

Course Specification

— (Bachelor)

Course Title: Bioorganic Chemistry

Course Code: CHM 1424

Program: Bachelor of Science in Chemistry

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 20224 v1

Last Revision Date: 14 October 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	7
G. Specification Approval	8

A. General information about the course:

-1. Course Identification

1. Credit hours: 2 (2	Lectures, 0	Tutorials, 0 Lal	b)
-----------------------	-------------	------------------	----

2(2 Lectures, 0 Tutorials, 0 Lab)

		_
	Course '	twne
4 .	Course	LANC

Α.	□University	□College	☑ Department	□Track	□Others
В.	☐ Required				

3. Level/year at which this course is offered: Level 7/ Year 4

4. Course general Description:

This course is designed to provide students with a basic understanding of the chemical nature of biomolecules and biomacromolecules. As part of this course, students will be introduced to Bioorganic Chemistry of Amino Acids and Polypeptides discussing Organic Reactions and Biochemical Transformations. The course will extend to cover Enzyme Chemistry as a biocatalysts including Multifunctional Catalysis and Simple Models. Throughout the course , practical examples and visual aids will be employed in order to emphasize the significance and ramifications of the subject matter.

5. Pre-requirements for this course (if any):

CHM1321 Heterocyclic Chemistry

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

At the end of this course the student will be able to:

- Identify, classify and name of biochemical compounds in the living systems.
- Apply knowledge of amino acids and peptides, their biochemical and physical properties, as catalysts in biochemical processes.
- Recognize the link between synthetic organic chemistry and enzyme catalyzed reactions
- Use the vocabulary on organic chemicals and reactions in metabolism and other biochemical applications
- Be familiar with chemical reaction mechanisms of enzyme-catalyzed reactions

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	30	100%
2	E-learning	0	0
	Hybrid		
3	 Traditional classroom 	0	0
	E-learning		

No	Mode of Instruction	Contact Hours	Percentage
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		30

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To recall Chemistry of Amino Acids and Polypeptides and its role in living systems. catalytic effect of enzymes in organic media	K1; K3	 Two hours are weekly containing lectures, and Oral Discussion. A Private study including home exam. 	 Quizzes Assignments Oral Discussion Participation.
1.2	To outline the chemical reaction mechanism during enzymatic and co-enzymatic process as a catalyst	K1; K3	Two hours are weekly containing lectures and group discussion	QuizzesAssignments.Oral Discussion marks
1.3	To describe the role of enzymes in Metal Ions in Proteins and Biological Molecules	K3	Two are weekly for Lectures activitiesThink and talk about Bioorganic Chemistry	
2.0	Skills			

Code 2.1	Course Learning Outcomes To explain the role and synthesis of Amino Acids and Polypeptides in living systems	Code of PLOs aligned with program K1; K3	• Lectures activity Think and talk about the Biosynthesis of Bioorganic Molecules.	Assessment Methods Questions in Lectures. Short Quizzes and Exams. Participation Oral Discussion, Home Exam.
2.2	To evaluate the chemical process during the catalytic period of enzymes and co-enzyme as Multifunctional Catalysis and Simple Models	S1; S2; S3	Introduce some examples on the bioactivity properties of some Biomolecules.	 Questions in Lectures. Short Quizzes and Exams.
2.3	To summarize different situations and problems in isolation of specific natural products group	S1; S3	Lectures, and Group discussionBrainstorming Exercises	Questions in Lectures.Short Quizzes and Exams.
2.4	To justify the molecular Devices in its sounding applications	S1; S3; S4	• Encourage the students to outline the molecular devices applications	■ Assignments
3.0	Values, autonomy, and	l responsibility		
3.1	To show intellectual and scientific integrity during assignments, projects, and reports	V1; V2	Group Discussion and Assignments.	Oral TestsAssignments Marks

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to Bioorganic Chemistry: Basic Considerations, Proximity Effects in Organie Chemistry, Molecular Adaptation Molecular Recognition and the Supramolecular Level.	3
2	Bioorganic Chemistry of Amino Acids and Polypeptides : Chemistry of the Living Cells, Analogy Between Organie Reactions and Biochemical Transformations, Chemistry of the Peptide Bond, Nonribosomal Peptide Bond Formation, Asymmetrie Synthesis of a-Amino Acids, Asymmetrie Synthesis	4

	with Chiral Organometallic Catalysts, Antibodies as Enzymes, Chemieal Mutations, Molecular Recognition and Drug Design.	
3	Enzyme Chemistry: Introduction to Catalysis, Introduction to Enzymes, Multifunctional Catalysis and Simple Models, a-Chymotrypsin, Other Hydrolytic Enzymes, Stereo electronic Control in Hydrolytic Reactions, Immobilized Enzymes and Enzyme Technology, Enzymes in Synthetic Organic Chemistry, Enzyme-Analog-Built Polymers, Design of Molecular Clefts	6
4	Enzyme Models: Host-Guest Complexation Chemistry, New Developments in Crown Ether Chemistry, Membrane Chemistry and Micelles, Polymers 5.5 Cyclodextrins, Enzyme Design Using Steroid Template, Remote Functionalization Reactions, Biomimetic Polyene Cyclization's	5
5	Metal lons: Metal Ions in Proteins and Biological Molecules, Carboxypeptidase A and the Role of Zinc, Hydrolysis of Amino Acid Esters and Amides and Peptides, Iron and Oxygen Transport	5
6	Coenzyme Chemistry: Oxidoreduction, Pyridoxal Phosphate, Suicide Enzyme Inactivators and Affinity Labels, Thiamine Pyrophosphate Biotin.	4
7	Molecular Devices: Introduction to Self-Organization and Self-Assembly 8.2 General Overview of the Approach, Specific Examples	3
	Total	30

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes, Attendance, Participation, Home Exams	All the semester	20 %
2.	Midterm Exam 1	Around 6th & 7th week	20 %
3.	Midterm Exam 2	Around 11th & 12th week	20 %
4.	Final Exam	Around 16-17th week	40 %
5.	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References

Bioorganic Chemistry: A Chemical Approach to Enzyme Action, Hermann Dugas Christopher Penney, Springer, 1996, US, ISBN-13: 978-1468400977

	Bio-organic Chemistry , Harish K. Chopra, Anupama Parmar, Parmjit S. Panesar, Alpha Science, 2012, ISBN: 9781842657737
Supportive References	Organic Chemistry of Enzyme-Catalyzed Reactions, Richard B. Silverman, 2nd Edition, Academic Press, 2002. ISBN: 9780126437317
Electronic Materials	Blackboard
Other Learning Materials	 Bioorganic & Medicinal Chemistry Letters Bioorganic & Medicinal Chemistry Tetrahedron asymmetry Bioorganic Chemistry. Saudi Digital Library

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Each classroom is equipped with PC and retro projector with a maximum of 25 students.
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Direct: Questionnaire.
Effectiveness of teaching	Course Responsible	Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of Students' assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.
Quality of learning resources	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.

Assessment Areas/Issues	Assessor	Assessment Methods
	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course e- Portfolio. Indirect: Second examiner checklist-Course report.
	Program Leaders	Indirect: Exams.

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	7 (NO. 2/3)
DATE	29/3/1446 - 2/10/2024

