

Course Specification

— (Bachelor)

Course Title: Industrial Catalysis

Course Code: CHM 1349

Program: Bachelor of Science in Chemical Laboratories

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 1446-10-v1

Last Revision Date: 1446-10-v1

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	8
G. Specification Approval	8

A. General information about the course:

1. Course Identification

1	Credit hours: 3	122	n 1
_⊥.	Credit Hours, 5	(Z, J,	U

3 (2 Lectures, 3 Lab, 0 Tutorials)

		_
	Course '	twne
4 .	Course	LANC

Α.	□University	□College	☑ Department	□Track	□Others
В.	⊠ Required		□Electi	ve	

3. Level/year at which this course is offered: Level 5/ Third year

4. Course general Description:

The course covered Introduction to catalysis: Fundamental Concepts of catalysis, types, advantages and disadvantages, Theories of acid-base, Acid-base equilibrium and acidity function. Preparation and characterization of catalysts: methods, structural analysis, surface analysis and others. Concepts of heterogeneous catalysis: Introduction and Definition History, catalysts and catalytic properties, general mechanism of action catalyst: diffusion, adsorption - desorption kinetics

Industrial applications of selected catalysts; nanostructured carbon materials as catalysts, doped materials, metal oxides and others. Heterogeneous catalysis Area of application.

5. Pre-requirements for this course (if any):

Princibles of Physical Chemistry- CHM 1240

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s): Industrial Catalysis, Reactions

At the end of the course, Students should be able:

- ✓ list the main concepts of homogeneous and heterogeneous catalysis.
- ✓ outline the concept of acid-base catalysis and proton transfer.
- ✓ describe some of industrial applications of heterogeneous catalysis.
- ✓ recall the mechanism of catalytic reactions.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	75	100%
2	E-learning	0	0
3	HybridTraditional classroomE-learning	0	0
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understa	nding		
1.1	To list the main concepts homogeneous and heterogeneous catalysis.	K1; K2	 Six hours weekly, containing lectures and laboratory activities A Private study, including a Homework 	Direct:exams, QuizzesHomework Laboratory ReportsParticipation
1.2	To outline the concept of acid-base catalysis and proton transfer and describe the industrial application.	K1; K4	 Two hours weekly, containing lectures A Private study, including a Homework Group discussion 	<u>Direct:</u>exams, QuizzesOral DiscussionLaboratory ReportsParticipation
1.3	To recall the mechanism of catalytic reactions	K1; K4	Lectureslaboratory experiments	Direct:Participation,Quizzes and MCQs,

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
			• Group discussion .	Laboratory reports and performance
2.0	Skills			
2.1	To differentiate homogenous and heterogeneous catalysis mechanisms, and estimate the kinetics and thermodynamic parameters of catalytic reactions.	S1; S3	 Lecturing, group discussion Laboratory experiments performance 	Direct; • Short quizzes Exams, • Solved problems marks • Homework assignment Laboratory reports
2.2	To analyze data and results through analytical thinking, with evaluation of the gained information.	S2; S3	Lecturing,group discussionLaboratoryexperimentsperformance	 Direct; Short quizzes Exams, Solved problems marks Homework assignment Laboratory reports
2.3	To demonstrate ability to participate in class by asking questions and giving answers.	S3	Brain stormingSelf-study	Direct;
2.4	To diagram and explain experimentally obtained data during laboratory classes and field tasks, and to demonstrate oral and network communication and technical writing skills.	S2; S4	 Group discussion Laboratory experiments. Brain storming	Direct; • Homework assignment, • Examination • Laboratory report and performance
3.0	Values, autonomy, and re	sponsibility		
3.1	Appraise teamwork and create awareness to maintain scientific	V2	 Group discussion, assignments, and homework 	Direct ✓ Oral tests, ✓ Sheets Marks

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	integrity during assessments, projects, and mini-projects.			✓ Assignments and homework marksMini projects
3.2	Show personal values and attributes such as honesty, empathy and respect for others	V1, V2	• Teamwork and class discussions	Direct ✓ lab reports ✓ Mini projects

