

Course Specification

— (Bachelor)

Course Title: Electrochemistry and Corrosion

Course Code: CHM 1343

Program: Bachelor of Science in Chemical Laboratories

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 1446-10-v1

Last Revision Date: 1446-10-v1

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	8
F. Assessment of Course Quality	9
G. Specification Approval	9

A. General information about the course:

1. Course Identification

1. Credit hours: 3 (2)	4,3	. U	ľ

3 (2 Lectures, 3 Lab, 0 Tutorials)

		4 .	
L .	Course	TVN	e
	Course	U , y	_

A.	□University	□College	□ Department	□Track	□Others
В.	☐ Required		⊠ Elect	ive	

3. Level/year at which this course is offered: Level 5/ Third year

4. Course general Description:

Topics covered in the course include the fundamentals of electrochemistry, cells, batteries and their standard potentials, Nernst equation, potentiometry and voltammetry methods, electrolytic conductance, corrosion.

5. Pre-requirements for this course (if any):

Electroanalytical Methods - CHM 1238

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s): Industrial Catalysis, Reactions

At the end of the course, Students should be able to:

- ✓ Provide students with basics of electrochemical processes under standard and nonstandard conditions.
- **✓** Familiarize students with the principles of some electrochemical techniques.
- ✓ Introduce corrosion and wear occurring to metals under different conditions.
- ✓ Give summary of different technologies are used to prevent or minimize corrosion.
- Solve mathematical problems to calculate cells potentials, amounts of metal deposited in electrolysis, conductivity, resistivity and current values.
- ✓ Carry out experiments, collect data and derive relations and conclusions.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	75	100%
2	E-learning	0	0
	Hybrid		
3	 Traditional classroom 	0	0
	E-learning		
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understa	nding		
1.1	To recognize some principles of electrochemistry.	K1; K2	 Four hours weekly, containing lectures and laboratory activities A Private study, including a Homework 	Direct:exams, QuizzesHomework Laboratory ReportsParticipation
1.2	To state Nernst equation for a galvanic cell potential due to change of redox system.	K1; K2	 Two hours weekly, containing lectures Group discussion 	 Direct: Oral tests Homework and assignment marks, Written exams
1.3	To name laws of conductivity, resistivity and related phenomena.	K1	LecturesLaboratory experiments.	Direct:Participation,Quizzes and MCQs,laboratory reports
1.4	To define corrosion and its impact upon metal integrity, and list	K2; K4	LecturesGroup discussionsLaboratory experiments.	Direct:Participation,Quizzes and MCQs,laboratory reports

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	methods of corrosion prevention			
2.0	Skills			
2.1	To evaluate the equilibrium constant from experimental data, and contrast kinetic data with Mathematical equations.	S1 ; S3	LecturesLaboratory experimentsGroup discussion	 Direct: Solved problem marks Short quizzes Laboratory reports
2.2	To analyze data and results through analytical thinking, with evaluation of the gained information.	S1; S2; S3	Brain stormingself-study	Direct:Quizzes,Lab reports,Class questioning,Exams (midterms and finals)
2.3	To demonstrate skills to participate in class by asking questions and giving answers.	S3	Motivate students to ask questions and to give response.	Direct:Quizzes,Class questioning,
2.4	To interpret experimentally obtained data and present orally, and writing of mini- Reports using electronic mail and Networks in communicating with others	S2; S4, K4	 Seminars Group discussions Lab experiment Encourage students to use electronic mail and blackboard to submit works and assessments. 	 Direct: Presentation marks Oral tests and lab sheets Assignments and homework Laboratory performance Laboratory reports and sheet
3.0	Values, autonomy, and re	esponsibility		
3.1	To appraise coordination and raise knowledge during various evaluations, initiatives, and mini	V2	 Group discussions Homework Mini reports Virtual labs and demonstrations 	Direct:Presentation marksOral tests and lab sheetsAssessments and homework

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	reports to uphold scientific integrity.			 Laboratory reports and sheet
3.2	Show personal values and attributes such as honesty, empathy and respect for others	V1, V2	 Teamwork and class discussions 	Directlab reportsMini projects

