

Course Specification

— (Bachelor)

Course Title Introduction in Biochemistry

Course Code: CHM 1371

Program: Bachelor of Science in Chemical Laboratories

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 2024- -1

Last Revision Date: 15 September 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	9
G. Specification Approval	10

A. General information about the course:

-1. Course Identification

4	C a al:1	h	12 2 0
т.	Credit	hours: 3	(Z. 3. U
	ol Galt	110010101	

3 (2 Lectures, 3 Lab, 0 Tutorials)

_			
\boldsymbol{r}	urse	-	
	111472		4012
CU			- 1

A.	□University	□College	☑ Department	□Track	□Others
В.	□ Required		□Electi	ve	

3. Level/year at which this course is offered: Level 5/ Third year

4. Course general Description:

This course is an introduction to the basic principles of biochemistry, the chemistry of living organisms, providing the necessary knowledge and background that a chemist should have about all chemical reactions occur in a living cell. The course introduces the student to the biomolecules (including protein, carbohydrate, lipid, DNA and RNA) function, structure, synthesis, and their metabolism..

5. Pre-requirements for this course (if any):

General Biology BIO 1101, Organic Chemistry CHM 1225

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

The students should be able to:

- ✓ Know basic cellular structure.
- ✓ Know the main role of water, PH, buffers in biological systems.
- ✓ Recognize the biomolecules and the difference between them with knowing their role.
- ✓ Learn the properties, structures, and functions of the biomolecules.
- ✓ Study in details the chemistry of macromolecules (protein, carbohydrate, lipid, and DNA and RNA), and the micromolecules (amino acids, fatty acids, mono- and di-saccharide, and nucleic acids, which are the building blocks of the macromolecules.
- ✓ Explaining all the pathways that occur in a living organism and the metabolism (anabolism and catabolism).
- ✓ Be familiar with basic biochemistry techniques and experiments.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	7 5	100%
2	E-learning	0	0
	Hybrid		
3	 Traditional classroom 	0	0
	E-learning		

No	Mode of Instruction	Contact Hours	Percentage
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and understanding				
1.1	To define the fundamentals of biochemistry	K1, K3	laboratory experiments,	Direct:Quizzes,Lab reports,Class questioning,Exams (midterms and finals)	
1.2	To State biochemistry terminology	K1	 Lectures supported laboratory experiment Homework and assignments Group discussion. 	 Direct: Quizzes, lab reports, Class questioning, Exams (midterms and finals) 	
1.3	To outline the biological molecules and the difference between them	KI	 Lectures supported laboratory experiments, Homework and assignments, 	Direct:Quizzes,Lab reports,Class questioning,	

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.4	To list the chemistry inside living organisms	K1,K4		 Exams (midterms and finals) Direct: Quizzes, lab reports, Class questioning, Exams (midterms and fnals)
2.0	Skills			
2.1	To summarize the differences of biomolecules	S3	 Lectures Homework and assignments Group discussion. 	 Direct: Quizzes, Lab reports, Oral Discussion Class questioning, Exams (midterms and finals)
2.2	To explain the most important techniques in biochemistry laboratory	S1, S4	 Lectures Homework and assignments Laboratory performance Group discussion. 	 Direct: Quizzes, Lab reports, Oral Discussion Class questioning, Exams (midterms and finals)
2.3	To use the biochemistry field with other chemistry field (e.g., Organic, and inorganic chemistry)	S1, S4	 Lectures Homework and assignments Group discussion. 	Direct:

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
3.0	Values, autonomy, and	d responsibility		
3.1	To appraise a moral value toward acquiring knowledge and dealing with others	V2	 Group discussion and assignments homework 	Oral tests Assignments homework marks
3.2	Show personal values and attributes such as honesty, empathy and respect for others	V1, V2	 Teamwork and class discussions 	Direct • lab reports Mini projects

