

Course Specification

— (Bachelor)

Course Title: Principles of Physical Chemistry

Course Code: CHM 1240

Program: Bachelor of Science in Chemical Laboratories

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 1446-10-v1

Last Revision Date: 1446-10-v1

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	8
F. Assessment of Course Quality	8
G. Specification Approval	10

A. General information about the course:

1. Course Identification

1. 0	1. Credit hours: 4 (3, 3, 0)					
4 (3	4 (3 Lectures, 3 Lab, 0 Tutorials)					
2. 0	2. Course type					
Α.	□University	□College	⊠ Depa	rtment	□Track	□Others
B. ⊠ Required □Elective						
3. L	3. Level/year at which this course is offered: Level 3/ Second year					

4. Course general Description:

Topics covered in the course include the properties of ideal gas and some laws related to them and the real gas properties. Thermochemistry: First law of thermodynamics, Enthalpy of reactions. Properties of solutions. Colligative properties: boiling-point elevation and freezing point depression. chemical equilibrium and electrochemistry concepts.

5. Pre-requirements for this course (if any):

General Chemistry 1 (CHM 1101)

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

At the end of the course, Students should be able to:

- To familiarize students with basic knowledge of physical chemistry needed for higher level courses.
- To recognize the properties of gases, perfect gases laws and correlate the kinetic theory to gas laws.
- To improve the students' knowledge of the laws of classical thermodynamics and thermochemistry.
- To recognize the basic principles of electrochemistry.
- To develop the students' appreciation of chemistry as an experimental science supported by theory as an interpretive and predictive tool.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	90	100%
2	E-learning	0	0
3	HybridTraditional classroom	0	0

No	Mode of Instruction	Contact Hours	Percentage
	• E-learning		
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		90

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To define the concept of standard state and thermodynamic functions of pure substances due to change of temperature and state main gas laws and their applications.	K1; K2; K3;	Lectures	Short quizzes and exams
1.2	To list the thermodynamic concept of phase equilibrium, chemical equilibrium,	K1; K2; K3;	Lectures	Exams, homeworks and quizzes

Code	Course Learning Outcomes	Code of PLOs aligned with	Teaching Strategies	Assessment Methods
	entropy, and Gibb's free energy.	program		
1.3	To recognize some principles of electrochemistry.	K1; K3	lectures and laboratory experiments	Laboratory reports Numerical problem solution grades
2.0	Skills			
2.1	To estimate the heat of reaction from tabulated bond energy values and evaluate the elevation in boiling point and depression in freezing point of solutions due to salt addition	S1, S3	Lectures and laboratory experiments	Solved problem marks Short quizzes and Laboratory reports Numerical problem
2.2	To evaluate the equilibrium constant from experimental data, and contrast kinetic data with Mathematical equations.	S1, S2	Lectures and laboratory experiments	Solved problem marks Short quizzes and Laboratory reports
2.3	To analyze data and results through analytical thinking, with evaluation of the gained information.	S1, S3	Brain storming and self-study	Work portfolio and homework
2.4	To illustrate and diagram experimentally obtained data during laboratory classes and field tasks, and to demonstrate oral and network communication and	S1, S3	 Oral participation Group discussions and lab experiment and reports Encourage students to use blackboard and email to submit homework and assignments. 	 lab performance, reports and sheets Marks

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	technical writing skills.			
3.0	Values, autonomy, and	d responsibility		
3.1	To show effective contribution in teamwork and raise Knowledge during various evaluations, initiatives, and Labreports to uphold scientific integrity.	V1; V2	 Group discussion and assignments homework Lab-reports Virtual labs and demonstrations 	 Oral tests and lab performance, reports and sheets Marks Assignments and homework marks

C. Course Content

No	List of Topics	Conta ct Hours
1.	 Nature of physical chemistry. Classical mechanics and Properties of Gases, The Perfect Gas – States of gases Gas laws, Individual Gases, Boyle's Law, Charles's and Gay-Lussac's law, Avogadro's Principle, Graham's law, Perfect (Ideal) Gas Equation, Mixtures of Gases. Dalton's Law, Mole Fractions, Real Gases, Virial coefficients, Molecular Interactions, Compression factor Boyle's Temperature, CO₂ Phase Diagram, Condensation. Critical Constants, van der Waals Equations, Principle of Corresponding States, Kinetic Model of Gases. 	9
2.	Thermochemistry : Introduction to Thermodynamics, Basic Concepts (Work, Heat and Energy), ZEROth Law. First Law: State functions, Standard Enthalpy Changes, Enthalpies of Physical Change, Enthalpies of Chemical Change, Hess' Law, Standard Enthalpies of Formation Changes, Reaction Enthalpy & Enthalpy of Formation, Group Contributions, Temperature Dependence of Reaction Enthalpies.	9
3.	Properties of Solutions , Mixtures, Colligative Properties, Boiling point elevation, Freezing point depression, Solubility, osmotic Pressure, Activities, Solvent Activity, Solute Activity, Regular Solutions.	9
4	Chemical equilibrium : Chemical equilibrium, Law of mass action, Equilibrium constant, Equilibrium concentration, Le Chatelier's principal.	6

