** Relate the learned chemistry knowledge and skills to future career and Plan for further professional training as a chemist.

Curriculum General Criteria

Based on benchmarking study of leading universities (Appendix A), and analyzing all knowledge units (KUs) and skills using Chemistry programs, it is found that these KUs are grouped in the following categories:

- 1. Essential knowledge units: [22 Credit hours]
- 2. General knowledge and skills units: [57 Credit hours]

- 3. Specialized knowledge units
- 4. Chemistry Experience Units [8 Credit hours]
- 5. Applied Chemistry Units [18 Credit hours]
- 6. University requirements, any other non-chemistry electives [15 credit hours]

Each group consists of different subgroups that is essential in any typical Chemistry curriculum. To show the importance of each of the subgroups, a range of allocated credit hours in a typical Chemistry curriculum is shown in the next section.

knowledge Units

The following table provides an overall view of the curriculum distribution of Knowledge Units: essential, general, specialized and others. The tables also provide general recommendation on the acceptable range of credit hours for each knowledge unit.

Essential Knowledge Units (EKU)

Calculated based on a minimum of [22] credits for Math, Physics and Computer Programming. This part of the knowledge units should not be used in standardized tests.

#	EKU	Description	Minimum Requirements
1	Mathematics	 Calculus 1 Limits and continuity of functions of a single variable. Differentiability, Techniques of differentiation. Implicit differentiation. Local extrema, first and second derivative tests for local extrema. Concavity and inflection points. Curve sketching. Applied extrema problems. The Mean Value Theorem and applications. Calculus 2 Definite and indefinite integrals of functions of a single variable. Fundamental Theorem of Calculus. Techniques of integration. Hyperbolic functions. Applications of the definite integral to area, volume, arc length and surface area. Improper integrals. Sequences and series: convergence tests, integral, comparison, ratio and root tests. Alternating series. Absolute and conditional convergence. Power series. Taylor and Maclaurin series. Calculus 3 Polar coordinates, polar curves, area in polar coordinates. Vectors, lines, planes, and surfaces. Cylindrical and spherical coordinates. Functions of two and three variables, limits, and continuity. Partial derivatives, directional derivatives. Extrema of functions of two variables. Double integrals, double integrals in polar coordinates. Triple integrals, triple integrals in cylindrical and spherical coordinates. Introduction to Differential Equation: Techniques and applications of ordinary differential equations, including Fourier series and boundary value problems, and an introduction to partial differential equations. 	11
2	Physics	 The basic laws and principles of Newtonian mechanics; oscillations, waves, and wave optics The basic laws of electricity and magnetism; geometrical optics Properties of electromagnetic fields, dipole and quadrupole fields and their interactions, chemical binding of molecules, electromagnetic properties of materials, Maxwell's equations, and properties of electromagnetic waves. 	8
3	Computer Programing	Introduction to computer programming for physical sciences: Overview of computer hardware and software. Programming in Python with emphasis on	3

Table 1: Essential Knowledge Unit of [Chemistry]

basic program constructs: variables, assignments, expressions, decision structures, looping, functions, lists, files, and exceptions; Introduction to objects and classes. Programming in C with emphasis on pointers and functions with output parameters. Simple multidisciplinary problem solving in science, engineering, and business.

- The above EKUs (22 Credit hours) are the minimum credit hours of essential knowledge units for standard chemistry programs.
- the minimum credit hours of essential knowledge should include tutorials and laboratories according to the nature of the knowledge unit, for example, Math requires tutorials, Physics and Programming requires laboratory credit hours. Therefore, the total contact hours that are allocated to laboratory and tutorials should not be less than he minimum credit hours of essential knowledge should include tutorials and laboratories according to the nature of the knowledge unit, for example, Math requires tutorials, Physics and Programming requires laboratory credit hours. Therefore, the total contact hours that should be allocated to laboratory and tutorials should not be less than 40% of the total contact hours of EKUs.
- Based on international best practices, the essential knowledge units may include biology and some other courses based on the tracks of the program as well as the mission of the institution and its programs.
- Chemistry programs may also include more Math & Computer Programming credit hours as essential knowledge units depending on the tracks of the program as well as the mission of the institution and its programs.

Program core Knowledge Units

Percentages are calculated based on a minimum of credits for the Chemistry program.

#	GKU	Weight%	SKU	Weight%
		14.0	1.1. Principle of Inorganic Chemistry	5.0
1	General Chemistry		1.2. Principle of Physical Chemistry	5.0
			1.3. General Chemistry Laboratory	4.0
			2.1. Principles of organic chemistry	7.0
2	Organic Chomistry	24 5	2.2. Organo-physical chemistry	7.0
2	Organic Chemistry	24.5	2.3. Bioorganic chemistry	3.5
			2.4. Organic Chemistry Laboratory	7.0
		24.5	3.1. Physical Chemistry of Bulk Matter	12.0
3	Physical Chemistry		3.2. Physical Chemistry of Microscopic Matter	5.5
			3.3. Physical Chemistry Laboratory	7.0
		19.0	4.1. Bonding theories and structure	5.0
Л	Inorgonia chomistry		4.2. Chemistry of elements	3.0
4	morganic chemistry		4.3. Chemistry of inorganic materials	5.0
			4.4. Inorganic Chemistry Laboratory	6.0
			5.1 General concepts in analytical chemistry	2.0
5	Analytical Chamistry	18.0	5.2 Classical analytical chemistry	3.0
5	Analytical chemistry		5.3 Instrumental analytical chemistry	7.0
			5.4 Analytical Chemistry Laboratory	6.0

Table 2: Generalized and Specialized Knowledge Units of Chemistry

- The weight% of GKUs are calculated based on the total credit hours of GKUs, which is 57 credit hours.
- Credit hour calculations are based on a formula in which one 50-minute lecture, or two or three 50-minute laboratory or tutorial sessions over a 15-week teaching semester are regarded as one credit hour.

- The total contact hours of laboratory and tutorial sessions should be between 50-40% of the total contact hours of GKUs.
- Tutorial sessions should not be less than 10 % of the total contact hours of the total contact hours of laboratory and tutorial sessions.

Chemistry Experience Units (CEUs)

The aim of introducing Chemistry experience units as a chemistry curriculum criterion is to promote chemistry programs involvement with labor market in order to develop and enhance professional skills for chemistry graduates and foster students' career development in chemistry-related labor market. CEUs are calculated based on a minimum of [8] credits for required and elective experience. Chemistry Experience activities should account for a minimum of 180 contact hours of student contact hours in the final year of the program. CEUs are learner-centered experience Units within the advanced level of the program that:

- allows students to independently apply their knowledge and practical skills in various areas of learning and real-life situations.
- enables students to incorporate professional skills with chemistry knowledge and skills in order to acquire professional and career-related skills and establish a working network.
- prepares students for their career and identifies the appropriate future professional training.

CEUs include all activities that meet the above-mentioned requirements, examples, but not limited to the following:

- 1. Research Project,
- 2. Field Experience,
- 3. Literature Investigation,
- 4. Extended Case Study,
- 5. Collaborative Project,
- 6. Voluntary Project,
- 7. A year in Industry

Students in such activities should demonstrate and practice values, develop responsibility, ethical and scientific conduct, high skills in leadership, project management, organizational skills, engagement with literature, oral and written communication.

Applied Chemistry Units (ACUs)

Calculated based on a minimum of [18] credits for required and elective courses. ACUs provide a wide range of applied chemical courses in certain areas of chemical industries, in addition to some technical and non-technical courses that broaden students' practical knowledge and skills. These courses are used as basis for applied tracks, and they should enable graduates to work in a wide variety of local and national industrial sectors. Examples of such industries can be seen appendix D. To emphasize the applied nature of the courses under Applied Chemistry Units, the applied courses should carry balanced theoretical and laboratory credit hours. Therefore, the laboratory contact hours of the applied courses should be not less than 50% of the total contact hours of all applied chemistry courses.

Appendix (A): International Practices analysis

The GKUs are derived from the following sources:

- 1. [American Chemical Society]
- 2. [Royal Society of Chemistry]
- 3. [9 Selected national and international Universities]

Table A1: International and local universities considered in the analysis of Chemistry program requirements.

#	University	Department name	US News Ranking 2023	QS University Ranking 2023
1	McGill - Canada	Chemistry	126	51
2	Texas A&M - USA	Chemistry	27	72
3	Illinois Urbana Champaign - USA	Chemistry	9	26
4	Wisconsin-Madison - USA	Chemistry	47	44
5	Minnesota Minneapolis -USA	Chemistry	60	59
6	National University of Singapore – Singapore	Chemistry	8	8
7	Nanyang Technological义 - Singapore	Chemistry	3	11
8	North Carolina at Chapel Hill	Chemistry	16	68
9	King Fahd University for Petroleum and Minerals - KSA	Chemistry	92	114

Required Subjects/Topics in Top International and Local Universities

An in-depth analysis of chemistry curriculum in the selected national and international chemistry programs was carried out to identify the major trends and best practices in chemistry curriculum, as can be seen in Table A2. It was apparent that all the examined chemistry programs showed significant similarities in terms of non-chemistry subject requirements such as math, physics, computer programming, biology, however, they differ slightly in the total number of credit hours and in biology whether I it's a requirement or elective requirement. It was also clear that all analyzed chemistry curriculum showed agreement in the inclusion of traditional chemistry branches in the curriculum, these include, general chemistry, organic, inorganic, physical and analytical chemistry. These branches are given the name General Knowledge Units in the current chemistry curriculum criteria. It was seen that these branches have list of major topics which all present in chemistry curricula that have been analyzed. These list of topics for each chemistry branch are named Specialized Knowledge Units in this document. All analyzed chemistry programs provide elective chemistry and non-chemistry courses, these electives, in some programs, present chemistry tracks that serve local industry. Therefore, it is strongly recommended that chemistry programs in the Kingdom should provide elective chemistry and non-chemistry courses to prepare students to work in the local chemistry-related industries. According to the surveyed chemistry programs and ACS and RSC requirements, it is a significant trend in modern chemistry curriculum that it provides students with chemistry experience credits. This can include research project, field training, case study, a year in industry, based on the program mission. Therefore, it is important for chemistry curriculum in the Kingdom to also adopt this trend but with flexibility in terms of what is required and what is elective.

Table A2: Chemistry program required Subjects/Topics in elite International and local Universities.

			2			_	C	_	0	0	Count	
GKUS	3805		2	3	4	5	6	/	8	9	Total	Note
	Principle of Inorganic Chemistry	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
General Chemistry	Principle of Physical Chemistry	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
	General Chemistry Laboratory	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
	Principles of organic chemistry	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
Organic	Organo-physical chemistry	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
Chemistry	Organic preparations	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	Α
	Polymer Chemistry	Y	Y				Y	Y	Y		5	С
	Bioorganic chemistry	Y	Y				Y	Y	Y	Y	5	В
	Laboratory	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
	Chemistry of element	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	Α
Inorganic	Material Chemistry	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	Α
Chemistry	Inorganic Chemistry Laboratory	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
Analytical	Qualitative and quantitative analysis	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
Chemistry	Instrumental analysis	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	Α
,	Analytical Chemistry Laboratory	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
	Chemical thermodynamics	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
	Kinetic and catalysis	Υ	Y	Y	Υ	Y	Y	Y	Y	Y	9	Α
Physical Chemistry	Surface chemistry (Elective)				Y		Y	Y	Y		4	с
	Theoretical chemistry	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	Α
	Physical Chemistry Laboratory	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
	Principle of Scientific research	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A
Chemistry	Research project	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	Α
experience	Seminar		Y	Y			Y	Y	Y	Y	6	В
	Field experience										0	С
Applied	Technical Electives	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	Α
Chemistry	Non-Technical Electives	Y	Y	Y	Y	Y	Y	Y	Y	Y	9	A

• Any specialized knowledge unit that was taught by 65 % or more of the universities were considered an important SKU and recommended and Labelled "A."

- If the comparison showed that a particular SKU scored below 65% and was believed to be important, they were further screened by applying another acceptance condition as defined in the FE exam by QIYAS and SCE. The SKUs that satisfy this condition are recommended and labelled by "B."
- SKUs not meeting the above conditions were be recommended, labeled by "C," and eliminated from Specialized Learning Outcomes.
- Comparisons were made based on the course descriptions. If no syllabus is available, consensus ware made.

Approach to setting the domains of chemistry programs.

