

عنوان البحث	اسم الطالب	اسم المشرف
The catalytic performance of MnWO₄ nanocatalyst towards the generation of hydrogen as a clean fuel	سعده بن حسين الـ مارد الأـ سمرـي	جمال بن محمود محمود
الملخص باللغة العربية غاز الهيدروجين (H ₂) هو مصدر طاقة مستدام وصديق للبيئة. يعتبر الهيدروجين أحد أكثر مصادر الطاقة الوعادة نظراً لمحتواه العالي من الطاقة، مما يجعله مصدر طاقة نظيفاً عملياً بديلاً للوقود الأحفوري. ولأول مرة، استُخدم تجسّسات المنجنيز MnWO ₄ في الدراسة الحالية كمحفز فعال لإنتاج H ₂ الصديق للبيئة من التحلل المائي لهيدروبورات الصوديوم. تم تحضير MnWO ₄ من خلال عملية الترسيب المشترك. تم استخدام حبوب الأشعه السينية وامتصاص الاشعة تحت الحمراء XRD و FTIR لتصنيف المحفز الناتج. أكّد التحليل باستخدام XRD و FTIR أن MnWO ₄ قد تم تكوينه بنجاح. وفقاً للتقديرات، عند درجات حرارة التفاعل 21 و 25 و 33 و 40 و 45 درجة مئوية، كان معدل توليد الهيدروجين (HGR) 445 و 516 و 673 و 945 و 1245 مل/ دقيقة / جرام من الحفاز، على التوالي. بالنسبة للتحلل المائي التحفيزي لهيدروبورات الصوديوم، تقدّر طاقة التنشيط الظاهرية لتفاعل بـ 30.9 كيلوجول/مول بناءً على معادلة شبه الرتبة الأولى. أجريت أيضاً حسابات الديناميكا الحرارية مثل الانتروبي والمحتوى الحراري والطاقة الحرية (ΔH#, ΔS#, ΔG#)، والتي أوضحت أن التفاعل ماص للحرارة، ومدفوع بالإنتروبيا، وتلقائي.	د. محمد نادي ابراهيم	الهيدروجين (H ₂) هو مصدر طاقة مستدام وصديق للبيئة. يعتبر الهيدروجين أحد أكثر مصادر الطاقة الوعادة نظراً لمحتواه
<p>Hydrogen gas (H₂) is a sustainable and eco-friendly energy source. Hydrogen is considered to be one of the most promising energy sources due to its high energy content, which makes it a feasible clean energy source substitute for fossil fuels. For the first time, MnWO₄ was used in the current study as an effective catalyst for the environmentally friendly production of H₂ from the hydrolysis of NaBH₄. MnWO₄ was created via a co-precipitation method. FTIR, and XRD were used to characterize the produced catalyst. Analysis using XRD and FTIR verified that MnWO₄ was successfully formed. According to estimates, at reaction temperatures of 21, 25, 33, 40, and 45 oC, the hydrogen generation rate (HGR) were 445, 516-, 673-, 945- and 1245-mL min⁻¹ g⁻¹, respectively. For the catalytic hydrolysis of NaBH₄, MnWO₄ has an estimated apparent activation energy of 30.9 kJ mol⁻¹ based on the pseudo-first-order equation. Calculations were also made for thermodynamic parameters such as ΔH#, ΔS#, and ΔG#. Accordingly, the reaction was found to be endothermic, entropy driven and spontaneous.</p>	Abstract	