

Course Report

- (Bachelor)

Course Title: Evolutionary and Ecological Genetics

Course Code: EVS 1020

Program: Environmental Science

Department: Biology

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 1

Last Revision Date: -

Table of Contents

A. General information about the course:

1. Course Identification

1. 0	1. Credit hours: 2 (2 Lectures + 0 Lab)				
2. 0	Course type				
Α.	□University	□College	□ Department	□Track	□Others
В.	☐ Required		⊠ Elec	tive	
3. L	3. Level/year at which this course is offered: (Not determined)				
4. Course General Description:					
The	The course encompasses several aspects of evolutionary and ecological genetics				

The course encompasses several aspects of evolutionary and ecological genetics focusing on case studies and data analysis. The course emphasizes the link between molecular and phenotypic analyses in the study of evolutionary processes in natural populations. A special focus is also made on linking evolutionary and ecological processes.

5. Pre-requirements for this course (if any):

EVS 1111

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

The objective of this course is to provide an integrated view, combining theoretical and experimental approaches to the study of evolution with a consideration of both pure and applied aspects of evolutionary change. There is a strong emphasis on the development of numerical skills needed for the analysis and interpretation of genetic data and a quantitative approach to the study of evolution.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	$\sqrt{}$	100%
2	E-learning	-	-
	Hybrid		
3	 Traditional classroom 	-	-
	 E-learning 		
4	Distance learning	-	-

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		30

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of aligned progr	with	Teaching Strategies	Assessment Methods
1.0	Knowledge and und	lerstanding			
1.1	Discuss genetic me underlying eve processes		K1	Course lecture	Quiz Midterms Final Exam
1.2	Outline general pr population gene quantitative genet	tics and	K2	Course lecture	Quiz Midterm Final Exam
1.3	Identify the basic to phenotypic select adaptive evolution	tion and	К3	Course lecture	Quiz Midterm Final Exam
1.4	Explain how ecolor evolutionary interact and affe	processes	K4	Course lecture	Quiz Midterm Final Exam

Code	Course Learning Outcomes	Code of aligned progr	with	Teaching Strategies	Assessment Methods
	and long-term p viability.	opulation			
2.0	Skills				
2.1	Use genetic data to population parameters and or relatedness and fitness	genetic determine	S1	Course lectures	Quiz Midterm Final Exam
2.2	selection and pred evolution - relatedness and a genetic data to o the genetic ba	henotypic ict rate of Analyze molecular	S2	Course lectures	Lab Midterm Final Exam
2.3	Evaluate critically, and judge resu studies at the inter evolution, genet ecology	Its from section of	S3	Course lectures	Lab Midterm Final Exam
2.4	Plan studies in evo	•	S4	Course lectures	Lab Midterm Final Exam
3.0	Values, autonomy,	and respon	sibility		
3.1	Evaluate the impogenetic and processes for evonatural population	ecological olution in	V1	Discussion	Performance Evaluation
3.2	Judge and reflect o literature in evo and ecological gene	olutionary	V2	Discussion	Performance Evaluation
3.3	Show the ability to results from questudies through modes	•	V3	Discussion	Performance Evaluation

Code	Course Learning Outcomes	Code of CLOs aligned with program		Teaching Strategies	Assessment Methods
3.4	Demonstrate the work independe cooperate with tea	ntly and	V4	Discussion	Performance Evaluation

C. Course Content

No	List of Topics	Contact Hours
1.	Foundations: Introduction to Population Genetics, elements of population genetics, Genetic variation, Characterization of DNA sequence variations, Gene Pool of a Population (Allelic frequencies, phenotypic frequencies, genotypic frequencies)	8
2.	Hardy-Weinberg Law Genotypic Frequencies at Hardy-Weinberg Equilibrium Closer Examination of the Assumptions of the Hardy-Weinberg Law Implications of the Hardy-Weinberg Law Extensions of the Hardy-Weinberg Law Testing for Hardy-Weinberg Proportions Estimating Allelic Frequencies with the Hardy-Weinberg Law	8
3.	Genetic Variation in Populations and their Analysis Nonrandom Mating Evolutionary Forces: mutations, genetic recombination, gene flow or gene migration, genetic drift, natural selection,	4
4.	Evolutionary Genetics Natural Populations and Genetic Variation New Species and Reproductive Isolation Evolutionary History and Homologous Characteristics Patterns of Evolution Evolution of Sex Multi-locus evolution: Adaptive landscape, Spatial variation, Temporal variation	2
5.	Quantitative Genetics Quantitative Characteristics Variation Quantitative Characteristics and Statistical Methods Heritability and Genetic variation Genetically Variable Traits and Selection	2
6.	Ecological genetics Inbreeding depression and mating systems: Evolution of selfing rate, Modifier models, Breeding system evolution	2
7.	Population substructure F statistics. migration Hierarchical F, derived from coalescent theory Likelihood, Bayesian statistics	4
	Total	30

No	List of Topics (labs)	Contact Hours
1.	Gene Pool of a Population (Allelic frequencies, phenotypic frequencies, genotypic frequencies)	4
2.	Hardy-Weinberg Law	4
3.	Genetic Variation in Populations and their Analysis	4
4.	Evolutionary Genetics: The Alignment of Homologous Sequences The Construction of Phylogenetic Trees	4
5.	Quantitative Genetics Measuring natural selection G-matrix QTL simplified Heritability and Genetic variation	4
6.	Population substructure F statistics. migration Hierarchical F, derived from coalescent theory Likelihood, Bayesian statistics	4
	Total	24

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm exam 1	5th week	20%
2.	Midterm exam 2	10th week	20%
3.	Quizzes, Participation, Attendance	During the semester	20%
6.	Final Exam	15th week	40%
	Total	100%	

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

1. Itelet theel and Boat mig Iteletative				
Essential References	-Benjamin A Pierce (2020) Genetics: a conceptual approach. 7 th edition W.H. Freeman. ISBN-13-978-1319216801.			
Supportive References				
Electronic Materials	• Saudi Digital Library https://www.sdl.edu.sa/SDLPortal/Publishers.aspx http://www.animalbehavior.com			
Other Learning Materials				

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms and Laboratories
Technology equipment (projector, smart board, software)	Projector and Smartboard
Other equipment (depending on the nature of the speciality)	Genetics-related equipment

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Direct
Effectiveness of Students assessment	Program Leader	Direct
Quality of learning resources	Peer Reviewer	Indirect
The extent to which CLOs have been achieved	Program Leader	Direct
Other	-	-

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Biology Department Council	
REFERENCE NO.	2	
DATE	21/02/1446 H	