Chemistry is an experimental science and chemistry program graduates are placed in Saudi Arabia over a wide range of sectors with different nature and applications of chemical sciences. Therefore, developing effective domains of unique nature for chemistry, and related to Saudi jobs market, for chemistry programs is vital. Diagram 1. describes the approach followed for setting the domain of chemistry programs. An overview analysis of where chemists work and what their primary duties should be available in order to identify main stakeholders and recognize the critical and professional skills of chemists. This is an important step to consider while developing learning outcomes and is described in section 2.1 and 2.2.

In step 2 and 3, the accreditations standards and requirements for chemistry programs set by both RSC and ACS were critically analyzed, as can be seen Diagram 2. The results of these two steps clearly show that the domains of RSC and ACS are almost identical, particularly knowledge domain.

1. Alignment of knowledge and skills domains

An in-depth analysis of KSA-NQF domains was carried out along with comparison with RSC and ACS domains. The main components of each domain were identified. It was clearly found that Knowledge Domain is identical in KSA-NQF, ACS and RSC referring to a broad background in chemical principles and in-depth study of chemistry or chemistry-related areas. Skills domain is inherently present in KSA-NQF, ACS and RSC domains. Practical skills developed by laboratory experience are considered a primary domain in chemistry programs in both ACS and RSC. Laboratory experience provides practical

application of knowledge in chemical sciences. Therefore, the skills domain in chemistry programs should reflect the experimental nature chemistry and hence, called practical skills.

However, skills in KSA-NQF, there are still two main components which are: critical evaluation of approaches and methods in solving problems. For chemistry programs, these two skills are still necessary. They are also required by ACS and RSC standards and by chemistry career. They are presented in ACS and RSC standards as problem-solving, critical thinking and analytical reasoning. These skills are critical for professional chemists, and they can be neglected in chemistry programs because they are linked to the theoretical aspect of chemistry which are delivered in the classroom and the time of traditional lectures do not allow practicing these skills. To help overcome this challenge, we first classify problems in chemistry to be of theoretical and practical nature. Therefore, we propose to subdivide the practical skills domain into two sub-domains: laboratory-based practical and skills and classroom-based practical skills. An explanation of these sub-domains is as follows:

Laboratory-based: problems of practical nature Classroom-based: problems of theoretical and numerical nature • Hands-on experience in laboratory • Developed via tutorials, in-class exercises, or	Practical Skills						
Hands-on experience in laboratory Developed via tutorials, in-class exercises, or	Laboratory-based: problems of practical nature	Classroom-based: problems of theoretical and numerical nature					
 Operation of modern instrumentation using standard operating procedures Plan, observe, record, analyize, report a scientific experiment. Practice with safety and good scientific conduct homework exercises with oriented feedback. Apply scientific laws and relations to solve complex problems. Critically evaluate method of solutions to scientific problems related to a discipline, profession, or field of work; 	 Hands-on experience in laboratory Operation of modern instrumentation using standard operating procedures Plan, observe, record, analyize, report a scientific experiment. Practice with safety and good scientific conduct 	 Developed via tutorials, in-class exercises, or homework exercises with oriented feedback. Apply scientific laws and relations to solve complex problems. Critically evaluate method of solutions to scientific problems related to a discipline, profession, or field of work; 					

2. Alignment of (Values, Autonomy & Responsibility: Competence) domain

Competence is the ability of a student to perform in real life, which implies interaction in various social situations, cultural settings, and working conditions. In other words, the competences only fully appear when students are put into a practical context related to their future work and life. It is, therefore, work-oriented more than curriculum-oriented. KSA-NQF describes competence in three sub-domains:

- 1. Autonomy and responsibility in the application of knowledge and skills.
- 2. Practice of knowledge and skills in real and work situations.
- 3. Attributes relating to the behavioural and social dimension of learning, work attitude, and ethical considerations.

The analysis and comparison of competence domain and sub-domain in KSA-NQF with RSC and ACS standards are presented in Table 2. From the comparison, we can realize that the description of competence sub-domain; autonomy, responsibility, and practice, contain some learning outcomes such as managing complex technical or professional activities, working in a peer relationship, decision making, analyzing, and interpreting complex information and more others. These learning outcomes match with great similarity the learning outcomes in project work, capstone experience in ACS and RSC standards. It implies that the two sub-domains of competence, autonomy, responsibility, and practice could be merged in one main domain called Chemistry Experience. This will simplify the domain and facilitate the implications within chemistry programs by adding a practical dimension of the domain.

The attributes sub-domain in KSA-NQF are concerned with building a professional relationship, displaying confidence, potential for leadership and entrepreneurialism, being a respectful, team-oriented, right personal attitude towards values and ethics. ACS and RSC, however, introduced professional skills and development domain. In this domain, a significant number of

personal and professional skills are required such as time management, communication skills, information management, information technology, ethics, and safety

skills. To make an alignment this domain with KSA-NQF, we can conclude that the domain professional development, as described in ACS and RSC, has a broader context than 'attributes,' it covers all learning outcomes described in attributes domain, with even more focus on chemistry careers related skills. Therefore, Students professional development appears to be more relevant to chemistry programs and it will ensure to cover those requirements which 'attributes' domain in KSA-NQF contains.

In conclusion, the alignment of KSA-NQF competence domain with ACS and RSC domains to produce domains of chemical nature for chemistry programs in Saudi Arabia has resulted in the following table 4. As can be seen from the table, competence domain in chemistry program learning outcomes will be developed in one major domain, Student Professional Development, which includes two different types of learning units, (i) Chemistry Experience Units, and (i) Applied Chemistry Units. These units represent the advanced level of the program, and they show programs administrations where to provide experiences and/or courses for students to enable them to develop autonomy, responsibility and other professional skills stated in KSA-NQF, ACS and RSC standards.

	Table 2. Alignment of competence	e domain in KSA-NQ	F with RSC and ACS					
		Competence						
KSA-NQF	Values, Autonomy & Responsibility	Practice	Attributes					
RSC	Project work	Professional Skills						
ACS	Research	Capstone experience	Students' development skills					
Chom Drog	Students	opment						
chem Prog.	Chemistry Experien	Applied Chemistry Units						

Table 3. The proposed domains of chemistry programs in the Kingdom of Saudi Arabia

Program level	Chemistry Domains							
Foundation	Knowledge							
Foundation	Practical Skills	Laboratory-based						
level		Classroom-based						
	Values, Autonomy &	Student Professional	Applied Chemistry Units					
Advance level	Responsibility:	Dovelopment	Chemistry Experience					
	Competence	Development	Units					

3. Defining Chemistry program domains

As discussed in section previously, we propose reasonable domains for chemistry programs in Saudi Arabia. The proposed domains show a great alignment with KSA-NQF and with evidence from benchmarking international chemical societies, namely RSC and ACS. The proposed domains are described in detail as follows:

1. Knowledge:

- A breadth study of fundamentals of the main chemistry branches, organic, inorganic, analytical, physical.
- It is also a demonstration of an in-depth understanding of fundamental chemical principles and their modern applications.
- It is recalling, critical interpretation and application of base knowledge in chemistry.

2. Practical skills:

Practical skills in chemistry programs are an essential component to support knowledge and theoretical aspects of chemistry curriculum. It is the application of chemistry curriculum knowledge through practical laboratory.

a. Laboratory-Based Skills

Chemistry students should be able to:

- synthesis, measure, manipulate chemical apparatus and operate modern instrumentation.
- plan experiments with objectives, monitor and measure properties changes, document observations and procedures.
- handle chemicals and hazardous materials and tools safely and conduct a risk assessment.
- interpret data and explain any limits of accuracy and precision of results, write and present scientific reports.
- evaluate and analyze methods of experiments according to the appropriate chemical references.

Diagram 3. Main activities of practical skills in chemistry laboratory

b. Classroom-based practical skills

A significant component of practical skills of chemical science is not of laboratory nature, it is the application of chemistry principles, rules, laws, and theories:

- to solve problems of mathematical or theoretical nature, or problems related to the application of science in real life.
- With critical thinking and analytical reasoning skills to solve theoretical aspects of chemical problems

These skills can be developed in the classroom, tutorials, or homework. Therefore, the program should devote certain number of credit and contact hours to allow student to Perform and develop these classroom-based skills.

3. Student Professional Development:

Student Professional Development domain, with Chemistry Experience Units and Applied Chemistry Units, aims to foster strong collaboration and partnership between chemistry programs and the employment sector, to provide work-based and work-place learning for chemistry students, thus addressing student's long-term employability. Values, Autonomy and Responsibility domain in the recent NQF replaces competence in the previous KSA-NQF, however, for the sake of simplicity, we define competence is the ability of a student to perform in real-life experience, which implies interaction in various working conditions. In other words, students can demonstrate their competence as chemists only and fully when they are put into practical experiences within the program related to future work and life. It is, therefore, work-oriented more than curriculum-oriented. In conjunction with knowledge and practical skills, competence is also about personal attributes, values, ethical aspects, responsibilities, level of autonomy in performing tasks and activities. Here, we describe the

practical domains of chemistry programs where competence can emerge, be developed, and be assessed.

a. Chemistry Experience Units:

It is a learner-centered course that provides experience and activity at the advanced level of the program in order to allows students to independently apply their knowledge and practical skills in various areas of learning and real-life situations. Students can choose from a list of courses or experiences what suits their future career. Any activities performed by students under this domain should be regarded as a student project work to lead, perform, and present. A student should satisfy one or some of the following courses, or any similar further activities that meet the requirements of this domain:

- 1- **Research Project:** It is an individual experimentation work conducted in the final year of chemistry program under supervision of a senior chemistry faculty. Students in research project may participate in an ongoing chemistry research projects in or outside the program. Students in Research Project may investigate topics in basic or applied chemistry or in an interdisciplinary area of science. Students are expected to produce a mini research thesis and may publish their work in peer-reviewed journal.
- 2- **Field Experience:** It is the placement of students in chemical industry for the purpose of training on instrumentations and performing chemical tasks in industry in order to experience chemistry in a real-world setting. Students are expected to perform toward achieving clear and planned tasks and produce, present, and discuss final achievement report. Supervision from the training site as well as from the program is required in Field Experience.
- 3- Literature Investigation: It is a practice of the theoretical aspect of scientific research by demonstration an in-depth understanding of fundamental chemistry required to analyze and critically evaluate certain research topics and questions in chemistry using chemistry literature. Students are expected to effectively communicate scientific information in writing literature investigation report which to be presented and discussed orally.
- 4- Extended Case Study: It is a theoretical research technique where students are required to propose solutions to real chemistry problems or answer real research questions using their knowledge and skills in chemistry incorporated with some real information, real data for real situations.
- 5- Collaborative Project: It is working with other individuals in a team, either a leader or a member of the team to achieve the goals of a chemistry service project which targets at engagement of students with internal or external stakeholders such as industries, research, or analytical labs, tc. Therefore, students will have multiple exposures to the real word using their knowledge and skills in chemistry. Students are expected to measure and report in written and oral forms the achievements of the project goals and KPIs.
- 6- Voluntary Project: It is a form of collaborative work where students are required to develop and implement voluntary projects in collaboration with individuals or organizations outside the program to achieve certain goals. Such projects target delivering chemistry knowledge and skills to the society in different forms and exposures. Examples of such projects include, but are not limited to, school teaching, science days, campaigns etc. students are expected to measure and report the achievement of project goals and KPIs.
- 7- A year in Industry: It represent the most advanced engagement of chemistry program with the chemical industry. It is a complete placement of chemistry student in chemical company as full-time paid employee before returning to the program to obtain his/her chemistry degree. The aim of this practice is enabling student to gain solid understanding of chemical industry and to establish strong professional career in chemistry. It can be

noted that this year in industry is a practice similar to the internship year for medical sciences. Therefore, benchmarking of the implementation of this practice in chemistry with medical programs can be conducted.