C. Course Content

No	List of Topics	Conta ct Hours
1.	Introduction / Fundamental Concepts: Electrochemistry and Redox, Redox Review. Balancing Redox Reactions, Types of cells, Common Components, Electrolytic cells, Voltaic (Galvanic) Cells, Cell Potential. STANDARD POTENTIALS, Standard Reduction Potentials, E0cell and ΔG0, Calculating E0 cell, Nernst equation, Concentration Cells. Batteries, Fuel Cells, Electrolysis, Stoichiometry, Faraday constant (F).	6
2.	Practical Considerations: Electrochemical Cell, electroanalytical measurement, Potentiometric Technique, Potentiostatic Technique, voltammogram. Thermodynamics and Potentials. Ion-selective electrodes (ISE), glass electrodes, liquid membrane electrodes, solid-state electrodes, applications of ISEs. Steps in simple reactions, steps in complex reactions, electrode reaction pathway, reactions controlled by mass transport.	6
3.	Potentiometry: Potential step experiments, potential sweep experiments. Reactions controlled by rate of electron transfer, electrical double layer. Reactions & Interfacial Properties: Cyclic voltammetry, Reversible Systems, Irreversible Systems, Quasi-reversible Systems, Applications, spectroelectrochemistry, electrochemiluminescence (ecl), scanning probe microscopy.	6
4.	Electrode scanning tunneling microscopy (stm), atomic force microscopy (afm), scanning electrochemical microscopy (secm), electrochemical quartz crystal, microbalance (eqcm), impedance spectroscopy. Controlled potential techniques: Controlled potential, chronoamperometry, chronocoulometry, polarography, the ilkovic equation, pulse voltammetry, ac voltammetry, stripping analysis, flow analysis.	8

	Total	75
14, 15	Revision and Lab. Reports overview	6
13	Potentiometric Titration of a Bromide-Iodide Mixture	3
12	Corrosion rate (corrosion current)	3
11	Corrosion rate (weight loss), Corrosion Inhibition	3
10	Calculate the equilibrium constant electrochemically	3
9	Part2: Determination of ΔG , ΔH and ΔS by solubility product method	
	Part1: Solubility product Ksp by conductivity method	3
8	Dissociation Constant of Weak Acid.	3
7	Determination of Equivalent Conductance of a Strong Electrolyte.	3
6	Determination Of Cell Constant.	3
5	Electroplating.	3
4	Electrochemical Studies on Concentration Cells.	3
3	Electrochemical Studies on Different Galvanic Cells	3
2	Electrolysis of Water	3
1	Safety and Laboratory equipment's and measurements and reports	3
	Laboratories Topics	
5.	Electrochemical Cells. Types of Electrochemical Corrosion, Protection Against Electrochemical Corrosion.	4
	Chemical Corrosion: Electrochemical Corrosion, the Electrode Potential in	

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6 th /7 th week	10 %
2.	Midterm 2	11 th / 12 th week	10 %
3.	Quizzes, Home Works, class participation, and mini projects	During the semester	10 %
4.	Laboratory	All the semester	30 %
5.	Final Exam	16 th week	40 %
6.	Total	All weeks	

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
			100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	•Analytical Electrochemistry, Joseph Wang, 3rd Ed., 2006, John Wiley & Sons, New Jersy, ISBN: 978-0-471-67879-3.
	• Electrochemical Methods: Fundamentals and Applications, A. J. Bard and L. R. Faulkner, 2nd Ed., 2001, John Wiley & Sons, New York, ISBN: 0-471-04372-9.
Supportive References	 The Science and Engineering of Materials, Donald R. Askeland – Pradeep P. Phulé, , 4th ed. (req. for corrosion part, Chapter 22) Experimental Electrochemistry: A Laboratory Textbook, R. Holze 1st Ed., (2009), Wiley-VCH. ISBN-13: 978-3527310982
Electronic Materials • Blackboard • www. Elesevier.com	
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation, and well equipped with instruments. In each lab, containers for solid waste, liquid waste, and crushed glasses. Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risk, Safety precautions according to Merck Catalogue are hanging in the labs
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.

Items	Resources
Other equipment (depending on the nature of the specialty)	 Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cylinders) Appropriate fine chemicals and solvents (distilled Water ammonium nitrate) Analytical balance (3 digits), Set gas laws with the glass jacket Data acquisition set for gas laws with glass jacket, PC, Windows® 95 or higher, calorimeter, thermometer, Filter papers, clamps, stands

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students Course Responsible	Direct: Questionnaire. Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of students assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.
	Students	Indirect: Second examiner checklist-Course report. Direct: course
	Faculty (Academic Advisory)	Entrance/Exit. Indirect: Observations - Accreditation review.
Quality of learning resources	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Course Responsible Program Leaders	Direct: Exams - Course e-Portfolio. Indirect: Second examiner checklist- Course report. Indirect: Exams.
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	3 (NO. 1/3)
DATE	5/3/1446- 8/09/2024

