

Course Specification

— (Bachelor)

Course Title: Nuclear and Radiation chemistry

Course Code: CHM 1415

Program: Bachelor of Science in Chemistry

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 2024 V1 **1**

Last Revision Date: *Pick Revision Date.*

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	8

A. General information about the course:

-1. Course Identification

1. Credit hours: 2 (2	Lectures, 0	Tutorials, 0 Lal	b)
-----------------------	-------------	------------------	----

2 (2 Lectures, 0 Tutorials, 0 Lab)

		_
	Course '	twne
6 .	Course	LANC

A.	□University	□College	□ Department	□Track	□Others	
В.	☐ Required	\triangleright		ive		

3. Level/year at which this course is offered: Level 7/ Year 4

4. Course general Description:

The course covers the following topics: introduction to nuclear chemistry, types of radiations, nuclear reactions, kinetics of nuclear decay, half-life, reactors, radiation detection, isotope separation and applications.

5. Pre-requirements for this course (if any):

CHM1313 Organometallic Chemistry

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

At the end of this course the student will be able to:

- Improve their knowledge of the basic information of Radiation and Nuclear chemistry; requirements, methods of preparation, uses of Radioelements.
- Be aware of the contributions of chemistry to society
- Improve their knowledge of types of radioactive decay, natural decay series, nuclear models, nuclear properties, Mass energy, relationships, nuclear reactions, rates of radioactive decay, interaction of radiation with matter.
- Improve their knowledge of instrumentation and Introduction to health physical applications in nuclear and radiochemistry.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	30	100%
2	E-learning	0	0
3	HybridTraditional classroomE-learning	0	0
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		30

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To recognize the basic information of radioactive and nuclear chemistry and to identify instrumentation and health applications in nuclear and radiochemistry.	K1, K2, K3	 Two hours are weekly, containing lectures. A Private study, including work on the home exam. 	QuizzesAssignmentsOral DiscussionParticipation.
1.2	To list types of radioactive decay, natural decay series, nuclear models, nuclear properties, Mass energy.	K1, K3	Two weekly hours, lecturesGroup discussion	Assignments.Quizzes.Final exam.
1.3	To define environmentally harmful nuclear materials and name some applications of radio-isotopes.	K1, K3	 Group discussions. A Private study, including work on homework. Think and outline harmful nuclear materials impact 	Midterms.Assignments.Oral testQuizzes.Final exam.
2.0	Skills			
2.1	To differentiate between the different types of radioactive	S2, S3	Lectures activity	• Questions in Lectures.

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	decay and predict nuclides stability and nuclear reaction products.		 Think and talk about types of radioactive decay 	 Short Quizzes and Exams. Participation through Classwork and Homework.
2.2	To calculate the mass defect and binding energy for fission and fusion reaction.	S1, S2	Introduce some examples of the mass defect and binding energy for fission and fusion reactions.	 Questions in Lectures. Short Quizzes and Exams. Participation Oral Discussion and Homework.
2.3	To estimate ages of materials using carbon and uranium dating.	S1, S2	Lectures activity	 Questions in Lectures. Short Quizzes and Exams. Participation. Oral Discussion and Homework
2.4	To develop effective written and oral communication skills, ability to present data in graphs through electronic mail, and Network skills with others	S1, S3	• Encourage students to exchange their chemical thinking, and cooperatively with their peers to develop individual skills.	 Questions in Lectures. Short Quizzes and Exams. Oral Presentation Participation
3.0	Values, autonomy, and	l responsibility		
3.1	To demonstrate teamwork, make a decision, and create awareness to maintain scientific integrity during different assessments, projects, and mini-reports.	V1, V2	 Group discussions and assignment. Homework Mini-reports 	 Oral presentation marks. Assessments and homework marks

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction, Nuclear binding energy, Mass defect and binding energy, The average binding energy per nucleon.	4
2.	Radioactivity, Nuclear emissions, Nuclear transformations, The kinetics of radioactive decay, Units of radioactivity, Artificial isotopes, Bombardment of nuclei by high-energy a-particles and neutrons, Bombardment of nuclei by 'slow' neutrons.	6
3	Nuclear fission, The fission of uranium, The production of energy by nuclear fission, Nuclear reprocessing, Syntheses of transuranium elements, The separation of radioactive isotopes.	6
4	Chemical separation, The Szilard–Chalmers effect, Nuclear fusion, Applications of isotopes, Infrared (IR) spectroscopy, Kinetic isotope effects, Radiocarbon dating, Analytical applications, Sources of 2H and 13C, Deuterium: electrolytic separation of isotopes.	4
5	Carbon-13: chemical enrichment, Multinuclear NMR spectroscopy in inorganic chemistry, Which nuclei are suitable for NMR spectroscopic studies?	5
6	Chemical shift ranges, Spin–spin coupling, Stereochemically non-rigid species, Exchange processes in solution, Mo" ssbauer spectroscopy in inorganic chemistry, The technique of Mo" ssbauer spectroscopy, What can isomer shift data tell us?	5
	Total	30

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes, Attendance, Participation, Home Exams	All the semester	20 %
2.	Midterm Exam 1	Around 6th & 7th week	20 %
3.	Midterm Exam 2	Around 11th & 12th week	20 %
4.	Final Exam	Around 16- 17th week	40 %
5.	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Inorganic Chemistry, Catherine E. Housecroft and Alan G. Sharpe, 2nd ED. Pearson Education Limited, Essex CM20 2JE, England, 2005 (ISBN: 0130-39913-2)
Supportive References	Inorganic Chemistry, Atkins, P., and Overton, T., Rourke, J., Weller, M., Armstrong, F. and Hagerman, M. 5th Ed. New York, NY: W.H. Freeman and Company, 2010 (ISBN: 978-1-42-921820-7)
Electronic Materials	 Blackboard http://highered.mcgrawhill.com/classware/ala.do?isbn=007304851 8&alaid=ala_1136810&protected=true&showSelfStudyTree=true http://www.chem1.com/acad/webtext/virtualtextbook.html http://www.shodor.org/UNChem/index.html
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Each classroom is equipped with PC and retro projector with a maximum of 25 students.
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessor	Assessment Methods
Students	Direct: Questionnaire.
Course Responsible	Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
	Students Course Responsible

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of Students' assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.
Quality of learning resources	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey-Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course e- Portfolio. Indirect: Second examiner checklist-Course report.
	Program Leader	Indirect: Exams.

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	7 (NO. 2/3)
DATE	29/3/1446 - 2/10/2024