For successful implementation of CEUs in chemistry curriculum, programs are encouraged to carefully consider the following points:

- The introduction of CEUs as a curriculum criterion with set of conditions provided previously is to broaden the understanding and application of Chemistry Program engagement with the local chemical industry and chemistry-related labor market in general.
- Programs are expected to employ CEUs to develop and implement unique student chemistry experiences that meet the requirements and conditions of CEUs and the national trends.
- Students in CEUs activities should demonstrate and develop responsibility, ethical and scientific conduct, leadership, time management, organizational skills, engagement with literature, oral and written communication. Students also should build strong transferable skills that help them establish their professional careers in chemistry.
- CEUs are set to acknowledge individual differences, passion, and desires of different students, therefore, programs are encouraged to offer good range of CEUs activities for students to choose from and incorporate to meet the conditions of CEUs, 8 credit hours, and a minimum of 180 contact hours. [Example: if Chemistry Experience Activity is a Field experience taking place during summer vacation, then student is required to work 6 hours five days a week for the total of 6 weeks so, (6hrs×5days) ×6weeks=180hrs)].
- For the development of CEUs, programs can integrate more than one experience course in order to meet the 8 credit hours and the 180 contact hours of CEUs, and hence enrich students' work-related experiences.

b. Applied Chemistry Units:

Applied Chemistry Units are in conjunction with Chemistry Experience Units, where student incorporates a wide range of applied chemical courses in certain areas of chemical industries in addition to some technical and non-technical courses with work experience. These applied courses aim to broaden students' practical knowledge and skills that are required by the chemical industry. These courses are also used as a basis for applied chemical tracks, to enable graduates to work in a wide variety of local and national industrial sectors.

Appendix (B): Alignment of Key Learning Outcomes of Chemistry with KSA-NQF.

	NQF Learning Areas								
General Key Learning Outcomes	Knowledge and understanding	Skills	Values, Autonomy, and Responsibility						
1	\checkmark								
2	\checkmark								
3	\checkmark								
4		\checkmark							
5		\checkmark							
6		\checkmark							
7		\checkmark							
8		\checkmark							
9		\checkmark							
10			\checkmark						
11			\checkmark						
12			\checkmark						
13			\checkmark						

NQF Learning Areas	Knowledge and understanding	Practical S	Values, Autonomy, Responsibility		
Chemistry Learning Areas	Knowledge and understanding	Laboratory Skills	Classroom Skills	Students Professional Development	
Chemistry Key Learning Outcomes	 KLO1. Demonstrate a critical understanding of the key and core knowledge of the main branches of chemistry and related fields, as outlined GKUs and SKUs. KLO2. Identify the interdisciplinary nature between chemistry branches to interpret and evaluate the practical applications of the essential facts, concepts, principles, and theories of chemistry. KLO3. Predict and interpret chemical and physical changes that organic and inorganic materials undergo using appropriate chemical information, data, and rules. 	 KLO-4. Practice health and safety regulations while handling chemicals and performing laboratory activities with the capability to conduct a sufficient risk assessment. KLO-5. Conduct accurate quantitative and qualitative measurements using standard chemical instrumentation and software and report experimental results with appropriate interpretation, calculations, and reasonable conclusions. KLO-6. Synthesize and characterize organic and inorganic materials using appropriate procedures, instrumentations, and chemical apparatus. KLO-7. Develop a systematic and reliable experimental record via precise observations of measurements and changes and assessment of the 	 KLO-8. Apply principles, laws and theories of chemistry and related physical and mathematical equations to solve complex chemical problems with appropriate approximation, precision, accuracy, and statistical validity. KLO-9. Solve chemical problems related to different applications of chemistry through critical thinking to develop appropriate rational, explanations and answers. 	 KLO-10. Plan, execute and report project work by employing knowledge learned, practical skills developed previously in the program with effective use of chemical literature and retrieval of chemical methods. KLO-11. Present chemical data and reports scientifically in written and oral communication with proper scientific conduct and ethical responsibility. KLO-12. Lead and manage chemistry project work effectively, and demonstrate self- discipline, decision-making capabilities and Engagement in team working to build a working network in chemistry related fields. KLO -13. Relate the learned chemistry knowledge and skills to future career and Plan for further professional training as a chemist. 	
		limit of accuracy of experimental data.			

Appendix (C): Learning Outcomes and Topics for Knowledge Units

Essential Knowledge Unit (EKU): Mathematics

Description	This Essential unit aims to understand and master the essential concepts, principles, rules, and theorems of calculus I and II, common applications of differential equations, statistics topics and applications, applied Linear Algebra. It also enables students to practice analytically various calculus concepts, principles, rules, theorems, and techniques on real-life problems related to the field of chemistry. Students are also required to demonstrate how to use mathematical software and tools on various calculus, statistics, and differential equations.
Topics	 The following topics must be included in this EKU: Calculus 1 Limits and continuity of functions of a single variable. Differentiability, Techniques of differentiation. Implicit differentiation. Local extrema, first and second derivative tests for local extrema. Concavity and inflection points. Curve sketching. Applied extrema problems. The Mean Value Theorem and applications. Calculus 2 Definite and indefinite integrals of functions of a single variable. Fundamental Theorem of Calculus. Techniques of integration. Hyperbolic functions. Applications of the definite integral to area, volume, arc length and surface area. Improper integrals. Sequences and series: convergence tests, integral, comparison, ratio and root tests. Alternating series. Absolute and conditional convergence. Power series. Taylor and Maclaurin series. Calculus 3 Polar coordinates, polar curves, area in polar coordinates. Vectors, lines, planes, and surfaces. Cylindrical and spherical coordinates. Functions of two and three variables, limits, and continuity. Partial derivatives, directional derivatives. Extrema of functions of two variables. Double integrals, double integrals in polar coordinates. Triple integrals, triple integrals in cylindrical and spherical coordinates. Introduction to Differential Equation: Techniques and applications of ordinary differential equations, including Fourier series and boundary value problems, and an introduction to partial differential equations.
Specialized Learning Outcome	 By completing this EKU, students should be able to: Recognize the essential concepts, principles, rules, and theorems of mathematics related to limits and their properties, differentiation and their applications, integration and their applications, and various types of functions. Demonstrate analytically various calculus concepts, principles, rules, theorems, and techniques related to limits and continuity, differentiation and their applications, integration and their applications. Apply mathematical concepts, principles, rules, techniques, and theorems to real-life problems in the fields of science and chemistry. Distinguish various types of mathematical functions with applications and analyze and sketch the graphs of those functions by using graphical software. Apply mathematical techniques and tools to calculate mathematical properties and manipulate mathematical data. Practice ethical principles and responsibility in self-learning, problem solving, and continuing personal and professional development. Practice mathematical software programs and tools on statistical data and analyze and interpret statistical graphical displays.

The Table below shows maps the Specialized learning Outcomes for the SKU to the KLOs

		KLOS											
SLOs		KLO-K			KLO-LS				KLO-CS		KLO-SPD		
		1	2	3	4	5	6	7	9	10	11	12	13
	1	\checkmark											
	2	\checkmark	\checkmark										
	3			\checkmark					\checkmark	\checkmark			
	4	\checkmark	\checkmark						\checkmark				
	5	\checkmark	\checkmark						\checkmark				
	6								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	7	\checkmark	\checkmark						\checkmark	\checkmark			
	8	\checkmark	\checkmark						\checkmark	\checkmark			

Essential Knowledge Unit (EKU): Physics

Description	This essential unit aims to introduce chemistry students to the basic laws and principles of Newtonian mechanics; oscillations, waves, and wave optics, the basic laws of electricity and magnetism; geometrical optics, properties of electromagnetic fields, dipole and quadrupole fields and their interactions, chemical binding of molecules, electromagnetic properties of materials, Maxwell's equations, and properties of electromagnetic waves. It also provides students with background in Interference and diffraction, photons and matter waves, the Bohr atom, uncertainty principle, and wave mechanics.
Topics	 The following topics must be included in this EKU: Mechanics: Newton's Laws, work and energy, static properties and fluids, oscillations, transverse waves, systems of particles, and rotations. A calculus-based approach for chemistry major. Electricity and Magnetism: Coulomb's Law, electric fields, Gauss' Law, electric potential, capacitance, circuits, magnetic forces and fields, Ampere's law, induction, electromagnetic waves, polarization, and geometrical optics. A calculus-based approach for major in chemistry. Quantum Physics: Interference and diffraction, photons and matter waves, the Bohr atom, uncertainty principle, and wave mechanics. A calculus-based course for chemistry major.
Specialized Learning Outcome	 By completing this EKU, students should be able to: Recognize Newton's Laws, work and energy, static properties and fluids, oscillations, transverse waves, systems of particles. Identify the basic principles, concepts, and laws of electricity and magnetism, and relate the fundamentals of this unit to real life applications. Apply the basic principles, concepts, and laws of electricity and magnetism to a range of different problems in electromagnetism. Solve vector calculus problems in electromagnetism. Apply the basic principles, concepts, and laws of electricity and magnetism to a range of different problems in electromagnetism. Demonstrate how to perform common electromagnetism laboratory techniques, apparatus, and tools in safe and healthy manners. Apply principles of quantum mechanics to calculate observables on known wave function. Analyze and interpret experimental results and develop appropriate and accurate conclusions.

The Table below shows maps the Specialized learning Outcomes for the SKU to the KLOs

012							ILC03						
SLU		KLO-K			KLO	-LS		KLO	-CS		KLC	-SPD	
3	1	2	3	4	5	6	7	8	9	10	11	12	13
1	\checkmark	\checkmark											
2	\checkmark	\checkmark											
3	\checkmark	\checkmark						\checkmark	\checkmark				\checkmark
4	\checkmark	\checkmark						\checkmark	\checkmark				
5	\checkmark	\checkmark						\checkmark	\checkmark				
6				\checkmark	\checkmark	\checkmark	\checkmark						\checkmark
7	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	
8					\checkmark	\checkmark						\checkmark	

Essential Knowledge Unit (EKU): Computer Programing

Description	Overview of computer hardware and software. Programming in Python with emphasis on basic program constructs: variables, assignments, expressions, decision structures, looping, functions, lists, files and exceptions; Introduction to objects and classes. Programming in C with emphasis on pointers and functions with output parameters. Simple multidisciplinary problem solving in science and chemistry in particular.														
	The fo	ollowi	ng topi	i <mark>cs mu</mark> s	t be ii	nclude	d in th	is EKU:	:						
	1.	Ove	rview	of Com	puter	Progra	ammin	g using	Pytho	on					
	2.	Vari	ables,	Strings	and A	rithm	etic Op	eratior	าร						
	3.	Sele	ection S	Structu	res										
Toutoo	4.	Rep	etition	s and L	oop S	tatem	ents 1								
lopics	5.	Fun	CTIONS		inting										
	7. Files and Exceptions														
	7. g	Clas	s dilu e	d Obio	nis ct Orig	ntatio	n								
	9. Introduction to C language 1														
	10). Poir	nters ir	n C lang	uage	uge I									
	By completing this EKU, students should be able to:														
	1. Write python expressions.														
	 Use python's control structures in problem solving. 														
	 Use the console and files for input/output. 														
	4.	Use	pytho	n lists,	tuples	, and o	diction	aries in	prob	em sol	ving.				
	5.	Dev	elop p	ython o	ode t	o solve	e a spe	cific pro	oblem						
Specialized	6.	Bec	ome fa	miliar	with p	rograr	nming	constru	ucts tł	nat are	specia	al to th	e C lar	iguage.	
Learning	The Ta	able b	elow s	hows r	nans t	he Sp	ecialize	ed lear	ning ()	utcom	es for	the Sk	(U to t	he KLOs	
Outcome	510						o or carrie o	KLOs							
	sLU		KLO-K	-		KL	O-LS	-	KL	D-CS	10	KLC)-SPD	10	
	1	1 \checkmark	 √	3	4	5	6	\checkmark	8 √	y √	10	11	12	$\sqrt{13}$	
	2	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark				\checkmark	
	3	√ √	√ .(√ √	√ √	√ √				\checkmark	
	4	v √	v √					✓ ✓	✓ ✓	✓ ✓				✓ ✓	
	6	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark					

General Knowledge Unit (GKU 1): General Chemistry

	This general unit enables student to distinguish between states of matter and their physical
	and chemical properties, as well as between mixtures and pure substances, define the atom,
	describe the arrangement of elements in the periodic table and their electronic distribution,
	draw Lewis structures for molecules, apply the laws of significant numbers to chemical
Description	arithmetic operations, name ionic and covalent compounds and determine their chemical
·	formulas, Weighs chemical reactions, describes the types of chemical bonds and forces
	between molecules, describes and compares the basics of thermodynamics and solves
	applications on it, describes the basics of kinetics of chemical reactions and solves applications
	on it.

