

Course Specification

— (Bachelor)

Course Title: Nuclear and Radiation chemistry

Course Code: CHM 1417

Program: Bachelor of Science in Chemical Laboratories

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 1446-10-v1

Last Revision Date: 1446-10-v1

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1.	Credit	hours: 3	3.0.	0
	CICAIL	110413.5	\ J , J ,	•

3 (3 Lectures, 0 Lab and 0 Tutorials)

	Cou	400	dia e	-
/ -			HW.	

A.	□University	□College	□ Department	□Track	□Others
В.	☐ Required		⊠ Elect	ive	

3. Level/year at which this course is offered: Level 7/ Fourth year

4. Course general Description:

The course covers the following topics: introduction to nuclear chemistry, types of radiations, nuclear reactions, kinetics of nuclear decay, half-life, reactors, radiation detection, isotope separation and applications.

5. Pre-requirements for this course (if any):

Physical Chemistry- CHM 1346

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s): Industrial Catalysis, Reactions

Students should be able to:

- ✓ Improve their knowledge of the basic information of Radiation and Nuclear chemistry; requirements, methods of preparation, uses of Radioelements.
- ✓ Be aware of the contributions of chemistry to society
- ✓ Improve their knowledge of types of radioactive decay, natural decay series, nuclear models, nuclear properties, Mass energy, relationships, nuclear reactions, rates of radioactive decay, interaction of radiation with matter.
- ✓ Improve their knowledge of instrumentation and Introduction to health physical applications in nuclear and radiochemistry.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100%
2	E-learning	9	0
	Hybrid		
3	 Traditional classroom 	0	0
	E-learning		
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understa	nding		
1.1	To recognize the basic information of radioactive and nuclear chemistry and to identify instrumentation and health applications in nuclear and radiochemistry.	K1, K2, K3	 Lectures and Group Discussions A Private study including home exam. 	Direct: ✓ Quizzes ✓ Discussion ✓ Participatio ✓ Exams
1.2	To list types of radioactive decay, natural decay series, nuclear models, nuclear properties, Mass energy.	K1, K3	 Lectures with group discussion. Think, talk, and discuss types of radioactive decay, natural decay series 	Direct: ✓ Oral Discussion ✓ Exams ✓ Participation
1.3	To define environmentally harmful nuclear materials and name some applications of radio-isotopes.	K1, K3	 Lectures with group discussion. Think, talk, and discuss environmentally harmful nuclear materials 	Direct: ✓ Quizzes ✓ Home exam ✓ Oral discussions.

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
2.0	Skills			
2.1	To differentiate between the different types of radioactive decay and predict nuclides stability and nuclear reaction products.	S2, S3	✓ Interactive lectures✓ Brainstorming✓ Group discussions	Direct: ✓ Short Quizzes and Exams. ✓ Participation ✓ Oral Discussion,
2.2	To calculate the mass defect and binding energy for fission and fusion reaction.	S1, S2	✓ Interactive lectures✓ Group discussions	Direct: ✓ Questions in Lectures. ✓ Short Quizzes and Exams. ✓ Participation ✓ Oral Discussion,
2.3	To estimate ages of materials using carbon and uranium dating.	S1, S2	✓ Interactive lectures✓ Brainstorming✓ Group discussions	Direct: ✓ Short Quizzes and Exams. ✓ Participation ✓ Oral Discussion,
2.4	To develop effective written and oral communication skills, ability to present data in graphs through electronic mail, and Network skills with others	S1, S3	✓ Interactive lectures✓ Brainstorming✓ Group discussions	Direct: ✓ Short Quizzes and Exams. ✓ Participation ✓ Oral Discussion,
3.0	Values, autonomy, and r	esponsibility		
3.1	To appraise coordination and raise knowledge during various evaluations, initiatives, and mini reports to uphold scientific integrity.	V1; V2	 Group discussion and assignments homework 	Direct: ✓ Oral tests ✓ Assignments homework marks

C. Course Content

N o	List of Topics	Conta ct Hours
1.	Introduction, Nuclear binding energy, Mass defect and binding energy, The average binding energy per nucleon.	3
2.	Radioactivity, Nuclear emissions, Nuclear transformations, The kinetics of radioactive decay, Units of radioactivity, Artificial isotopes, Bombardment of nuclei by high-energy a-particles and neutrons, Bombardment of nuclei by 'slow' neutrons.	9
3.	Nuclear fission, The fission of uranium, The production of energy by nuclear fission, Nuclear reprocessing, Syntheses of transuranium elements, The separation of radioactive isotopes.	9
4.	Chemical separation, The Szilard–Chalmers effect, Nuclear fusion, Applications of isotopes, Infrared (IR) spectroscopy, Kinetic isotope effects, Radiocarbon dating, Analytical applications, Sources of 2H and 13C, Deuterium: electrolytic separation of isotopes.	6
5.	Carbon-13: chemical enrichment, Multinuclear NMR spectroscopy in inorganic chemistry, Which nuclei are suitable for NMR spectroscopic studies?	9
6.	Chemical shift ranges, Spin–spin coupling, Stereochemically non-rigid species, Exchange processes in solution, Mo¨ ssbauer spectroscopy in inorganic chemistry, The technique of Mo¨ ssbauer spectroscopy, What can isomer shift data tell us?	9
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6 th / 7 th week	20 %
2.	Midterm 2	11 th / 12 th week	20 %
3.	Quizzes, Home Works, class participation, and mini projects	During the semester	20 %
5.	Final Exam	16 th week	40 %
6.	Total	All weeks	100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	<u>Catherine Housecroft</u> , <u>Alan G Sharpe</u> , <u>Inorganic Chemistry</u> , Pearson; 5th edition (May 31, 2018), ISBN-10 : 1292134143, ISBN-13 : 978- 1292134147
Supportive References	Peter Atkins, Tina Overton, Jonathan Rourke, Fraser Armstrong, Mark T. Weller, Shriver & Atkins' Inorganic Chemistry, Oxford University Press, (January 1, 2009), ISBN-10: 0199236178, ISBN-13: 978-0199236176
Electronic Materials	Blackboard www. Elesevier.com
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students.
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Direct: Questionnaire.
	Course Responsible	Direct: Course e- Portfolio. Indirect: Second examiner checklist- Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of students assessment	Program Leaders	Direct: Course e- Portfolio. Indirect: Course report.

Assessment Areas/Issues	Assessor	Assessment Methods
Quality of learning resources	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
	Program Leaders	Direct: Course e- Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Course Responsible Program Leaders	Direct: Exams - Course e-Portfolio. Indirect: Second examiner checklist- Course report. Indirect: Exams.
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	3 (NO. 1/3)
DATE	5/3/1446- 8/09/2024

