

Course Specification

— (Bachelor)

Course Title: Environmental Chemical Analysis

Course Code: CHM 1239

Program: Bachelor of Science in Chemical Laboratories

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 2024- 1

Last Revision Date: 15 September 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	8
E. Learning Resources and Facilities	8
F. Assessment of Course Quality	9
G. Specification Approval	10

A. General information about the course:

-1. Course Identification

4	Cuadit L	nours: 4	15 5	\mathbf{a}
		11011115-4	-	
	CICAILI	IUUIS. T	\mathbf{U}	, •,

4 (3 Lectures, 3 Lab, 0 Tutorials)

	urse	44.0	10.0
/ -	1112	II W	I O I =
	GIJC		

Α.	□University	□College	⊠ Depai	rtment	□Track	□Others
В.	□ Required			□Electi	ve	

3. Level/year at which this course is offered: Level 4/ Second year

4. Course general Description:

The course provides an insight into the Introduction to environmental analysis techniques on real samples and sampling of different test materials (including Air samples, Water samples, Soil and Sediment Sampling, Trace Organics, Contaminated Land Sites Sample storage, and sample preparation are discussed. The course is based on basic knowledge of analytical chemistry. It goes further in-depth to use other analytical techniques for environmental monitoring. The course is based on and uses active learning activities through teamwork, planning fieldwork, sampling, sample processing, chemical analysis, data interpretation, and reporting in the practical part.

5. Pre-requirements for this course (if any):

Basics of Environmental Chemistry -CHM 1237

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

The objectives of this course are as follows:

- ✓ To introduce the student to a basic knowledge of analytical technique to environmental samples including water, air, and soil.
- ✓ To illustrate the analyses of the major physical, chemical, and biological parameters for each of these environmental samples.
- ✓ To provide the student with a knowledge of data interpretation.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	90	100%
2	E-learning	0	0
3	Hybrid • Traditional classroom	0	0
	E-learning		

No	Mode of Instruction	Contact Hours	Percentage
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		90

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To recognize the Environmental Sampling collection and Analysis	K1; K4	 Five hours weekly, containing lectures and laboratory activities A Private study, including a Homework 	Direct:exams, QuizzesHomework Laboratory ReportsParticipation
1.2	To outline the methods of analysis such as Spectrophotometric Methods, Electrochemical Methods of Analysis, Chromatography, and Mass Spectrometry.	K2; K4	 Three hours weekly, containing lectures A Private study, including a Homework 	Direct: Oral tests Homework and assignment marks, Written exams

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.3	To describe the analysis of different methods of soil and solids waste	K2; K4	Lectures and laboratory experiments.	Direct:Participation,Quizzes and MCQs,laboratory reports
1.4	To define and describe the analysis methods of Air pollutant and biological materials:	K3; K4	Lectures Group discussions laboratory experiments.	Direct:Participation,Quizzes and MCQs,laboratory reports
2.0	Skills			
2.1	To evaluate the different components of water	S1; S3	Lecture and oral discussions	Direct:Oral DisscussionShort quizzes and homework assignments
2.2	To Justify the proper analysis methods for air, water, soil, and biological materials	S1; S2	Group Discussion Brainstorming and self-study	Direct: • Quizzes • laboratory reports • Homework
2.3	To demonstrate skills to participate in class by asking questions and giving answers.	S3	Motivate students to ask questions and to give responses.	Direct:Participation marksOral Disscussion
2.4	To diagram and explain experimentally obtained data during laboratory classes and field tasks and to demonstrate oral and network communication and technical writing skills.	S1; S4	 Seminars Laboratory Encourage students to use Blackboard and electronic mail to submit works and assignments. 	Direct:Lab reportsAssignments and homework

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
3.0	Values, autonomy, and	dresponsibility		
3.1	To appraise teamwork and create awareness to maintain scientific integrity during different assessments, projects, and minireports.	V2	 Group discussion and assignments homework 	Direct: Oral tests Assignments homework marks
3.2	Show personal values and attributes such as honesty, empathy and respect for others	V1, V2	Teamwork and class discussions	Directlab reportsMini projects