Specialized Knowledge Unit (SKU1.1): Principle of Inorganic Chemistry

	This SI	KU 1.1	presei	nts the	essen	tial pri	inciple	s and	commo	on appl	ication	ns of cl	nemist Pactio	ry. It in ns and	troduces
Description	stoich	iomet	rv: rea	ctions	in ad	ueous	soluti	on: th	nermoc	hemist	rv: ele	ectroni		cture o	f atoms:
	period	lic pro	perties	s of the	elem	ents; a	ind bas	sic co	ncepts	of cher	nical b	ondin	g.		1 acomo,
	The fo	ollowir	' ng topi	cs mus	t be in	nclude	d in th	is SKI	J:				5		
	1.	Essent	ial Idea	as of Cl	nemist	ry.									
	2. /	Atoms	, Mole	cules, a	and lo	ns.									
	3.	Electro	onic Str	ucture	and F	Periodi	c Prop	erties	5.						
	4.	Period	ic table	e and p	eriodi	city									
Topics	5. (Chemi	cal Bor	nding a	nd Mo	plecula	ir Geor	netry							
ropics	6. /	Advan	ced Th	eories	of Cov	alent	Bondir	ıg.							
	7. (Compo	osition	of Sub	stance	es and	Solutio	ons.							
	8. 9	 Stoichiometry of Chemical Reactions. Acid-base chemistry 													
	9. Acid-base chemistry														
	10. 9	10. Solubility 11. Nuclear chemistry													
	11. Nuclear chemistry By completing this SKU, students should be able to:														
	Ву со	mpleti	ng this	SKU, s	studer	nts sho	uld be	able	to:						
	1.	Disting	guish cl	nemica	land	ohysica	al prop	erties	s of mat	ter and	d their	chang	es, em	pirical	formulas
		and m	olecula	r form	ulas, a	and mo	plecula	r sub:	stances	and io	nic su	bstanc	es.		
	2.	Descri	be the	basics	s of a	tomic	theor	ies ai	nd mod	iels, fu	Indam	ental	atomic	struct	ure, the
		thermodynamics.													idings in
		therm	odynar	nics.							: C:	£:			
	3. Apply dimensional analysis using appropriate units, significant figures, scientific notation, and the mole concept in quantitative chemical calculations														
		and the mole concept in quantitative chemical calculations.													
Specialized	4. (CdlCuld	ale all		/eignt	tho no	recent	ent, viola	of a roa	a weigi	nis, ir	lution	piricai	anu n	
Learning	5	Idontif	ias ur a	ortios	of olor	nonts	in the	porio	dic tabl		ding t	o pori	dicity	nattor	1.
	5.	Descril	y prop ha fun	damon	tals o	f acid/	hase o	homi	stry in	cluding	nH c	o perio alculat	ions k	patteri uffor h	is Nebavior
Outcome	Jutcome and acid/base titrations										enavior,				
	The table below shows maps of the Specialized learning Outcomes for the SKU to the KLOS.														
	SLOs		KLO-K			KLC)-LS	KLOS	KLC)-CS		KLC)-SPD		
		1	2	3	4	5	6	7	8	9	10	11	12	13	
	1	\checkmark	\checkmark	\checkmark											
	3	\checkmark	\checkmark	\checkmark					\checkmark	√				√	
	4	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark				\checkmark	
	6	\checkmark	\checkmark	√											

•	· · · ·														
Description	This S the el mecha Intern electr	SKU 1.2 presents the essential principles and common applications of chemistry. It introduces elementary principles and theories of chemistry, electronic structure of atoms, quantum chanics and atomic orbitals; representations of orbitals, gases laws and properties, ermolecular forces, liquids, solids, solutions, kinetics, equilibria, precipitation, thermodynamics, ctrochemistry, organic chemistry.													
Topics	The fo 1. 2. 3. 4. 5. 6. 7. 8.	 Electronic structure of atoms, quantum mechanics and atomic orbitals Gases laws and properties Intermolecular forces, liquids, solids, solutions Chemical kinetics Chemical equilibria Thermodynamics, Electrochemistry, Organic chemistry y completing this SKU, students should be able to:													
Specialized Learning Outcome	By con 1. 2. 3. 4. 5. 6. 7. 8. The ta SLO s 1 2 3 4 5	y completing this SKU, students should be able to: 1. Relate the quantum numbers to the number and type of orbitals, 2. Determine electron configuration of atoms and ions. 3. Predict the trends in atomic radii, ionic radii, ionization energy, and electron affinity using the periodic table. 4. Apply the gas laws and kinetic molecular theory to processes involving gases. 5. Interpret and sketch phase diagrams and calculate the empirical formula and density of ionic and metallic solids. 6. Determine rate law, rate constant, order, and the concentration of reactants at a given time for a chemical reaction; and 7. predict a rate law for a reaction having a multistep mechanism. 8. Explain fundamental thermodynamic properties by applying thermodynamic laws he table below shows maps of the Specialized learning Outcomes for the SKU to the KLOS. 8. Store the table to the tree to the													
	6	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark				\checkmark	

 \checkmark

Specialized Knowledge Unit (SKU1.2): Principle of Physical Chemistry

8 🗸 🗸 🗸

 \checkmark

Specialized Knowledge Unit (SKU1.3): General Chemistry Laboratory

Description	SKU 1 chemi chemi safety gases, therm	1.3 pre istry u ical co r regul , liqu iodyna	esents nits. Ir ncepts ations. ids, so imics.	comple a addit in an Areas olids,	ement ion, tl exper of exp soluti	ts and nis spe imenta perime ons,	conso ecialize al setti entatio chemio	olidate ed pra ng aco ns inc cal ki	es the ctical u cording lude m netics,	theor unit o to th olecu che	etical k ffers ar ne chen lar geoi mical	n oppo n oppo nistry l metry equilib	dge ac ortunity aborat and bo rium,	cquired y to inv tory he onding and	l general vestigate ealth and theories, chemical
Topics	The for 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 5. 5. 10. 12. 13. 14. 15. 14. 15. 15. 15. 15. 10. 15. 15. 15. 15. 15. 15. 15. 15	bllowin Labora Techni Molec Behav Deterr Enthal Crysta Freezin Rates Colorin Chemi Deterr Titratio Hydrol Solubi	ng topi atory S iques ular Ge ior of C minatic py of V lline So ng Poir of Che of Che	afety a afety a cometr Gases: I on of R: /aporize blids nt Depr mical R mical R Detern uilibriun on of th acids ar Salts a d Thern	t be in nd Wo ies of Molar The G ation a essior eactio eactio m: Le e Diss id Bas nd pH nodyn	nclude ork Ins Covale Mass o Gas Lav and Cla ons I: A ons I: A ons II: A on of a Châtel ociatic es of Bu amics	d in th truction of a Va w Cons ausius- ausius	is SKL ons; Co lecule por tant Clape React d Orc libriur rincipl stant	J: commor es: Lewi yron Ec ion ler of H n Const es of a We s	n Labo is Stru quatic 202 I tant in eak Ad	Decomp Aqueo	Appara and th positio bus Sol	atus; B e VSEP n ution	asic La 'R Mod	boratory lel
Specialized Learning Outcome	 15. Solubility and Thermodynamics By completing this SKU, students should be able to: Practice basic laboratory safety and work instructions in general chemistry laboratories. Record experimental results neatly and concisely in a laboratory notebook and in a manner that gives proper attention to sources of experimental error. Analyze and interpret experimental results, use a spreadsheet program such as Excel, and develop appropriate and accurate conclusions. Demonstrate laboratory proficiency by supporting arguments with evidence, and by clearly communicating the results of the chemical experiments. Perform precise quantitative measurements using volumetric glassware, analytical balances, and electrochemical and spectroscopic instruments. The table below shows maps of the Specialized learning Outcomes for the SKU to the KLOS. SLO SLO KLO-K KLO-IS KLOS KLO-SPD Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y														

 \checkmark \checkmark \checkmark \checkmark

4

General Knowledge Unit (GKU 2): Organic Chemistry

Description

Describe the carbon element and its derivative compounds and their structures and learn about their properties and how the carbon element bonds to itself and other elements to form compounds, heterogeneous rings and vital organic molecules, study their interactions and suggest an appropriate mechanism for them, in addition to analyzing the organic molecules in terms of their photosynthetic activity and their stereochemistry and using different spectrophotometric methods to deduce structural formulas of organic molecules.

Specialized Knowledge Unit (SKU2.1): Principle of Organic Chemistry

Description	This unit covers an Introduction to organic chemistry including definition of organic chemistry, importance and general properties of organic compounds, chemical bonding and hybridization, bonds polarity, classification of hydrocarbons, saturated hydrocarbons, their physical properties, preparation, and reactions. Aromatic compounds, aromaticity and Huckel rule. Nomenclature of aromatic compounds. Electrophilic substitution reactions of aromatic compounds and their mechanism. Reactions of side chain. Stereochemistry. Alcohol, phenols ethers, aldehydes, ketones, carboxylic acids and derivatives and amines. Their physical properties, acidities, solubility, preparations, and reactions. Nucleophilic addition to carbonyl group. Application of organic compounds in industrial and medical fields.
Topics	 The following topics must be included in this SKU: Introduction to organic chemistry which includes definition of organic chemistry, importance and general properties of organic compounds, chemical bonding and hybridization, bonds polarity, classification of hydrocarbons. Alkanes: Nomenclature (IUPAC and trivial), properties, synthesis, and reactions. Alkenes: Nomenclature, properties, synthesis, and reactions including polymerization of Olefins. Stereochemistry: Introduction to stereochemistry including conformational, geometrical, and optical isomers. Alkynes: Nomenclature, properties, synthesis and reactions. Aromatic compounds.: Aromaticity, Hükel rule, Nomenclature, Electrophilic aromatic substitution reactions, Side halogenations and oxidation. Orientation in monosubstitued benzene derivatives. Functional groups (Alcohols, phenols, ethers, carbonyl group derivatives and amines), Nomenclature, properties, synthesis, and reactions including nucleophilic addition to Carbonyl group and its mechanism. Examples of multi-step synthesis. Examples of organic compounds applications to various industrial and biological processes
Specialized Learning Outcome	 By completing this SKU, students should be able to: Differentiate between different types of carbon atom hybridizations and compounds and functional groups derived from them. Apply IUPAC rules in writing names and drawing structures of classes of organic compounds. Identify and classify physical and chemical properties of major functional groups. Apply basic organic reactions for the preparation of hydrocarbons and common functional groups. Outline schemes including multistep reactions. Interpret and draw stereochemistry of selected examples of organic reactions.

The	table b	elow s	hows r	naps t	he Spe	ecialize	ed learr	ning O	utcome	es for	the SK	U to t	he KLOs
510	KLOs												
SLU	KLO-K			KLO-L	S			KLO-C	S	KLO-S	PD		
3	1	2	3	4	5	6	7	8	9	10	11	12	13
1	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark		\checkmark	
2	\checkmark							\checkmark	\checkmark				
3	\checkmark	\checkmark	\checkmark					\checkmark					
4	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark			
5	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark				
6	\checkmark	\checkmark						\checkmark	\checkmark				

