

Course Specification

— (Bachelor)

Course Title: Physical Chemistry (1)

Course Code: CHM 1241

Program: Bachelor of Science in Chemistry

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 2024 V1

Last Revision Date: 12 October 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	8
G. Specification Approval	9

A. General information about the course:

-1. Course Identification

1	Credit ho	urce (A)
4.	creait iid	JUIS. (4)

4 (1 Lectures, 3 Lab, 2 Tutorials)

2. Course type

A.	□University	□College	□ Department	□Track	□Others
В.	□ Required		□Electi	ve	

3. Level/year at which this course is offered: Level 3/ Second year

4. Course general Description:

Topics covered in the course include the properties of ideal gas and some laws related to them and the real gas properties. First, second and third laws of thermodynamics, the equilibrium states, Application of the Gibbs function and the Planck function to some phase changes.

5. Pre-requirements for this course (if any):

General Chemistry (2)/ CHM 1102

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

At the end of the course, Students should be able:

- To improve the student's knowledge of the laws of classical thermodynamics.
- To recognize the properties of gases, liquids, and solids and their solutions.
- To correlate the kinetic theory to gas laws.
- Describe the basic principles of chemical equilibria and relationships with thermodynamic function and pH of solutions.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	90	100%
2	E-learning	0	0
3	HybridTraditional classroomE-learning	0	0
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	15
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	30
5.	Others (specify)	0
Total		90

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To define the concept of standard state and thermodynamic functions of pure substances due to change of temperature and state main gas laws and their applications.	K1; K2; K3	 Group discussion and assignments homework Lab-reports Virtual labs and demonstrations 	 Oral tests Lab performance reports Sheets Marks Assignments Homework marks
1.2	To describe the change of vapour pressure of pure liquids and solids due to change in temperature	K1	 Group discussion Assignments Homework Lab-reports Virtual labs and demonstrations 	 Oral tests Lab performance reports Sheets Marks Assignments Homework marks
1.3	To list the thermodynamic concept of phase equilibrium, chemical equilibrium, entropy, and Gibb's free energy.	K1; K3	 Numerical examples Laboratory experiments Group discussion 	 Laboratory reports Oral tests Lab performance reports Homework marks
2.0	Skills			
2.1	To summarize the heat of reaction from tabulated bond energy values and evaluate	S1; S2; S3	LecturesLaboratory experimentsGroup discussion	 Solved problem marks Oral tests Homework marks

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	the elevation in boiling point and depression in freezing point of solutions due to salt addition			Short quizzesNumerical problem
2.2	To analyze data and results through analytical thinking, with an evaluation of the gained information.	S1; S2; S3	 Group Discussions Brainstorming Self-study	Work portfolioHomework
2.3	To demonstrate skills to participate in class by asking questions and giving answers.	S3	Motivate students to ask questions and to give response.	Participation marksShort quizzesHomework
2.4	To illustrate and diagram experimental data during laboratory classes, demonstrate technical writing and oral communication skills, and operate electronic mail and network in communication with classmates and teachers.	S4; S3	 Group discussions Lab experiments and reports Encourage students to use electronic mail to submit homework and assignments. 	 Oral tests Lab performance, reports Sheets Marks Assignments Homework marks
3.0	Values, autonomy, and r	esponsibility		
3.1	To show effective contribution in teamwork and raise Knowledge during various evaluations, initiatives, and Labreports to uphold scientific integrity.	V1;V2	 Group discussion and assignments homework Lab-reports Virtual labs and demonstrations 	 Oral tests Lab performance, reports Sheets Marks Assignments Homework marks

