

Course Specification

- (Bachelor)

Course Title: Instrumental Analysis

Course Code: CHM 1332

Program: Bachelor of Science in Chemistry

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 2024 V**1**

Last Revision Date: 13 October 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	9
G. Specification Approval	9

A. General information about the course:

-1. Course Identification

1. Credit hours: 4	3 Lectures.	0 Turorial	. 3 Lab
Ti Ci Cait iloaisi Ti	O ECCUAICO)	O I GI OIIGI	, J Lun

4(3 Lectures, 0 Turorial, 3 Lab)

2.	_		 \sim	4		-
	\mathbf{L}	ш	$oldsymbol{a}$	11/	m	7-

A.	□University	□College	☑ Department	□Track	□Others
В.	□ Required		□Electi	ve	

3. Level/year at which this course is offered: Level 6/Year 3

4. Course general Description:

The topics taught in this course include Electromagnetic spectrum and its properties, spectrometers, Ultra violet and visible, infrared and Raman, atomic absorption and atomic emission, molecular emission. To study the basic principle of electrochemical techniques such as potentiometry, cyclic voltammetry, and Polarography.

5. Pre-requirements for this course (if any):

Volumetric and Gravimetric Analysis - CHM 1236

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

This course is intended:

- To improve students' knowledge of instrumental analysis by providing them with basic concepts and functionality of different instrumental techniques.
- To develop their hands-on skills to use the different instruments and obtain results using appropriate techniques.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	90	100%
2	E-learning	0	0
3	HybridTraditional classroomE-learning	0	0
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		90

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To list the basic principles of instrumental analytical techniques.	K1, K2	 Six hours are weekly, containing lectures and laboratory activities. A Private study including home exam. 	 Quizzes Assignments Discussions. Participation
1.2	To recognize the components and the role of instruments in solving problems in the physical, chemical and biological samples.	K2, K3	 six hours weekly containing lectures and Laboratory activities Group discussion 	 Quizzes Assignments. Oral Discussion Laboratory Reports
1.3	To outline absorbance, transmittance and concentrations.	К2	lectures and Laboratory activitiesGroup discussion	 Quizzes Home exam Oral Discussions. laboratory reports
1.4	To define the principles of safety, list emergency responses, and outline the routes of exposures to hazards, the minimization, and controlling and laboratory management.	К4	Laboratory activitiesGroup discussion.	Participation,Quizzes andMCQs,laboratory performance

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
2.1	To summarize the main instrumental analysis devices and explain the complexity of each instrument, its strengths, and its limitations.	S1	Introduce some examples of instrumental analysis devices and explain the complexity practically and virtually	 Questions in Lectures. Short Quizzes and Exams. Participation Oral Discussion, Laboratory Reports Home Exam.
2.2	To develop the measuring of different variable using spectroscopic lab instruments and differentiate between various types of instruments in terms of parts and functions.	S1	 Group Discussions Laboratory Experiments	 Questions in Lectures. Laboratory Reports Short Quizzes and Exams. Oral Discussion
2.3	To prepare standard solutions using different laboratory equipment with calibrating to present data in graphs	S1; S4	LecturesOral Discussions.Brainstorming Exercises	Questions in Lectures.Short QuizzesExams.
2.4	To demonstrate Oral Communication and writing of mini-Reports regarding the instrumental analysis applications using electronic mail and Networks in communicating with others.	S2, S3	 Encourage the students to use the Chemicals, Glassware and Instruments with caring and safety Laboratory activities. 	AssignmentsLaboratory Report.
3.0	Values, autonomy, and	l responsibility		
3.1	To appraise teamwork, decision-making in unpredictable work, and management of resources and time.	V1, V2	Brain Storms ExercisesGroup Discussion	 Oral Discussion. Group Discussion Assignments Group work sheets

	Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
--	------	-----------------------------	---	---------------------	-----------------------