Specialized Knowledge Unit (SKU2.2): Organo-Physical Chemistry

Description	This or spectro Substit unsatu detaile 1H, 13 of stru	gano-poscopy cution rated ed desc C-NMF ctures	ohysical 7. The re and el hydroca cription 8, MS, U of orga	unit in eaction liminations, of mec V-Vis th nic read	cludes and m on rea nucleo hanism e base ctions.	two m nechani actions ophilic ns of th es of th	ain top sm par in sa additio tese rea ese tecl	ics orga t covers turated n to can actions. nniques	nic rea s the d hydrc rbonyl The or and th	ctions a ifferent carbon group, ganic sp eir appl	and me types s, ele pericy pectro icatior	echanis of read ctrophil clic rea scopy p ns in the	ms and ctions, lic add ctions, part incl e identi	organic such as: ition to and the ludes IR, fications	
	The fo	llowin	g topics	must b	e inclu	uded in	this Sk	(U:							
	1. I i	Introdu Identifi	uction, 1	Thermo	dynam ion me	ic and	Activat m	ion ene	rgy. Ph	ysical ai	nd che	mical m	hethod	s for the	
	2. 1	Reactio	on kinet	ics and	mecha	nism, i	sotope	effect l	abeling	and in	terme	diates d	letermi	nations.	
	3. /	Acids a	nd base	es,											
Tonics	4. /	Aliphat Additic	ic nucle	eophilic	substit	tution i	reaction	าร							
ropics	6. I	Nucleo	philic a	ddition	to cark	oonyl g	roup								
	7.	Pericyc	lic reac	tions											
	8. I 0 I	Radica Mecha	l reactic	ons and	photo in the	chemis	try tions s	uch as 9		17 F1 F	2 otc				
	10. /	Applica	ation of	spectro	scopic	techni	ques (N	IMR, IR	, UV-Vi	s, MS) f	or the	identifi	cation	of	
	(organio	c reactio	ons prod	ducts.					. ,					
	By con	npletir	ng this S	KU, stu	dents	should	be abl	e to:		omic co	ncidor	ations			
	 Describe reaction intermediate, medium effect and controlled reactions. Identify methods used for the investigation of reaction mechanisms, energy consideration 														
	3. Identify methods used for the investigation of reaction mechanisms, energy consideration and stereochemical considerations														
	ć	and ste	ereoche	mical co	onside	rations									
 Recognize and characterize types of reaction mechanism and illust rearrangements and structure-reactivity. 										strate	principl	es of m	olecular		
	rearrangements and structure-reactivity.														
	6. (Compa	ire and	disting	guish r	reactivi	ty base	ed on	physica	and	chemi	cal pro	perties	of the	
	I	nolecı	ular stru	icture.			,		. ,						
	7. /	Apply i	reaction	mecha	inisms,	, sterec	chemi	stry, and	d kineti	cs in th	e iden	tificatio	on of st	ructures	
	(of orga	inic com	npound:	S.		به ما م		ا ما:44م م						
Specialized	8. I 9 I	list are	s princip as of ar	onlicatio	pectro on of d	iscopy, ifferen	their ty t specti	pes and	techni	ences p iques	etwee	n them	•		
Learning	10. /	Apply o	differen	t spectr	al tech	niques	in solv	ing spec	tral pro	blems	and id	entifica	tion of	reaction	
Outcome	ł	produc	cts.												
	The ta	ble be	low sho	ws map	os the	Special	lized le	arning (Dutcom	nes for t	the SK	U to the	e KLOs		
								KLOs							
	SLU		KLO-K			KL	O-LS		KLC	D-CS		KLO	-SPD		
	<u>1</u> 2 3 4 5 6 7 8 9 10 11 12 13												13		
	2	v √	V	•					\checkmark	↓			v		
	3	\checkmark	\checkmark	\checkmark					\checkmark	~	~				
	5	√	√	√					\checkmark	√					
	6 7	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark		\checkmark		
	8	√							~	\checkmark			\checkmark		
	9 10	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark		\checkmark		

Specialized Knowledge Unit (SKU2.3): Bioorganic Chemistry

Description	Hetero Reacti Hetero config Protei Lipids, Natura Isopre Carde Pyrrol Pathw Biolog	ocycles, ions, C ocycles uration ns, Nat , Classif al prod enoids: nolides idines, vay). All gically in	, Nome Cycloadd : Urac , cyclic ural am fication lucts, p Terpen , Biosyr Piperid kaloids, nportar	nclature dition il and structu ino acio , Waxe rimary es, class thesis enes, ls Examp nt natur	e, Aror Reactin Purin ures, c ds: Prop s, Oils and so sificatio of Terp oquinc les: Fla al proc	naticity ons, b es. Ca xidatio perties, and Fa econda on, mo penoids lines, (vonoic lucts	r, Five, niologic arbohyd on, redu , Synthe ats (Glu noterp s and S Quinolid s, Anth	six and al acti drates, uction, esis and ycerides tabolite enes ar teroids nes, Ind nraquin	seven vity, a Defini osazor Reacti s), synt s, isola id sesq (Aceta oles ar ones, C	membe antibioti ition, I nes, asc ons, Syn thesis a ation, so juiterpe te Path nd Purin Coumari	ered h cs, a Nomer orbic nthesis nd pr eparat nes. S way). es. Bio ns, Xa	eterocy ntitumo nclature acid, a s of Pep opertie ion, ar teroids Alkaloic osynthe nthone	relic con pr. Bic e, Clas mino s tides, F s of Gl d struc : Triter ds, Clas esis of A s, and	mpound sificatio ugars. / Protein o lyceride: ctural id penoids sificatio Alkaloids Polyketi	 s: Synthesis, important n, absolute Amino acids, classification. s, Glycolipid. dentification. and Sterols, n, Examples: (Amino acid de pathway.
	The fo	ollowin	g topics	must b	e inclu	ided in	this SK	(U:							
	1.	Hetero	cyclic c	ompour	nds, cla	ssificat	tions, a	romatic	ity						
	2.	Five, six	x and se	even me	ene in	ed hete Nidazoli	rocycle	es. zole inc	lole nu	ridine	auinol	ine iso	auinoli	ne	
	4.	IUPAC	and triv	ial nam	es.	11002010	c, pyraz	2010, 1110	101C, py	manne,	quinoi	1110, 130	quinoii	ne.	
	5.	Synthe	sis, read	ctions, e	electro	ohilic a	nd nuc	leophili	c subst	itutions	, phys	ical pro	perties	, and bio	ological
	C	activity. Uracil and purines.6. Carbohydrates, definition, nomenclature, classification.													
	6. 7	Glycera	iydrates aldehvd	e mon	tion, n osacch	omenci arides	lature, oligosa	classific	ation. es pol	vsaccha	rides				
Topics	8.	Absolu	te confi	guratio	n, A, L-	configu	uration	, chiral (centers	, asymr	netric	carbon	, optica	l activit	/.
	9.	Fischer	, Hawo	rth proj	ections	s, cyclic	struct	ures, α,	β-conf	iguratio	n. Oxi	dation,	reduct	ion.	
	10.	Amino	acids, c	lassifica	ition, n	omenc	lature,	structu	res.						
	11. 12	Peptide	es, prot Lorodu	eins, lip cts. prin	ids, str	ucture:	s biolog	gical imp metabo	oortand	ce.	tion				
	12.	Isoprer	noid, m	onoterp	enoids	, sesqu	iterper	noids, d	iterpen	noids, st	eroids				
	14.	14. Biosynthesis.													
	15.	Flavono	oids, co	umarin	s, alkal	oids, st	ructure	es name	s and o	classifica	ation.				
	16.	Import	ant nat	ural pro	ducts,	use in i	industr	ial and i	medica	l fields.					
	1	mpletin Classify	i g this S / differe	KU, stu	dents es of h	should	be able	e to:	ds						
	2.	Write I	UPAC a	nd trivia	al nam	es and	draw st	tructure	es of ex	amples	of het	erocycl	es.		
	3.	List exa	mples	of biolo	gical a	nd indu	istrial a	pplicati	ons of	specific	exam	ples of	hetero	cyclic co	mpounds.
	4.	Define	carboh	ydrates	and th	eir gen	ieral str	ructures	and re	ecognize	e diffe	rent typ	bes of c	arbohyd	lrates.
	5. 6	Apply s	itereoch	ino ació	y princ Is thoi	ples in	drawir	ng struc stru an	tures o distruc	t carbol	nydrat	es.			
	7.	Define	protein	s and p	eptide:	s. their	structu	ires and	l biolog	gical imp	oortan	ce.			
Specialized	8.	Define	natural	produc	ts, prir	nary ar	nd seco	ndary n	netabo	lites.					
Learning	The ta	able bel	low sho	ws mai	os the S	Special	ized lea	arning (Dutcom	nes for t	he SK	U to th	e KLOs		
Outcome								KLOs							
	LOs	KLO-K KLO-LS KLO-CS KLO-SPD 1 2 2 4 5 6 7 8 9 10 11 12 12													
	1														
	2	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark					
	4	\checkmark	\checkmark	✓					✓	\checkmark	\checkmark				
	5	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark					
	7	√	\checkmark	\checkmark						\checkmark	\checkmark				
	8	\checkmark							\checkmark	\checkmark					

Specialized Knowledge Unit (SKU2.4): Organic Chemistry Laboratory

Description	This u as safe warni Distilla Paper Aroma Carbo Techn purific Synth of miz Isolati Writir	nit cove ety of cl ng and ation. Ic (PC), Co atic, Org hydrate iques c cation, a esis of s xtures c ion and ng repor	ty of chemicals, getting familiar to different laboratory equipment and understanding of different ag and safety signs when working in chemistry lab. It covers topics such as Solubility, Extraction, tion. Identification of physical constants such as melting and boiling points. Chromatography: (PC), Column (CC), Thin layer Chromatography (TLC). Tests for the identification of Alkane, Alkene, tic, Organic halides, Hydroxy-Compounds, Nitro and amine compounds, Aldehydes and Ketones, nydrate, Carboxylic acids, and their derivatives. Elemental Analysis. ques of organic chemistry; preparation, properties of typical organic compounds; separation, ation, analysis, and characterization of organic compounds. sis of significant types of organic compounds and study of their properties; laboratory separations tures of organic substances, instrumental methods of separation, identification, and analysis. on and Identification of Natural Products, using TLC and CC in purification of organic compounds. Illowing topics must be included in this SKU:												
	The fo	ollowing	g topics	must k	e inclu	ided in	this Sk	(U:							
	1.	Laborat	tory Sat	fety											
	2.	Technic	ques an	d Appa	ratus	id com	nound	-							
	5. 4.	Extract	ion. Chi	romato	graphy	. Colun	nn chro	matogr	aphy. 1	Thin Lav	er Chr	omatos	raphy		
Touiss	5.	Identifi	cation (of Orga	nic Cor	npound	ds	111010051	apriy)		cr oni	onnacog	Sidpity		
lopics	6.	Qualita	tive Ide	entificat	ion of	Organi	c Comp	ounds							
	7.	Spectra	al Meth	ods											
	8. q	Kinetic	and In	eromoo anic Svr	iynamı Ithosis	cs cont	rol org	anic rea	ctions.						
	10.	Polyme	ep orge	anne Syr	11110313										
	11.	Carboh	ydrates	5											
	Ву со	mpletin	g this S	KU, stu	dents	should	be abl	e to:							
	1.	Perform common laboratory techniques including thin-layer chromatography, refractive index, simple distillation, fractional distillation, solvent extraction. collection or control of gaseous													
		nroduc	simple distillation, fractional distillation, solvent extraction, collection or control of gaseous												seous
	2.	Synthes	size and	d isolate	e and c	haract	erize, a	t the m	icrosca	ale level	l, the p	roduct	(s) of si	mple o	rganic
		reactio	ns.				,				, 1		()		0
	3.	Record	experi	mental	results	neatly	and co	oncisely	in a la	borator	ry note	book a	nd in a	manne	er that
		gives p	roper a	ttentior	n to so	urces o	fexper	imental	error.						
	4.	Illustrat	te the c	outcome	e and n	nechan	ism of	organic	reactio	ons und	er inve	stigatio	on.		
Specialized	5.	Analyze	e and in ptipto k	iterpret	experi	menta	i result	s and de	evelop o diffor	approp	riate ai moloci	nd accu uloc	irate co	nclusio	ns.
Learning	0. 7.	Practice	e labora	atory sa	fetv ar	nd work	instru	ctions f	or orga	nic che	mistry	laborat	tories.		
Outcomo	8.	Use coi	mmon e	experim	iental k		al cher	nistry te	echniqu	ues and	instru	ments.	corres.		
Outcome	Tho to	bla bal	ow sho		as tha		izad la	orning (Jutcon	and for t	ho SKI	I to th			
	ine ta			ws maj	JS LITE	special	izeu iea	KLOs	Jutcon				e RLOS		
	SLO S		KLO-K	-		KL	O-LS	-	KL	D-CS	10	KLO	-SPD	10	
	1	1	2 ✓	3	4	5	6 √	\checkmark	8	9	10 ✓	11	12	13	
	2	\checkmark	\checkmark			/	√	/		\checkmark	✓ 	\checkmark			
	3	√				V	V	\checkmark	\checkmark	\checkmark	V	V	V		
	5	✓						\checkmark	\checkmark	\checkmark					
	6				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark	
	8	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	

General Knowledge Unit (3): Physical Chemistry

Description The Physical chemistry Knowledge Unit establishes and develops understanding of the physical properties of bulk matter at macroscopic. It describes classical thermodynamic properties of chemical systems and how chemical reactions occur. It also covers various physical processes that chemical reactions undergo such as chemical equilibria, chemical kinetics, and catalysis. In addition, the structures of and properties of individual atoms and molecules use quantum mechanics. Therefore, the unit introduces the essential principles and common applications of quantum chemistry and spectroscopy. The field of quantum chemistry and spectroscopy emphasizes analyzing and describing the structures of individual atoms and molecules as well as calculating their properties. offers an opportunity to investigate chemical concepts in an experimental setting according to the physical chemistry laboratory health and safety regulations. In addition, it focuses on teaching common physical chemistry laboratory techniques and instruments.