C. Course Content

No	List of Topics	Contact Hours
1.	Nature of physical chemistry: Classical mechanics and Properties of Gases:The Perfect Gas – States of gases. Gas laws, Individual Gases, Boyle's Law, Charles's and Gay-Lussac's law, Avogadro's Principle, Graham's law, Perfect (Ideal) Gas Equation, Mixtures of Gases. Dalton's Law, Mole Fractions, Real Gases, Molecular Interactions, Compression factor Boyle's Temperature, Critical Constants, van der Waals Equations. Kinetic Model of Gases. The Barometric Distribution Law, The Maxwell Distribution of Molecular Speeds and Translational Energies,	12
2.	Introduction to Thermodynamics: Basic Concepts (Work, Heat and Energy), ZERO'th Law. The First Law of Thermodynamics - Conservation of Energy. Enthalpy, Definition of Enthalpy , Measurement of Enthalpy, Variation of Enthalpy with Temperature, Relation Between Heat Capacities, Adiabatic Change, Work of Adiabatic Change,	12
3	The second law of thermodynamics: Carnot Cycle and entropy: Entropy, Thermodynamic definition, Entropy as a State Function, The Clausius Inequality. Entropy of Phase Transition at the Transition Temperature, Expansion of the Perfect Gas, Variation of Entropy with Temperature, Measurement of Entropy, Entropy Changes in Reversible Processes, Entropy Changes in Irreversible Processest. Third Law of Thermodynamics, Nernst Heat Theorem, Third-Law Entropies, Helmholtz Energy, Maximum Work, Gibbs Energy. The Gibbs Function and Chemical Reactions, Pressure and Temperature. Helmholtz Functions. Chemical equilibrium in systems of variable composition.	12
4	Simple Mixtures: Thermodynamic Description of Mixtures, Partial Molar Quantities, Partial Molar Volume, Partial Molar Gibbs Energies. Application of the Gibbs function to chemical changes.	9
	Total	45
No	List of Experiments	Contact hours
1	•Safety and Laboratory equipment and measurements and reports	3
2	Boyle and Mariette's law (P, V), Amontons' law (P, T). •Charles's law	3
4	•Gay-Lussac's law (V, T), Avogadro's law (V, n)	3
5	•Calibration of a calorimeter and determination of the specific heat capacity of an unknown metal.	3
6	•Determination of the molar heat of reaction. Enthalpy of reaction, Hess's law and thermal equation of state and critical point.	3
7	Determination of the heat of dilution and solution by solubility.	3

9	Determination of the calorific value for heating oil and the gross calorific value for olive oil	3
10	•Boiling Point elevation	3
11	Molecular weight determination by boiling point elevation	3
12	Freezing Point Depression	3
13	Molecular weight determination by freezing point depression	3
14	Partial Molar Volume Determination	3
15	Review	3
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6th/7th week	10 %
2.	Midterm 2	11th/ 12th week	10 %
3.	Quizzes, Home Works, class participation, and mini projects	During the semester	10 %
4.	Laboratory	All the semester	30 %
5.	Final Exam	16-17th week	40 %
6.	Total	All weeks	100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Physical Chemistry , K. J. Laidler, J. H. Meiser, B. C. Sanctuary, 4th Ed, 2003, Houghton Mifflin Company [ISBN: 0618123415]
Supportive References	Advanced Physical Chemistry Experiments, J. N Gurtu, Amit Gurtu (2008) Meerut, India, Pragati Prakashan, ISBN:978-81-8398-527-7Chemical Thermodynamics Basic Concepts and Methods, Irving M. Klotz, Robert M. Rosenberg, - 7th edition-Wiley (2008). ISBN-10: 471780154 Physical Chemistry, P.W Atkins, and J. de Paula 8th Ed. 2001, New York, NY: W.H. Freeman and Company, ISBN: 9780716735397
Electronic Materials	

Other Learning Materials

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation, and well equipped with instruments. In each lab, containers for solid waste, liquid waste, and crushed glasses. Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risk, Safety precautions according to Merck Catalogue are hanging in the labs
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.
Other equipment (depending on the nature of the specialty)	 Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cylinders) Appropriate fine chemicals and solvents (distilled Water ammonium nitrate) Analytical balance (3 digits), Set gas laws with the glass jacket Data acquisition set for gas laws with glass jacket, PC, Windows® 95 or higher, calorimeter, thermometer, Filter papers, clamps, stands

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Direct: Questionnaire.
	Course Responsible	Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of Students assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.

Assessment Areas/Issues	Assessor	Assessment Methods
Quality of learning resources	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course e- Portfolio.
Lab Performance	Students	Direct: Lab reports, Final Lab exam, Course e-Portfolio.

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	7 (NO. 2/3)
DATE	29/3/1446 - 2/10/2024