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to Spectroscopy: Introduction to spectroscopy (electromagnetic radiation, dual nature of radiation, types of analysis with electromagnetic radiation, UV-Visible radiation, absorption and transmittance), and Beer's law.	6
2	Instrumentation of spectrophotometry: Types of electromagnetic radiation source, types of sample holder, types of wavelength selector (prism and grating), detectors such as phototube and photomultiplier tube, single-beam and double-beam spectrophotometers).	6
3	Molecular Absorption Spectroscopy: Absorption of inorganic and organic compounds, aplications of UV-Visible spectrophotometry for qualitative and quantitative applications (calibration curve method, standard additions method).	6
4	Molecular Emission Spectroscopy: Molecular orbitals, absorption and emission, singlet and triplet states, fluorescence, phosphorescence	3
5	Atomic Absorption Spectroscopy: instrumentation.	9
6	Atomic Emission Spectroscopy: Emission of radiation, flame photometer, instruments, Inductively Coupled Plasma (ICP).	9
7	Electrochemical analysis: Nernst equation, pH meter and ion-selective electrodes, potentiometry, voltammeter.	6
	Total	45
No	List of Experiments	Contact hours
1	Introduction to UV-Vis spectrometer and its operation. Single and double beam. The Maximum Wavelength of Absorbance (λmax).	3
2	Verification of transmittance-absorbance relation (A= - Log T).	3
3	Standard Calibration Curve and Beer's - Lambert's law.	3
4	Determination of Iron (III) in an unknown sample using the standard addition method.	3
5	Comparative Method: Determination of KMnO4, Cu+2 concentration using comparative method.	3
6	Plotting the Absorption Spectrum of Iron (II) Complex with 1,10- Phenanthroline.	3
		3

	Total	45
14	Spectrophotometric Titration: Determination of copper using EDTA	3
13	Determination of Mn is a manganese salt sample	3
12	Determination of elemental content of a sample by Inductively Coupled Plasma (ICP).	6
11	Titration of an acid and a base using pH meter.	3
10	Determination of an Infrared (IR) spectrum of some liquid and solid organic compounds.	3
9	Determination of alkali metal concentrations using flame photometer (2)	3
8	Determination of alkali metal concentrations using flame photometer (1)	3

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6th/ 7th week	10 %
2.	Midterm 2	11th/ 12th week	10 %
3.	Quizzes, Home Works, class participation, and mini projects	During the semester	10 %
4.	Laboratory	All the semester	30 %
5.	Final Exam	16- 17th week	40 %
6.	Total	All weeks	100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Gary D. Christian, Purnendu K. (Sandy) Dasgupta, Kevin A. Schug. Analytical Chemistry, 7th Edition. ISBN: 978-0-470-88757-8.
Supportive References	Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch. Fundamentals of analytical chemistry, 9th Edition. ISBN-13: 978-0-495-55828-6.

	• Daniel C. Harris. Quantitative Chemical Analysis, 8th edition,2010, W. H. Freeman & Co., New York, ISBN: 9781429218153.	
Electronic Materials	Blackboard http://highered.mcgrawhill.com/classware/ala.do?isbn=007304 8518&alaid=ala_1136810&protected=true&showSelfStudyTree= true http://www.chem1.com/acad/webtext/virtualtextbook.html http://www.shodor.org/UNChem/index.html	
Other Learning Materials	Internal server: www. Elesevier.com	

2. Required Facilities and equipment

Items	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation, and well equipped with instruments. In each lab, containers for solid waste, liquid waste, and crushed glasses. Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risk, Safety precautions according to Merck Catalogue are hanging in the labs. 	
Technology equipment	The rooms are equipped with data show, Smart	
(projector, smart board, software)	Board, WI-FI access.	
Other equipment (depending on the nature of the specialty)	 Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cyliders, dishes, funnels) Appropriate fine chemicals and solvents (ferric sulphate, ferrous sulphate or chloride, sodium chloride, potassium chloride, HCI, NaOH) UV-Vis spectrometer, flame photometer, Analytical balance (3 digits), Drying oven, Inductively Coupled Plasma (ICP). Filter papers, clamps, stands 	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Direct: Questionnaire.
Effectiveness of teaching	Course Responsible Peer Reviewer	Direct: Course e-Portfolio Indirect: Second examin checklist-Course report. Direct: Questionnaire. Indirect: External assess
		report.
Effectiveness of Students assessment	Program Leaders	Direct: Course e-Portfolic Indirect: Course report.
Quality of learning resources	Students	Indirect: Second examin checklist-Course report.
	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations Accreditation review.
	Program Leaders	Direct: Course e-Portfolice Indirect: Course evaluation survey Observations - Syllab review - Accreditation review.
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course Portfolio. Indirect: Second examin checklist-Course report.
	Program Leaders	Indirect: Exams.
Lab Performance	Students	Direct: Lab reports, Fin Lab exam, Course Portfolio.

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	7 (NO. 2/3)
DATE	29/3/1446 - 2/10/2024