Specialized Knowledge Unit (3.1): Physical Chemistry of Bulk Matter

Description	Unit 3.1 introduces the essential principles and common applications of classical thermodynamics and statistical thermodynamics. Thermodynamics provides a description of matter and the transformation between different forms of energy on a macroscopic scale using bulk properties such as pressure, density, volume, and temperature. On the other hand, statistical thermodynamics provides a description of classical thermodynamics on a microscopic scale (atoms and molecules) using probability theory. Ranges of physical chemistry properties are also explored such as Chemical Equilibrium, The Properties of Real Gases, Phase Diagrams and the Relative Stability of Solids, Liquids, and Gases, Ideal and Real Solutions, Electrolyte Solution.
Topics	 The following topics must be included in this SKU: 1. Fundamental Concepts of Thermodynamics 2. Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics 3. State Functions: Internal Energy and Enthalpy 4. Thermochemistry, Entropy and the Second and Third Laws of Thermodynamics 5. Chemical Equilibrium 6. The Properties of Real Gases 7. Phase Diagrams and the Relative Stability of Solids, Liquids, and Gases 8. Ideal and Real Solutions, Electrolyte Solutions 9. Electrochemistry 10. Probability, The Boltzmann Distribution 11. Ensemble and Molecular Partition Functions 12. Surface Chemistry 13. Chemical Kinetics and Catalysis
Specialized Learning Outcome	 By completing this SKU, students should be able to: Define laws and fundamental concepts of classical thermodynamics, statistical thermodynamics, chemical equilibria, chemical kinetics, and catalysis, and summarize the real-life applications related to these topics. Analyze, interpret, and predict the behavior and macroscopic properties of chemical and physical processes as well as ideal and real gases. Calculate, relate, and predict equilibrium and spontaneity of chemical reactions in addition to rate laws and reaction orders. Sketch, illustrate, and describe phase diagrams and relative stability of solids, liquids, and gases as pure substances and as mixtures. Relate macroscopic thermodynamic properties to microscopic states; and apply probability principles to the ensembles of atoms or molecules and use the probability outcomes to predict thermodynamic properties of the system. Apply mathematical and statistical techniques to calculate physical and chemical properties related to chemical systems.

The ta	ble bel	ow sho	ws maj	os the S	Special	ized lea	arning	Outcon	nes for t	the SKI	U to the	e KLO		
510		KLOs												
310		KLO-K			KLO	-LS		KLO	-CS		KLO	-SPD		
5	1	2	3	4	5	6	7	8	9	10	11	12	13	
1	\checkmark	\checkmark	\checkmark											
2	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark		\checkmark	\checkmark		
3	\checkmark	\checkmark						\checkmark	\checkmark		\checkmark	\checkmark		
4	\checkmark	\checkmark									\checkmark	\checkmark		
5	\checkmark	\checkmark									\checkmark	\checkmark		
6	\checkmark	\checkmark						\checkmark	\checkmark		\checkmark	\checkmark		

Specialized k	(nowle	dge L	Jnit (3	.2): Ph	ysica	l Cher	nistry	of M	icrosco	pic M	atter					
Description	Unit 3 comm and sp molec This co of mot the tra other tunnel compu	.2 is a on app pectros ules as purse c tion for anslatic possib ling in uters, c	n intro olication copy e well as connect r indivic onal, vik le appl chem omputa	duction ns of qu mphasiz calcula s physic lual ato prationa ications ical rea ational o	to the antum ting th al cher ms and l, and includ actions themis	eoretica a chemi alyzing eir pro mistry o d moleo rotatio de scar 5, quar try, and	al chem stry an and de perties. concept cules: tr nal spe nning tr ntum v d others	histry. d spec escribin as to the anslat annelin vells, 5.	It intro- ctroscop ng the s ne real w ion, vib- in be an ng micro- quantu	duces the structure world by ration, a valyzed a oscope, m dots	he ess field of es of i and rot and int atom s, tele	ential f quant ndividu ring thr tation; terpreto ic forco portati	principl um che ial ator ee basi conseq ed. Moi e micrc on, qu	es and emistry ms and c types uently, reover, oscope, iantum		
Topics	The for 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	 From Classical to Quantum Mechanics The Schrödinger Equation The Quantum Mechanical Postulates Using Quantum Mechanics on Simple Systems The Particle in the Box and the Real World Commuting and Noncommuting Operators and the Surprising Consequences of Entanglement A Quantum Mechanical Model for the Vibration and Rotation of Molecules The Vibrational and Rotational Spectroscopy of Diatomic Molecules The Hydrogen Atom Many-Electron Atoms Quantum States for Many-Electron Atoms and Atomic Spectroscopy The Chemical Bond in Diatomic Molecules Computational Chemistry Molecular Symmetry Molecular Structure and Energy Levels for Polyatomic Molecules Electronic Spectroscopy Nuclear Magnetic Resonance Spectroscopy Identify the principles and fundamental concepts of quantum chemistry and spectroscopy 														
Specialized Learning Outcome	By cor 1. Id ar 2. Aµ vi w 3. Ca e> 4. 4. Pr br ar 5. Pr 6. Aµ re The ta	 Molecular Structure and Energy Levels for Polyatomic Molecules Electronic Spectroscopy Nuclear Magnetic Resonance Spectroscopy By completing this SKU, students should be able to: Identify the principles and fundamental concepts of quantum chemistry and spectroscopy and summarize the real-life applications related to SKU. Apply the Schrödinger equation to simple chemical systems that model the translational, vibrational, and rotational motions; and analyze and interpret the calculated energies and wave functions. Calculate and predict observables of physical and chemical systems including probability, expectation value, and eigenvalues. Predict and describe the electronic structures of hydrogen-like atoms, many-electron atoms, and molecules, and use localized and delocalized bonding models to describe chemical bonding. Predict the structure and energy levels of small molecules via computational chemistry. Apply mathematical and statistical techniques to calculate physical and chemical properties related to chemical systems 														
	SLO					KI C		KLOs	141.0							
	S	1	LO-K	3	4	5 KLC	-LS 6	7	8 KLO	-05	10	11	12	13		
	1	~	\checkmark	\checkmark					,							
	2	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark		\checkmark	\checkmark			
	4	\checkmark	\checkmark									\checkmark	\checkmark			
	5	\checkmark	\checkmark						,	,		\checkmark	\checkmark			
	6	\checkmark	\checkmark						\checkmark	\checkmark		\checkmark	\checkmark			

Specialized Knowledge Unit (3.3): Physical Chemistry of Laboratory

Description	This specialized unit (3.3) complements and consolidates the theoretical knowledge acquired in physical chemistry courses. It offers an opportunity to investigate chemical concepts in an experimental setting according to the physical chemistry laboratory health and safety regulations. In addition, it focuses on teaching common physical chemistry laboratory techniques and instruments. Areas of experimentations include practices in classical thermodynamics, statistical thermodynamics, kinetics, quantum chemistry, spectroscopy, and computational chemistry
	 The following topics must be included in this SKU, however, the 8 primary themes, with each theme encompassing 3 to 5 general topics. It is required to include a minimum of two topics from each theme. 1- Thermodynamics: Measurement of Heat Capacities of Solids and Liquids Determination of Enthalpy Changes in Chemical Reactions Investigation of Phase Transitions and Equilibrium Constants Study of Colligative Properties of Solutions Determination of Gibbs Free Energy Change of Chemical Reactions 2- Statistical Thermodynamics: Measurement of Boltzmann Constant using Brownian Motion Analysis of Distribution Functions in Gases Evaluation of Entropy Change in Phase Transitions Investigation of Maxwell-Boltzmann Distribution Law Study of Partition Functions and Thermodynamic Properties 3- Chemical Kinetics: Determination of Reaction Rate Constants using spectroscopic techniques Investigation of Factors Affecting Reaction Rates and determination of reaction order using Polari-metric, electrochemical or conducti-metric techniques Study of Reaction Mechanisms using Spectroscopic Techniques Measurement of Activation Energies using Arrhenius Equation
Topics	 Calculation of Molecular Orbital Energies using Computational Methods Analysis of Electronic Spectra and Molecular Energy Levels Study of Electronic Structure and Bonding in Molecules Investigation of Vibrational and Rotational Energy Levels Determination of Transition Probabilities in Electronic Transitions 5- Molecular Spectroscopy: Analysis of Infrared Spectra for Molecular Identification Measurement of UV-Visible Absorption Spectra Investigation of Raman Scattering in Molecules Study of Nuclear Magnetic Resonance (NMR) Spectroscopy Determination of Electronic and Vibrational Energy Levels
	 6- Phase Rule: Determination of Phase Diagrams and analysis of Solid Solutions and Phase Transformations Study of Phase Equilibria and determination of Critical Points Investigation of Eutectic and Peritectic Reactions 7- Electrochemistry: Measurement of Standard Electrode Potentials and the effect of temperature Electroplating & Determination of Faraday's Constant Fuel Cell Operation
	 8- Surface and Catalysis: 1. Adsorption Isotherms 2. Catalytic Activity Measurements

3. Determination of Surface Area and Pore Size Distribution

	Ву со	mpletin	g this S	KU, stu	dents	should	be abl	e to:								
	1.	Practic	e labora	atory sa	fety ar	nd work	instru	ctions	in physi	cal cher	nistry	laborat	ories.			
	2.	Record	experii	mental i	results	neatly	and co	ncisel	y in a lat	oratory	notek	ook an	d in a r	nanner		
		that giv	es prop	per atte	ntion t	o sourc	es of e	xperir	nental e	rror.						
	3.	Apply	essentia	al princ	iples a	and coi	ncepts	taugh	nt in cla	ssical t	hermo	dynam	ics, sta	tistical		
		thermo	dynam	ics, kii	netics,	quan	tum o	chemi	stry, ai	nd spe	ectrosc	opy t	o labo	oratory		
		measu	ement	s.		·						.,		,		
	4.	Demon	strate	how to	o use	comm	on exp	perime	ental ph	ysical (chemis	stry teo	chnique	es and		
		instrum	nents.									,				
	5.	Perforr	n comp	utation	al cher	nistry c	alculat	ions a	nd com	oare the	ir resu	lts with	the co	llected		
		experir	nental d	data.		,										
Specialized	6.	Calcula	Calculate chemical properties extracted from experimental data and apply mathematical													
Learning		and statistical techniques.														
Outcome	7.	Utilize	and statistical techniques. Utilize data analysis software to analyize and interpret experimental data in physical													
		chemis	trv.	- /			,		1-				1-	/		
	The t	able bel	ow sho	ws map	os the	Special	ized lea	arning	Outcon	nes for t	the SK	U to th	e KLO			
								KLOs	,							
	SLO		KLO-K			KLO	-LS		KLO	-CS		KLO-	SPD			
	5	1	2	3	4	5	6	7	8	9	10	11	12	13		
	1	√			~	✓ 	~			×	./					
	2	v			~	\checkmark	\checkmark		v		v √	\checkmark				
	4						√ 	\checkmark	\checkmark							
	5						\checkmark	\checkmark	\checkmark							
	6				\checkmark		\checkmark	\checkmark	\checkmark							
	7				\checkmark		\checkmark	\checkmark	\checkmark							

General Knowledge Unit (4): Inorganic Chemistry

Description

It covers a wide range of topics in inorganic chemistry, including atomic structure and bonding, symmetry and group theory, molecular orbitals, acid-base and donor-acceptor chemistry, coordination chemistry, theories and experimental evidence of electronic structure, reactions and mechanisms, physical techniques in inorganic chemistry, organometallic chemistry, bonding, reactions, and applications to catalysis, solid state chemistry, classification of materials, modern methods of synthesis and fabrication, as well as characterization and applications of materials