C. Course Content

No	List of Topics	Contact Hours
1.	Environmental Sampling and Analysis: Introduction to environmental analysis, Sampling, Air Sample Collection and Analysis, Water Sample Collection and Analysis, Soil and Sediment Sampling, Sample Preparation for Trace Organics, Contaminated Land Sites and their analysis, EPA Methods, and Performance-Based Analyses.	9
2.	Chemical analysis of water and wastewater: General Aspects of Environmental Chemical Analysis, Error and Quality Control: detection limit, instrument detection limit, method detection limit, practical quantitation limit. Methods of analysis such as, Spectrophotometric Methods, Electrochemical Methods of Analysis, Chromatography, Mass Spectrometry. Sampling, sampling strategy, Shewhart chart for mean values and uncertainty., Water Sampling, Water Sample Preservation, Total Organic Carbon in Water, Measurement of Radioactivity in Water, Biological Toxins,.	9
3.	Analysis of soil and solids waste: Introduction, soil analysis: physical parameter as pH, texture, chemical parameter as organic matter, CEC, N, P, K, biological parameter, Sample digestions, Analyte isolation for organics analysis, Sample cleanups,	9

	Determination of chelating agents, Toxicity characteristic leaching Procedures.	
4.	Analysis Air pollutant analysis: Atmospheric Monitoring, Air Pollutants Measured, Sampling, Methods of Analysis, Determination of Sulfur Dioxide, Nitrogen Oxides, Analysis of Oxidants, Analysis of Carbon Monoxide, Determination of Hydrocarbons and Organics, Analysis of Particulate Matter, Direct Spectrophotometric Analysis of Gaseous Air Pollutants.	9
5.	Analysis of biological material: Introduction, Indicators of Exposure to Xenobiotics, Determination of Metals, Determination of Nonmetals and Inorganic Compounds, Determination of Parent Organic Compounds.	9
No	List of Topics- Practical	Contact Hours
1	Sampling Techniques of solid Environmental samples	3
2	Sampling and Testing of Environmental Water Samples	3
3	Alkalinity and Acidity of Water	3
4	Determination of Total Hardness in Water	3
5	Determination of Chloride Content in Soil, Tap, and ground Water Samples by the Mohr Method	3
6	Solids in Water and Waste Water (1)	3
7	Solids in Water and Waste Water (2)	3
8	Determination of Oil and Grease in Waste Water	3
9	Spectrophotometric Determination of Iron in a wastewater and other samples	3
10	Chemical Oxygen Demand (COD) 46	3
11	Determination of Total Organic Matter in Soil, Sludge and Waste Water	3
12	Detection of Lead (Pb) Pollution in Environmental Sample	3
13	Air quality: pH and acid content of Acid Rain Air Pollution: Sulphate(VI) Determination in Acid Rain	3
14	Determination of Sodium Na and Potassium K Contents in Environmental Samples by Flame Atomic Emission Spectroscopy (FAES)	3
15	Revision and Lab. Reports overview	3
	Total	90

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes, Attendance, Participation, Homework	All the semester	10%
2.	Laboratory	All the semester	30%
3.	Midterm Exam 1	Around 6 th -7 th week	10%
4	Midterm Exam 2	Around 11 th -12 th week	10%
5	Final Exam	Around 15 th – 16 th week	40%
6	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Stanley Manahan, Stanley E. Manahan , Environmental Chemistry , CRC Press; 7th edition (December 29, 1999), ISBN-10 : 1566704928, ISBN-13 : 978-1566704922	
Supportive References	 Gary D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, Analytical Chemistry, Wiley; 7th edition (October 7, 2013), ISBN-10: 0470887575, ISBN-13: 978-0470887578 Jonathan D. Raff, Ronald A. Hites, Elements of Environmental Chemistry, ASIN: B08CS91QCS, Wiley; 3rd edition (July 9, 2020). V. P. Evangelou, Environmental Soil and Water Chemistry: Principles and Applications, Wiley-Interscience; 1st edition (October 12, 1998), ISBN-10: 0471165158, ISBN-13: 978-0471165156 	
Electronic Materials	 Internal server: \\10.10.70.70\ScienceShareFolder http://www.chemistry.college.hmco.com 	
Other Learning Materials	such as computer-based programs/CD, professional standards or regulations and software.	

3. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation, and well equipped with instruments. In each lab, containers for solid waste, liquid waste, and crushed glasses. Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risk, Safety precautions according to Merck Catalogue are hanging in the labs
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.
Other equipment (depending on the nature of the specialty)	 Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cylinders) Appropriate fine chemicals and solvents (distilled Water ammonium nitrate) Analytical balance (3 digits), Set gas laws with the glass jacket Data acquisition set for gas laws with glass jacket, PC, Windows® 95 or higher, calorimeter, thermometer, Filter papers , clamps, stands

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Direct: Questionnaire.
Effectiveness of teaching	Course Responsible	Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of Students assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Indirect: Second examiner checklist-Course report.
Quality of loarning resources	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
Quality of learning resources	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course e- Portfolio. Indirect: Second examiner checklist-Course report.
	Program Leaders	Indirect: Exams.
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	3 (NO. 1/3)
DATE	5/3/1446- 8/09/2024

