

Course Specification

— (Bachelor)

Course Title: Materials Synthesis and Characterization

Course Code: CHM 1441

Program: Bachelor of Science in Chemical Laboratories

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 1446-10-v1

Last Revision Date: 1446-10-v1

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	9
G. Specification Approval	10

A. General information about the course:

1. Course Identification

1. Credit hours: 3 (2, 3, 0)	
3 (2 Lectures, 3 Lab, 0 Tutorials)	

2. C	2. Course type					
Α.	□University	□College	⊠ Depa	rtment	□Track	□Others
В.	⊠ Required			□Electi	ve	
ь.	⊠ Required			⊔Electi	ve	

3. Level/year at which this course is offered: Level 7/ Fourth year

4. Course general Description:

The course covered topics related to different methods of materials synthesis. Characterization Techniques for Chemical and Structural Analyses such as Ultraviolet–Visible Spectroscopy, XRD, XPS, Diffuse Reflectance, FTIR, Raman Spectroscopy. Characterization Techniques for Thermal Analysis. Characterization Techniques for surface Analysis such as Optical Microscopy, Scanning Electron Microscopy, Atomic Force Microscopy and Transmission Electron Microscopy. Applications of materials

5. Pre-requirements for this course (if any):

Physical Chemistry- CHM 1346

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

At the end of the course, Students should be able:

- To provide basic knowledge on synthesis and fabrication of materials.
- To understand the surface and thermal characteristics of materials.
- To create awareness on morphology of materials by electron microscopy.
- To understand the principles of X-ray diffraction.
- To acquire knowledge on thermal studies of materials.
- To state the application of materials in the industrial field.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	75	100%
2	E-learning	0	0
3	HybridTraditional classroomE-learning	0	0
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To recognize the basic information of nanochemistry and nanomaterials concepts and their applications.	K1; K2	 Six hours weekly, containing lectures and laboratory activities A Private study, including a Homework 	Direct:exams, QuizzesHomework Laboratory ReportsParticipation
1.2	To provide basic knowledge on synthesis and fabrication of materials.	K2; K4	 Two hours weekly, containing lectures A Private study, including a Homework 	Direct:exams, QuizzesOral DiscussionLaboratory ReportsParticipation
1.3	To state the application of nanochemistry and nanotechnology in the industrial field.	K1, K2	Lectureslaboratory experimentGroup discussion.	 Direct: Participation, Quizzes and MCQs, Laboratory reports and performance

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
2.0	Skills			
2.1	To differentiate between the different types of nanomaterials, and summarize the nanomaterials synthesis.	S1, S2, S3,	 Lecturing, group discussion Laboratory experiments performance 	 Short quizzes Exams, Solved problems marks Homework assignment Laboratory reports
2.2	To analyze data and results through analytical thinking, with evaluation of the gained information.	S1, S2, S3	 Lecturing, Group discussion Laboratory experiments performance 	 Short quizzes Exams, Solved problems marks Homework assignment Laboratory reports
	To develop oral and network communication, technical writing skills through writing, oral presentation of mini reports	S 3	Brain stormingSelf-study	Direct; • Quizzes • Oral discussion • Laboratory reports
2.4	To diagram and explain experimentally obtained data during laboratory classes and field tasks, and to demonstrate oral and network communication and technical writing skills.	S2; S4	 Group discussion Laboratory experiments. Brain storming 	Direct; • Homework assignment, • Examination • Laboratory report
3.0	Values, autonomy, and	d responsibility		
3.1	To appraise teamwork, and	V2	 Group discussions Homework	Direct:

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	create awareness to maintain scientific integrity during different assessments, projects, and mini reports.		Mini reports	 Presentation marks Oral tests and lab sheets Assessments and homework
3.2	Show personal values and attributes such as honesty, empathy and respect for others	V1, V2	Teamwork and class discussions	Directlab reportsMini projects