Specialized Knowledge Unit (4.1): Bonding theories and Molecular structure

Description	This U bondir theorie accept	Init exp ng in m es such tor -dor	ands th iolecule symme ior chei	ne discues. The etry and mistry.	ussion Unit s I group	of diffe tarts fi theor	erent B rom sir y, mole	ondin nple b cular (g theori oonding orbitals.	es whic theory The uni	h can to mo it also	be use re com covers	d to do plex b acid-ba	escribe onding ise and
	The fo	llowing	g topics	must b	e inclu	ided in	this Sk	(U:						
	1.	Atomic	Structu	ire										
Tenier	2.	Simple	Bondin	g Theor	Y									
ropics	3.	Symme	try and	Group	Theory	y								
	4.	Molecu	lar Orb	itals		-								
	5.	Acid-Ba	se and	Donor-	Accept	tor Che	mistry							
	By cor	npletin	g this S	KU, stu	dents	should	be abl	e to:						
	1.	Provide	an ove	erview o	of the f	undam	ental c	oncep	ts of ino	rganic c	hemis	try.		
	2.	Explain	the atc	omic str	ucture	based	on qua	antum	mechan	ics and	explai	n perio	dic pro	perties
		of the a	itoms.				·					•		
	3.	Describ	e the st	tructure	and b	onding	r in mol	lecules	s based o	on bond	ing the	ories.		
	4	Predict	the typ	les and	structi	ire of h	onding	ofmo		/ ions u	sing h	anding	theorie	c
Specialized	5	Difforo	ntiato h		acide	/ hasas	and n	redict	the reac	tions he		acide :	and has	
Loarning	Э.	Differen		etweer	lacius	/ Dases	s anu pi	eulet	ine reac		tweer	i acius i		563.
	The ta	ble bel	ow sho	ws map	os the S	Special	ized lea	arning	Outcon	nes for t	he SK	U to the	e KLO	
Outcome	SLO							KLOs						
	S		KLO-K	_		KLO	I-LS	-	KLO	-CS	40	KLO	-SPD	40
	1	1	 ✓	3 √	4	5	6	/	8	9	10	11	12	13
	2	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark		\checkmark	\checkmark	
	3	\checkmark	\checkmark						\checkmark	\checkmark		\checkmark	\checkmark	
	4	√	~									~	~	

Specialized Knowledge Unit (4.2): Chemistry of elements

Description	This u crysta chemi coord	nit intr l, prope cal and ination	oduces erties o physion chemis	solid-s f bulk i cal pro try, elee	tate cl materia perties ctronic	nemist als com s of m spectr	ry, phy npared ain gro a in coo	sical an to sma oups ele ordinatio	d cher II mole ement: on com	mical cules s, gro poun	properti The un ups of ds.	es of a it also transiti	macro describ on ele	es the ments,
Topics	The fo 1. 2. 3. 4.	Ilowing The cry Chemis Chemis Physica	s topics stalline try of t try of T l techn	must k solid si he mair ransitic iques ir	be inclu tate n group on elerr n inorga	eleme eleme nents anic che	this SK ents emistry	:U:						
Specialized Learning	By cor 1. 2. 3. 4. 5. 6.	npletin Define real-life Describ Apply t proper table. Examin Catego Analyze	g this S the fun e applic be the b the basis ties, and e the si rize ma e charac	KU, stu damen ations r asic princ c princ d comp cructure terials l cterizat	dents s tal prin related nciples iples or ounds es of so based c ion tec	should ciples to this of nor f perio of grou lid stat	be able and corr course metals dic law ups 14– ces. r chemi data to	e to: ncepts c , transit to prec 18, d-bl cal bond p evalua	f inorg ion me dict the lock, an ding, si	ganic o etals, a e read nd f-b tructu terials	chemistr and coor ctivity, p lock eler re, and p	y and s dinatio hysical nents c propert	ummar n chem and ch f the p ies.	ize the listry. emical eriodic
Outcome	The ta	ble bel	ow sho	ws maj	os the S	Special	ized lea	arning C	Outcon	nes fo	r the SK	U to th	e KLO	
	SLO		KI O-K			KL	0-15	KLOs	KLO	-05		KI O-	מס	
	S	1	2	3	4	5	6	7	8	9	10	11	12	13
	1	\checkmark	 ✓ 	\checkmark										
	2	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark		\checkmark	~	
	3	\checkmark	\checkmark						~	~		\checkmark	\checkmark	
	4	• ✓	✓ ✓									• √	• √	
	6	\checkmark	\checkmark									\checkmark	\checkmark	

Specialized Knowledge Unit (4.3): Chemistry of inorganic materials

Description	This u metal and c	 This unit is concerned with the properties and behavior of inorganic compounds, which include netals, minerals, and coordination compounds, organometallic compounds, and their physical ind chemical properties. The unit also emphasizes the applications of inorganic materials as atalysts, pigments, coatings, surfactants, medicines, fuels. The following topics must be included in this SKU: Coordination Chemistry Structures and Isomers, Bonding, Electronic Spectra, and Reactions and Mechanisms Physical techniques in inorganic chemistry Transition metal organometallic chemistry, bonding, and reactions Organometallic reactions and catalysis Nanomaterials Materials Characterization Y completing this SKU, students should be able to: Name coordination compounds and draw their structures. Explain the diverse coordination numbers and isomerism in coordination compounds. Discuss the bonding in organometallic compounds of transition metals. Explore modern techniques for material synthesis and fabrication. 													
		sts, pigi	nents,	must	s, surra	iciants,	thic Sk	ines, i /III·	uers.						
Topics	1. 2. 3. 4. 5. 6.	Coordir Reactic Physica Transit Organc Nanom Materia	ination (ons and l techn ion met metalli aterials als Char	Chemist Mecha iques ir cal orga c reacti creacti	ry Stru nisms n inorga nometa ons an ation	anic che allic che d catal	and Isc emistry emistry ysis	y, bond	. Bondinį ding, anc	g, Electr I reactio	ronic Sj ons	oectra,	and		
Specialized Learning	By coi 1. 2. 3. 4. 5. 6. The ta	 6. Materials Characterization By completing this SKU, students should be able to: Name coordination compounds and draw their structures. Explain the diverse coordination numbers and isomerism in coordination compounds. Discuss the bonding in organometallic compounds of transition metals. Explore modern techniques for material synthesis and fabrication. Categorize materials based on their chemical bonding, structure, and properties. Analyze characterization technique data to evaluate materials. 													
Outcome	0.0				,			KLOs							
	SLO		KLO-K			KLO	-LS		KLO	-CS		KLC)-SPD		
		1	2	3	4	5	6	7	8	9	10	11	12	13	
	1	v v	v v	✓ ✓					1	~		\checkmark	\checkmark		
	3	√	· ✓						· ·	✓		· √	✓		
	4	\checkmark	\checkmark									\checkmark	\checkmark		
	5	\checkmark	\checkmark									\checkmark	\checkmark		
	6	\checkmark	\checkmark									\checkmark	\checkmark		

Specialized I	(nowle	edge U	Init (4.	4): Ind	organ	ic Che	mistr	y Labo	rator	У				
Description	This u and w techni inorga compo fundar journa	nit aims riting la ques a nic cho ounds; mental als.	s to deve aborato and fun emistry utilizin inorgan	elop ind ry repc damen labora g a v ic cher	organio orts in tal inc atory t ariety mistry	c chemi a scien organic echniqu of an informa	stry lab tific wa conce ues an alytical ation fr	ooratory ny, pract pts. In d glass chara com text	y skills tice co additi sware; cteriza tbooks	such as mmon on, it f synthe tion te , refere	analyz inorga focuses sizing echniqu ence w	ring exp nic che s on te and is ues; an orks, an	perimer mistry eaching olating nd inco nd peer	aboratory common inorganic orporating r-reviewed
Topics	The for 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Ilowing Introdu Prepara Identifi Studyin Identifi Studyin Studyin Identify Identify Identify Identify Characi diffract	g topics action ar ation of cation of ag inorga cation of g the no sis using ion met ying the ying the ying the mation an alar Orbiterizatio ion.	should and Check inorgan of geometric anic con- of the provel syn ga vacual catal of read electro agnetic d struct ital Calo	I be ind ck-In; L nic con hetrical mpour hysical nthetic ium lin ysis. ction Ki pnic pro- cture of culatio solid-st	cluded i aborate npound l isome ds stru proper techni e, and inetics operties erties o f different ns of In cate co	in this s ory Safe ls rism us ctures rties of ques in synthes s of tra f inorga ent met organic impour	SKU: ety; Lab ing Infra using N synthes icluding sis in un nsition nsition anic com canic compo compo ds by	norator ared Sp MR spo sized ir high-t high-t usual s metal o npoun olexes ounds UV-vis	y Repor pectroso ectra. norganic empera solvent comple: ds. and org sible at	rts copy c comp ature sy system x using ganome osorpti	oounds. ynthesi is. ; UV/Vi: etallic c on, inf	s, air-fr s and El ompou rared,	ee PR nds and x-ray
Specialized Learning Outcome	By cor 1. 2. 3. 4. 5. The ta SLO s 1 2 3 4 5	mpletin Demon compo Synthe: organo Record gives p Analyze Work e inorgar ble bel	g this S istrate unds. size, iso metallic experin roper at e and in effective hic expe ow sho KLO-K 2 v	kU, stu how t late, ch componental n tentior terpret ly as a riment: ws map	dents o perm naracte bunds. results n to som experi n indiv s and r os the 4	should form c erize, ar neatly urces o imental vidual a eport a Special Special	be able commo and expl and cor f exper l result: and in g nd corr ized lea	e to: n solid ain the ncisely in imental s and de groups a nmunica KLOs 7 V V V	-state proper n a labo error. evelop and to ating re Dutcon 8	technic rties of oratory approp practic esults. nes for 9 ~ ~	ques 1 main g notebo riate a ce lead the SK	to synt group, o ook and ook and ership U to th KLC 11 ~ ~ ~	thesize coordin d in a m urate cc when c when c e KLO -SPD 12 	inorganic ation, and anner that inclusions. conducting

General Knowledge Unit (5): Analytical Chemistry

Description

This GKU covers the full scenario of typical chemical analysis methods, starting from selecting the appropriate analytical method and ending with reporting the analytical results. The scenario covers either quantitative analysis or qualitative analyses or both. Both kinds of analysis could include classical and instrumental analysis. The frontal involves volumetric and gravimetric analyses, while the latter involves spectroscopic analysis, separation-based analysis, and electroanalysis.

Specialized Knowledge Unit (5.1): General concepts in analytical chemistry

	This U	nit pres	sents in	brief th	ne esse	ential p	rinciple	es and	commo	n appl	ications	of all q	Jualitati	ve and	
	quanti	tative	metho	d in ana	alytica	l chem	istry. I	t focus	ses on a	selecti	on of a	ppropri	ate an	alytical	
Description	metho	ds sam	pling, s	ample p	orepar	ation, p	orepara	tion o	f differe	ent kin	ds of sol	utions,	data a	nalysis,	
	and w	riting I	reports	. This ι	unit al	so cov	ers err	ors in	analyti	cal ch	emistry,	quality	y of ch	emical	
	analys	is, and	evaluat	ion of a	inalyti	cal resu	ilts.								
	The fo	llowing	g topics	must b	e inclu	uded in	this Sł	(U :						-	
	1.	Definiti	on of A	nalytica	al Cher	nistry a	long w	ith its	role in A	All Basi	ic and A	pplied S	science	S :	
	2	Qualita	tive an	d Quant	titative	e Analys	SIS	l	h						
Topics	2.	Basic I	oois an	d Opera		of Anal	ytical C	nemis	try						
·	3.	Statisti	cs and I	Data Ha	ndling	In Ana	lytical (nemis	stry	ad Vali	dation				
	4. r	GOOU L	aporato		tice: C		ASSUIDI	ice an			uation				
	5.	Genera		onts of (homic	al Equi	librium	· Acid-		yst auilihr	ia				
	By con	nnletin	σ this S	KII ctu	dents	should	he ahl	e to:	Dase L	quinor	ia i				
	1. Outline the steps commonly employed in analytical procedures, sample treatment, and														
	±.	method	d valida	tion	linioniy	cilipic	yca m	anaryc		cuure	.5, 501119	ie treat	inche, e		
	2.	Recall t	he con	cepts of	topics	s relate	d to ch	emica	l analvsi	s inclu	ding typ	es of cl	hemica		
	reactions, equilibrium, dissociation, buffers, and indicators.														
	3.	reactions, equilibrium, dissociation, buffers, and indicators.3. Suggest appropriate methods for chemical analysis.													
	4.	Use spr	readshe	ets for	perfor	ming st	tatistica	al anal	ysis and	plotti	ng calibr	ation a	nd titra	tion	
		curves.													
Specialized	5.	Express	s analyt	ical res	ults us	ing app	ropriat	e unit	s of con	centra	tions an	d statis	tical fo	rms.	
Loorning	6.	Calcula	te anal	ytical fig	gures (e.g., w	eights,	volum	es, conc	entrat	ions, co	nstants	, etc.),	and	
		practice	e the us	se of sig	nificar	nt figur	es in ha	andling	g data of	chem	ical ana	lysis.			
Outcome	The ta	ble bel	ow sho	ws mai	os the	Specia	lized le	arning		nes fo	r the SK	U to th	e KLO		
						- 1		KLOs							
	SLO		KLO-K			KLC)-LS	1	KLO-	CS		KLO-	SPD		
	1	1	2	3	4	5	6	7	8	9	10	11	12	13	
	2	~	· √	~							· ~	· ~			
	3	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark			
	4	~	~								√	√ ,	\checkmark	\checkmark	
	5	\checkmark	\checkmark						\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V	