15	Revision	3
14	Daniel Cell	3
13	Viscosity of liquids	3
12	Colligative properties (Melting point Depression)	3
11	Colligative properties (Boiling point Elevation)	3
10	Part II: Determination of the Effect of Various Influences on the Position of Equilibrium	3
9	Part I: Determination of the Effect of Various Influences on the Position of Equilibrium	3
8	Chemical equilibrium: Effect of concentration & Chemical equilibrium: Effect of Temperature	3
7	Determination of heat of Dilution	3
6	Determination of specific heat of metals & Determination of heat of Neutralization	3
5	Determination of heat of solution(endothermic-exothermic reaction)	3
4	Gay-Lussac's law (V, T), Avogadro's law (V, n)	3
3	measurements and reports Boyle and Mariette's law (P, V), Amontons' law (P,T)	3
2	Calorimeter calibration	
1	Safety and Laboratory equipment and measurements and How to make a report ,	3
Topi	cs to be covered (Laboratories)	
6	Physical Properties of Solutions : Type of solutions, A molecular view of the solution process, Concentration units, Effect of temperature on solubility, Effect of pressure on the solubility of gases.	3
5	Electrochemistry : Introduction / Fundamental Concepts: Electrochemistry and Redox reactions, Electrolytic cells, Galvanic Cell, Standard reduction potential, spontaneities of Redox reactions, Cell Emf.	9

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6th/7th week	10 %
2.	Midterm 2	11 th / 12 th week	10 %
3.	Quizzes, Home Works, class participation, and mini projects	During the semester	10 %
4.	Laboratory	All the semester	30 %
5.	Final Exam	16 th week	

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
			40 %
6.	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Keith J. Laidler, John H. Meiser, Bryan C. Sanctuary, Physical Chemistry , Houghton Mifflin College Div; 4th edition (January 1, 2003), ISBN-10: 0618403744, ISBN-13: 978-0618403745
Supportive References	 Peter Atkins, Julio de Paula, Physical Chemistry, W. H. Freeman; 8th edition (March 10, 2006), ISBN-10: 0716787598, ISBN-13: 978-0716787594. Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi, Physical Chemistry, Wiley; 4th edition (July 1, 2004), ISBN-10: 047121504X, ISBN-13: 978-0471215042
Electronic Materials	Blackboardwww. Elesevier.com
Other Learning Materials	An Introduction for Students of Physical Chemistry, Atoms and Molecules: Karplus, M., and R. Porter. Reading, MA: Addison Wesley, 1970 (ISBN: 9780805352184).

2. Required Facilities and equipment

Items	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation, and well equipped with instruments. In each lab, containers for solid waste, liquid waste, and crushed glasses. Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risk, Safety precautions according to Merck Catalogue are hanging in the labs 	

Items	Resources	
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.	
Other equipment (depending on the nature of the specialty)	 Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cylinders) Appropriate fine chemicals and solvents (distilled Water ammonium nitrate) Analytical balance (3 digits), Set gas laws with the glass jacket Data acquisition set for gas laws with glass jacket, PC, Windows® 95 or higher, calorimeter, thermometer, Filter papers , clamps, stands 	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Direct: Questionnaire.
Effectiveness of teaching	Course Responsible	Direct: Course e-Portfolio. Indirect: Second examine checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessoreport.
Effectiveness of Students assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.
Quality of learning resources	Students	Indirect: Second examine checklist-Course report.
	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations Accreditation review.
	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey- Observation Syllabus review Accreditation review.
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course e- Portfolio. Indirect: Second examine checklist-Course report.
	Program Leaders	Indirect: Exams.
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY	
REFERENCE NO.	3 (NO. 1/3)	
DATE	5/3/1446- 8/09/2024	

