

Course Specification

- (Bachelor)

Course Title: Electroanalytical Methods

Course Code: CHM 1238

Program: Bachelor of Science in Chemical Laboratories

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 1446-10 v1

Last Revision Date: 17 September 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	8
G. Specification Approval	9

A. General information about the course:

-1. Course Identification

4	Credit hours: 4		Al
	Cream nours 4		
	CICUIT HOUIS. T		

4(3 Lectures, 3 Lab, 0 Tutorials)

	_			
	Cou	rca	TW	nο
4	CUU	135	UV	

A.	□University	□College	☑ Department	□Track	□Others
В.	□ Required		□Electi	ve	

3. Level/year at which this course is offered: Level 4/ Second year

4. Course general Description:

The course contains the different electrochemical methods that can be used in analytical chemistry. It includes electrochemical cells, electrode potential and different types of electroanalytical methods. It also includes poteniometry, coulometry, conductometry, voltammetry and amperometry.

5. Pre-requirements for this course (if any):

Classical Analytical Chemistry- CHM 1230

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

By the end of completion of this course students will be to:

- ✓ Know the different types of electrochemical cells and electrodes.
- ✓ Calculate the cell potential and electrode potential.
- ✓ Recognize how to perform direct potentiometry and potentiometric titration.
- ✓ List voltammetry and its different types.
- ✓ state amperometry and its different types.
- ✓ Differentiate between coulometry and conductometry.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	90	100%
2	E-learning	0	0
	Hybrid		
3	 Traditional classroom 	0	0
	E-learning		
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		90

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To recognize the basic knowledge of the electroanalytical chemistry	K1; K2	 Six hours weekly, containing lectures and laboratory activities A Private study, including a Homework 	Direct:exams, QuizzesHomework Laboratory ReportsParticipation
1.2	To define how to perform direct potentiometry and potentiometric titration	K2; K4	 Two hours weekly, containing lectures A Private study, including a Homework 	Direct:exams, QuizzesOral DiscussionLaboratory ReportsParticipation
1.3	To list voltammetry and its different types	К4	Lectures and laboratory experiments.	 Direct: Participation, Quizzes and MCQs, laboratory reports
2.0	Skills			
2.1	To differentiate the different types of amperometry, and	\$1; \$3	• Lecturing, group discussion	Direct; Short quizzes Exams,

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	coulometry and conductometry		Laboratory experiments performance	Solved problems marks Homework assignment and laboratory reports
2.2	To Calculate the cell potential and electrode potential	S1; S3	Brain storming and self-study	Direct;Quizzeslaboratory reports
2.3	To demonstrate skills to participate in class by asking questions and giving answers.	S3	Group discussionlaboratory experiments.	Direct;Homework assignment,Examination Laboratory report
2.4	To diagram and explain experimentally obtained data during laboratory classes and field tasks and illustrate oral and network communication and technical writing skills	S3; S4	 Seminars Laboratory Encourage students to use blackboard and electronic mail to submit works and assignments. 	Direct; • Oral tests and lab performance, reports and sheets Marks • Assignments and homework marks
3.0	Values, autonomy, and	d responsibility		
3.1	Appraise teamwork and create awareness to maintain scientific integrity during assessments, projects, and mini-projects.	V2	 Group discussion, assignments, and homework Lab-reports Virtual labs and demonstrations 	Direct; • Oral tests, lab performance, Reports and sheets of Marks • Assignments and homework marks
3.1	Show personal values and attributes such as honesty, empathy and respect for others	V1, V2	Teamwork and class discussions	Directlab reportsMini projects

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to electroanalytical chemistry (electrochemical cell, potential of the cell, electrode potential, Nernst equation, current in electrochemical cells)	9
2.	Potentiometry (reference electrode, metallic indicator electrode, membrane electrode, ion-selective electrode, direct potentiometry and potentiometric titration)	9
3	Voltammetry (excitation signals, instrumentation, cyclic voltammetry, pulse voltammetry, stripping voltammetry, linear sweep voltammetry and application of voltammetry)	9
4	Amperometry (types of electrodes, instrumentation, types of amperometry and applications)	12
5	Conductometric and conductometric titrations	6
No	List of Experiments	Contact hours
1	Potentiometric titration of strong acid and strong base	3
2	Potentiometric titration of weak acid and strong base 3	
3	Potentiometric titration of strong acid and weak base	3
4	Determination of dissociation constant of weak acid using potentiometric titration	
5	Analysis of polyprotic acid using potentiometric titration	3
6	Potentiometric titration of KmnO4 with Fe (II): Redox titration	3
7	Potentiometric titration of K2Cr2O4 with Fe (II): Redox titration	3
8	lodimetry using potentiometric titration	3
9	Conductometric titration of strong acid and strong base	3
10	Analysis of vinegar using conductometric titration 3	
11	Analysis of strong acid and weak base using conductometric titration 3	
12	Analysis of phosphoric acid using conductometric titration 3	
13	Voltammetry	3
14	amperometry	3
15	Revision and Lab. Reports overview	3
	Total	90

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6 th /7 th week	10 %
2.	Midterm 2	11 th /12 th week	10 %
3.	Quizzes, Home Works, class participation, and mini projects	During the semester	10 %
4.	Laboratory	All the semester	30 %
5.	Final Exam	16thweek	40 %
6.	Total	All weeks	100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch, Fundamentals of Analytical Chemistry , Cengage Learning; 9th edition (January 1, 2013), ISBN-10 : 0495558281, ISBN-13 : 978-0495558286
	J. Mendham, Vogel's Quantitative Chemical Analysis , Prentice Hall; 6th edition (January 1, 2000), ISBN-10: 0582226287, ISBN-13: 978-0582226289
Supportive References	 Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, ASIN: B00I8XF5JC, Wiley; 7th edition (September 27, 2013). Douglas A. Skoog, F. James Holler, Stanley R. Crouch, <i>Principles of</i> Instrumental Analysis, ASIN: 1305577213, Cengage Learning; 7th edition (January 1, 2017), ISBN-10: 9781305577213, ISBN-13: 978-1305577213
	3. Francis Rouessac (Author), Annick Rouessac, Chemical Analysis: Modern Instrumentation Methods and Techniques English Edition, Wiley; English edition (January 15, 2000), ISBN-10 : 0471981370, ISBN-13 : 978-0471981374
Electronic Materials	Blackboard

Other Learning Materials

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation, and well equipped with instruments. In each lab, containers for solid waste, liquid waste, and crushed glasses. Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risk, Safety precautions according to Merck Catalogue are hanging in the labs
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.
Other equipment (depending on the nature of the specialty)	 Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cylinders) Appropriate fine chemicals and solvents (distilled Water ammonium nitrate) Analytical balance (3 digits), Set gas laws with the glass jacket Data acquisition set for gas laws with glass jacket, PC, Windows® 95 or higher, calorimeter, thermometer, Filter papers , clamps, stands

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Direct: Questionnaire.
	Course Responsible	Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of Students assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.

Assessment Areas/Issues	Assessor	Assessment Methods
Quality of learning resources	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review. Direct: Course e-Portfolio.
	Program Leaders	Indirect: Course evaluation survey- Observations-Syllabus review-Accreditation review.
The extent to which CLOs have been achieved		
Lab Performance	Students	Direct: Lab reports, Final Lab exam, Course e-Portfolio.

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	3 (NO. 1/3)
DATE	5/3/1446- 8/09/2024