Specialized		uge e	, inc (3	. <i>2</i>). Ci	133100	anai	ytical	chen	iisti y					
Description	This L gravim comple	Jnit pro Netric exomet	esents analyse tric titra	in brie s. In ation, a	f the particund pre-	classic Jar, tl cipitati	al anal ne vol on titra	ytical umetr tion.	method ic analy	ls inc rsis ir	luding k ncludes	ooth vo acid-b	olumetr ase til	ric and tration,
Topics	The fo 1. Aci 2. Coi 3. Gra 4. Pre	Ilowing d–base mplexo avimetr ecipitat	topics titration metric ric analy ion read	must k ons reactio /sis and ctions a	be inclu ns and precip nd titr	titration titons	o this Sk ons requilit	(U: oria						
Specialized Learning Outcome	 By con 1. Rei 2. Rei pre 3. Ap The ta 	npletin cognize call var ecipitat ply calc ble bel	g this S the fur ious ap ion titra culation ow sho	KU, stund ndamer plicatio ations. s for tit ws maj	dents ntals of ns of a rations os the	should f titration cid—ba s and p Special	be abl ons and se titra recipita lized le	e to: d preci tions, ation e arning KLOs	pitation complex quilibria ; Outcon	equili ometi nes fo	bria. ric react r the SK	ions, ar U to th	nd e KLO	
	SLO		KLO-K			KLC)-LS		KLO-	CS		KLO-	SPD	
	3	1	2	3	4	5	6	7	8	9	10	11	12	13
	1	√ √	✓ ✓	√ √							√ √	√ √		
	2	✓ ✓	▼ ✓	✓ ✓							✓ ✓	✓ ✓		
	3													

Specialized Knowledge Unit (5.2): Classical analytical chemistry

Specialized Knowledge Unit (5.3): Instrumental analytical chemistry This Unit presents in brief the instrumental analytical methods including spectroscopic analysis, Description separation-based analysis, and electroanalytical based analysis. Both direct and indirect analysis are involved in this unit. The following topics must be included in this SKU: 1. Principles of Spectrometric Analytical Methods 2. Atomic Spectrometric Analytical Methods 3. Molecular Spectrometric Analytical Methods 4. Sample Preparation: Solvent and Solid-Phase Extraction 5. Principles of Chromatographic Methods Gas Chromatographic Methods with Different Detectors **Topics** 6. Liquid Chromatographic Methods with Different Detectors 7. 8. Electrophoresis Methods with Different Detectors **Electrochemical Cells** 9. 10. Principles of Electroanalytical Methods 11. Potentiometric Methods and Electrodes 12. Voltametric Methods By completing this SKU, students should be able to: 1. Recognize the essential theoretical concepts of spectroscopic, chromatographic, and electrochemical methods of analyses. 2. Discuss the functions of devices of instruments for chemical analysis. 3. Outline the potentials, limitations, and applications of instrumental analytical techniques. 4. Suggest appropriate instrumental methods for chemical analysis. 5. Solve analytical problems in spectroscopic, chromatographic, and electrochemical methods of analyses. **Specialized** 6. Use spreadsheets for calculating equations and analytical figures of merits of instrumental Learning analysis and plotting various kinds of curves. Outcome The table below shows maps the Specialized learning Outcomes for the SKU to the KLO KLOs SLO KLO-K KLO-LS KLO-CS KLO-SPD S 1 2 9 11 12 3 6 8 10 5 1 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 2 \checkmark \checkmark \checkmark 3 \checkmark \checkmark \checkmark \checkmark \checkmark 4 \checkmark 5 6

Specialized Knowledge Unit (5.3): Analytical Chemistry Laboratory

Description	This U metho compl experi variou spectr techni perfor	Init intr ods are exomet mental s types oscopy ques, s mance	oduces e pres tric, pre applic of instr (AAS), such a liquid o	expe ecipita ations umen and s, thi chrom	rimenta I to control taught tal analy atomic n layer atograp	l applic over t d redox in Inst vsis met emission chron hy (HPL	ations the an rument thods in on spec natogra	to Ana nalytica metry tal An ncludir ctrosco nphy (l electi	alytical (al metl and pot alytical ng spectro opy (AE (TLC), g rophore	Chemi hods ention Chemi rophot S); an as ch sis.	stry. Exa of titra netry. It istry. It tometry, d on di romatog	imples ations also int trains atomic fferent graphy	of stan (acid-l roduce student absorp separa (GC),	dard base, s the ss on btion ation high
Topics	The for 1. Lal 2. Ba 3. Net 4. Gru 5. Dir 6. Dir 7. Inf 8. Flu 9. Fla 10. Atto 11. Inco 12. Saat 13. Th 14. Ga 15. Liq	Ilowing porator sic tools utraliza avimetr rect and rared d forome me em omic ab ductivel mple tro in-layer s chron juid chr	y safety s and o tition, re- ic anal- l indire etermi tric det ission s sorptic y coupl eatmer c chrom natogra omatog	must y in ar perati edox, o ysis ct eleo ct spe nation pectro pectro on spe ed pla t met atogra phic r graphi	be inclu- nalytical ons of a complex ctroanal- ctropho- n method ation me ometric ctromet asma spe hods (di aphic me nethods c metho	ytical m tometr ds ethods methods methods ric met ectrome gestior ethods	this Sk try al chem and pre nethods ic meth ds hods etric me n, liquid	CU: cipitat ods ethods -liquic	tion titra	itions	olid-pha	se extra	action)	
Specialized Learning Outcome	By cor 1. Exp po 2. Pra 3. Pra 4. Ca 5. Ca 6. Wr The ta SLO 1 2 3 4 5	npletin plain th tentiom actice h epare st rry out rry out rite up t ble bel 1 ~ ~	g this S e theo netric a andling tandarc experir experir technic ow sho KLO-K 2 v	KU, si retical nalyse the b solut nents nents al repo wws m	tudents backgro easic and cions and on volue using sp orts usin aps the	should ound re d advan d reage metric, oectroso g stand Special KLO- 5 ~	be able elated t ce tool: nts for gravim copic an dardized lized lea LS 6 ~ ~	e to: so expo s as wo spectr etric, a nd chru d form arning KLOs 7 7 7 7	eriment ell as op oscopic and pote omatogi is. Gutcon KLO- 8	s of vo eratio and cl ention raphic nes fo cs 9 v	ns in and hromato hetric an techniq r the SK	c, gravi alytical graphic alyses. ues. U to the KLO- 11 \checkmark	metric, chemis c analys e KLO SPD 12	and try. ses.

Appendix (D): Employment sectors for chemists

Chemistry programs provide professional chemists who can work in many government and industrial sectors, which could be classified in terms of their products and work nature, as shown the list below: List of the employment sectors for chemists

- Research and development
- Energy, petroleum, and petrochemical industries
- Laboratories for standards, metrology, and quality
- Materials (cement, fertilizer, alloys, ...)
- Water & Environment
- Forensic chemistry
- Health (medical, pharmaceutical, ...)
- Agricultural and Crop Sciences

- Education & academia
- Military & public security
- Military industries
- Food industry
- Paints and pigments
- Textiles

The typical work duties for chemists in government and industrial organizations are:

- Teaching and training
- Leadership and management
- Supervision and evaluation
- Simple to complex routine analysis (Quality Control Analysis)
- Production

Research or/and development activities

Sales and marketing

When examining the abovementioned duties of chemists in their career, we can obtain the vital transferrable skills which chemistry programs should adopt to increase the employability of chemistry graduates. These skills are as follows:

2. Numeracy and problem solving

4. Communications (written, oral)

- 1. Scientific & technical knowledge
- 3. Information technology
- 5. Project management
- 6. Teamwork

7. Leadership

- 8. Laboratory skills with ethical & scientific conduct

In summary, Saudi Arabia chemistry-related industries are major contributors in the national economy and chemists of high-quality skills are required. Therefore, modern, and professional chemistry programs should meet this demand. Chemistry programs should also provide students with knowledge and experiences through which they can develop critical transferrable skills, listed above, to be competent to enter the workforce.

Appendix (E): Further Key Requirements for the Implementation of Chemistry Program Curriculum:

Although the National Centre for Academic Accreditation and Evaluation has developed several standards for program quality assurance, there is still a critical need to develop some specialized key requirements for chemistry programs in the Kingdom in order to guide universities to meet the required learning outcomes of the program. In this section, we introduce the key requirements for the chemistry program which are not explicitly covered in programs accreditation standards.

1. Knowledge:

- 1.1 The program curriculum should cover a broad understanding of essential knowledge units and in-depth knowledge of the general key units described earlier.
- 1.2 If the program provides track/tracks designed to cover emerging areas of chemistry or to meet local labor market needs in academia or industry, then tracks should not affect the core knowledge of foundation in chemistry in the program. However, the track should provide the threshold knowledge and laboratory skills for the track, the minimum contact hours for the track should not be less than 70% of total contact hours of the final year.

2. Practical Skills:

- 2.1 As chemistry is an experimental science, therefore, the program must provide substantial laboratory-based contact hours and include, synthesis of molecules, properties measurements, structures determination, hands-on experience with modern instrumentation and data analysis and reporting.
- 2.2 Laboratory experience in chemistry program must fall within the range of 40-50% of total contact hours of core chemistry courses in the program (exclusive of chemistry experience units)
- 2.3 The Program must have modern, standard quality and continuously maintained instrumentations and specialized laboratory equipment, which should include:
 - 1. pH meters,
 - 2. conductivity meters,
 - 3. UV/Vis spectrophotometer,
 - 4. FTIR, Flame photometer
 - 5. ICP,
 - 6. HPLC-UV.
 - 7. GC-FID,
 - 8. Potentiometers with some ISEs, Electrophoresis,
 - 9. NMR spectroscopy.
- 2.4 The Program must provide access to computing facilities, computational chemistry software, technical database, and chemical literature.
- 2.5 The Program must have a well-established system for health and safety practice which must conform to national stated regulations for chemistry laboratories. This system should include:
 - Hazard identification database
 - Risk assessment procedures
 - Laboratory management system
 - Regular examination and inspection
 - Continuous awareness program
- o Waste management
- Standard operating procedures
- Sufficient personal protective equipment
 - Reporting and analysis of accidents
- 2.6 For a safe and effective laboratory experience, number of students in the laboratory should not exceed 25 with an adequate number of instructors and assistants.

- 2.7 The Program should develop, review, approve and implement appropriate assessment methods with explicit RUBRICS to ensure all aspects of laboratory experience are fairy and rigorously assessed.
- 2.8 The Program must devote reasonable contact hours for students to develop their skills in problem-solving, critical thinking and analytical reasoning. This can be achieved in relevant courses via tutorials, small group discussions, and a student's forum.

3. Chemistry Experience Units

- **3.1** The program must provide a platform for students to experience different form of activities where they can independently integrate their knowledge and skills across chemistry disciplines. These activities can include:
 - 1. Research project
 - 2. Field experience
 - 3. Extended case study
 - 4. Literature investigation
 - 5. Collaborative project
 - 6. Voluntary Project
 - 7. A year in industry
- **3.2** The chemistry experience activities should be conducted with at 180 contact hours during summer of the final year.
- **3.3** The research project should maintain high quality research so it instructs students to apply their understanding of all chemistry subdisciplines, laboratory skills, and instrumentation handling to solve complex problems and answer research questions. Reasonable time should be offered for a student to carry out literature studies, experimental investigation and produce a publishable well-written thesis.
- **3.4** The Program must maintain control and supervision of chemistry experience unit activities and field experience, according to NCAAA Field Experience Description.
- 3.5 Field experience assessment should be properly developed with explicit RUBRICS.
- **3.6** The Program must ensure that the nature and content of activities within chemistry experience units' activities are chemistry related.
- 3.7 The Program must ensure that experiences within chemistry experience units domain expose students to a wide range of transferrable skills which are required for professional chemists. These skills include:
 - Communication skills
- Teamwork skills

 \circ Ethics

- Leadership & management
- Networking
- Literature & information management
- Information technology