C. Course Content

No	List of Topics	Conta ct Hours
1.	Introduction to catalysis : Fundamental Concepts of catalysis, types, advantages and disadvantages, Theories of acid-base, Acid-base equilibrium and acidity function	6
2.	Preparation and characterization of catalysts: methods, structural analysis, surface analysis and others	6
3.	Concepts of heterogeneous catalysis : Introduction and Definition History , catalysts and catalytic properties, general mechanism of action catalyst: diffusion, adsorption - desorption kinetics	6
4.	Industrial applications of selected catalysts; nanostructured carbon materials as catalysts, doped materials, metal oxides and others.	6
5.	Heterogeneous catalysis Area of application: reactions and catalytic processes such as Hydrogenation reactions, ammonia synthesis and decompositions, oxidation reactions, other reactions.	6
	Laboratories Topics	
1	Safety principles	3
2	Catalysts for the decomposition of hydrogen peroxide	3
3	Catalytic degradation of dye on graphene-based materials	3
4	Catalytic degradation of dye on graphitic carbon nitride-based materials	3
5	Catalysts for hydrogen production from hydrolysis of sodium borohydride	3
6	Catalytic esterification of acetic acid with n-amyl alcohol over natural clay	3
7	Cement Analysis (Determination of insoluble residue)	3
8	Cement Analysis (Determination of Fe ₂ O ₃ and Al ₂ O ₃ and others)	3
9	Effect of catalyst weight on decomposition of hydrogen peroxide	3
10	Determination of activation energy of decomposition of H ₂ O ₂	3
11	Gasometric technique for gases measurements (H ₂ O ₂ , and NaBH ₄)	3

13	Study the corrosion of different metals in acidic medium using gravimetric method	3
14	Study the effect of organic inhibitors on the corrosion of metals in acidic medium	3
15	Revision and Lab. Reports overview	3

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6 th /7 th wee	k 10 %
2.	Midterm 2	11 th / 12 th we	ek 10 %
3.	Quizzes, Home Works, class participation, and mini projects	During the sem	ester 10 %
4.	Laboratory	All the semes	ter 30 %
5.	Final Exam	16 th week	40 %
6.	Total	All weeks	100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Philippe Serp , Bruno Machado, Nanostructured Carbon Materials for Catalysis (Catalysis Series, Volume 23) Royal Society of Chemistry; 1st edition (March 2, 2015), ISBN-10 : 1849739099, ISBN-13 : 978-1849739092
Supportive References	Jens Hagen, Industrial Catalysis: A Practical Approach, ASIN: 3527331654, Wiley-VCH; 3rd edition (November 2, 2015), ISBN-10: 9783527331659, ISBN-13: 978-3527331659.
Electronic Materials	
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation, and well equipped with instruments. In each lab, containers for solid waste, liquid waste, and crushed glasses. Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risk, Safety precautions according to Merck Catalogue are hanging in the labs 	
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.	
Other equipment (depending on the nature of the specialty)	 Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cylinders) Appropriate fine chemicals and solvents (distilled Water ammonium nitrate) Analytical balance (3 digits), Set gas laws with the glass jacket Data acquisition set for gas laws with glass jacket, PC, Windows® 95 or higher, calorimeter, thermometer, Filter papers , clamps, stands 	

F. Assessment of Course Quality

Assessment Areas/Issu	ues	Assessor	Assessment Methods
Effectiveness of teaching		Students Course Responsible Peer Reviewer	Direct: Questionnaire. Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report. Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of strassessment	tudents	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.

Assessment Areas/Issues	Assessor	Assessment Methods
Quality of learning resources	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Course Responsible Program Leaders	Direct: Exams - Course e- Portfolio. Indirect: Second examiner checklist-Course report. Indirect: Exams.
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	3 (NO. 1/3)
DATE	5/3/1446- 8/09/2024