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to biochemistry: What is biochemistry? Procaryotic and eucaryotic cells, cell structures, water, PH, buffer, ionic equilibrium	4
2.	Protein: Amino acids, structure of protein, globular and fibrous protein, enzymes	4
3.	Bioenergetics: Role of ATP, biological oxidation, respiratory chain, and oxidative phosphorylation	4
4.	Carbohydrates and the metabolism of carbohydrates: Introduction to carbohydrates, glycolysis, TCA cycle, gluconeogenesis, glycogen metabolism, pentose phosphate pathway, glycosaminoglycans and glycoproteins	6
5.	Lipid and the metabolism of lipids: Introduction to lipid, fatty acid, and triacylglycerol metabolism, complex lipid metabolism, lipid transport and storage, cholesterol and steroid metabolism	4
6.	Nucleic acid: Nucleotides, DNA structure, replication, and organization, RNA structure, synthesis, and translation, protein synthesis, and genetic code	4
7.	Revision	4
	Total	30

Labor	atory Topics	
1	Biochemistry laboratory instructions: Lab guideline, safety, equipment, glassware, chemicals, how to write a scientific report	3
2	Buffer solutions: definition, preparing buffer solutions, calculating PH, buffer capacity	3
3	Amino acids: Solubility of amino acids, Ninhydrin test, Xanthoprotein test, millon test, Sakaguchi test, sulfur test	3
4	Protein: The Lowry, Bradford, BCA assays and/or Biuret assays	3
5	Protein: affecting of salt on protein, precipitation by acids, precipitation by high temperature, precipitation by salt and heavy metals	3
6	Protein: Enzyme assay	3
7,8	Carbohydrates: Molisch test, benedict's test, barfoed's test, bial's test, seliwanoff's test, hydrolysis of sucrose test, Iodine/potassium iodide test,	
9,10	Lipid: Lipid solubility test, saponification test, testing the separation of soap from solution by salt, test formation insoluble fatty acids salt	6
11,12	Lipid: Copper acetate test, Burchard test, Acrolein test, unsaturated fatty acid test	6
13	DNA: DNA extraction and characterization	3
14, 15	Revision and Lab. Reports overview	6
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6 th /7 th week	10 %
2.	Midterm 2	11 th / 12 th week	10 %
3.	Quizzes, Home Works, class participation, and mini projects	During the semester	10 %
4	Laboratory	All the semester	30 %

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
5	Final Exam	16 th week	40 %
6.	Total	All weeks	100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Lippincott's Illustrated Reviews Biochemistry , 7th edition, by Pamela C. Champe, Richard A. Harvey, and Denise R. Ferrier.	
Supportive References	Harper's Illustrated Biochemistry, 31st edition, international edition, by Victor W. Rodwell, David A. Bender, Kathleen M. Botham, Peter J. Kennelly, and P. Anthony Weil.	
Electronic Materials	1- Oxford journal of Biochemistry. 0TUhttp://jb.oxfordjournals.org/U0T 2- American journal of Biochemistry. 3- 0TUhttp://www.sapub.org/journal/aimsandscope.aspx?journalid=101 2U0T. 4- www.biology.arizona.edu/default.htmlU0T 5- http://mcb.harvard.edu/BioLinks.htmlU0T. 0TU	
Other Learning Materials	Blackboard	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation, and well equipped with instruments. In each lab, containers for solid waste, liquid waste, and crushed glasses.

Items	Resources
	 Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risk, Safety precautions according to Merck Catalogue are hanging in the labs
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.
Other equipment (depending on the nature of the specialty)	 Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cylinders) Appropriate fine chemicals and solvents (distilled Water ammonium nitrate) Analytical balance (3 digits), Set gas laws with the glass jacket Data acquisition set for gas laws with glass jacket, PC, Windows® 95 or higher, calorimeter, thermometer, Filter papers, clamps, stands

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Direct: Questionnaire.
Effectiveness of teaching	Course Responsible	Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of Students assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.
	Students	Indirect: Second examiner checklist-Course report.
Quality of learning resources	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
	Course Responsible	Direct: Exams - Course e-Portfolio.

Assessment Areas/Issues	Assessor	Assessment Methods
The extent to which CLOs have been achieved	Program Leaders	Indirect: Second examiner checklist-Course report. Indirect: Exams.
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	3 (NO. 1/3)
DATE	5/3/1446- 8/09/2024