C. Course Content

No	List of Topics	Conta ct Hours
1.	Introduction to material synthesis and fabrication: Synthesis of bulk phase materials-Solid state reaction route, introduction to precipitation & coprecipitation, sol-gel technique, hydrothermal; Semi Conducting materials, metal oxides, etc. Synthesis of nanoparticles-Bottom-Up approach- thin film growth by physical vapour deposition and chemical vapour deposition; Top-down approach- ball milling	6
2.	Characterization Techniques for Chemical and Structural Analyses: Ultraviolet–Visible Spectroscopy, X-Ray Diffraction for Material Characterization, X-Ray Photoelectron Spectroscopy, Diffuse Reflectance, Infrared Fourier Transform Spectroscopy, Raman Spectroscopy	6
3.	Characterization Techniques for Thermal Analysis Thermogravimetric Analysis, Differential Thermal Analysis, and Differential Scanning Calorimetry	6
4.	Characterization Techniques for surface Analysis Textural analysis, Optical Microscopy, Scanning Electron Microscopy, Atomic Force Microscopy and Transmission Electron Microscopy.	6
5.	Applications of materials: uses of materials in energy and environemental applications	6
	Laboratories Topics	
1	Preparation of nanocrystalline NiO catalyst by precipitation method	3

	Total	75
15	Revision and Lab. Reports Overview	3
14	Porosity assessment of the prepared catalysts	3
13	Characterization of the prepared catalysts precursors by FTIR, XRD, TG and DTA	3
12	Preparation of graphitic carbon nitride and its composites	3
11	Preparation of ZnFe ₂ O ₄ spinel by simple impregnation method	3
10	Preparation of Co ₃ O ₄ @C nanocatalyst by thermal decomposition of ZIF-67 MOF	3
9	Preparation of ZIF-67 MOF	3
8	Thermal investigations of the nanostructured composites (TG, DTA, DSC, etc)	3
7	Characterization of the prepared catalysts precursors by different microscopic techniques (AFM, SEM, TEM etc)	3
6	techniques (FTIR, XRD, XPS, XRF etc)	
_	Characterization of the prepared catalysts precursors by different spectroscopic	3
5	Preparation of Cu _x Co _{3-x} O ₄ spinel catalyst by co-precipitation method	3
4	Preparation of ZnO by thermal decomposition method	3
3	Preparation of nanocrystalline CuO-NiO composite catalyst by co-precipitation method	3
2	Preparation of nanocrystalline CuO by precipitation method	3

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6 th / 7 th week	10 %
2.	Midterm 2	11 th / 12 th week	10 %
3.	Quizzes, Home Works, class participation, and mini projects	During the semester	10 %
4.	Laboratory	All the semester	30 %
5.	Final Exam	16 th week	40 %
6.	Total	All weeks	100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)-

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Material Characterization Techniques and Applications, Euth Ortiz Ortega, Hamed Hosseinian, Ingrid Berenice Aguilar Meza, María José Rosales López, Andrea Rodríguez Vera, Samira Hosseini, (2022) 1st Ed. Springer Singapore, eBook ISBN 978-981-16-9569-8
Supportive References	Characterization of Materials, Elton N. Kaufmann, 2nd Edition (2012) Wiley, ISBN: 978-1-118-11074-4
Electronic Materials	
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation, and well equipped with instruments. In each lab, containers for solid waste, liquid waste, and crushed glasses. Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risk, Safety precautions according to Merck Catalogue are hanging in the labs 	
Technology equipment	The rooms are equipped with data show, Smart	
(projector, smart board, software)	Board, WI-FI access.	
Other equipment (depending on the nature of the specialty)	 Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cylinders) Appropriate fine chemicals and solvents (distilled Water ammonium nitrate) Analytical balance (3 digits), Set gas laws with the glass jacket Data acquisition set for gas laws with glass jacket, PC, Windows® 95 or higher, 	

Items	Resources	
	calorimeter, thermometer, Filter papers, clamps,	
	stands	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students Course Responsible	Direct: Questionnaire. Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of students assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.
Quality of learning resources	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Course Responsible Program Leaders	Direct: Exams - Course e-Portfolio. Indirect: Second examiner checklist-Course report. Indirect: Exams.
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	3 (NO. 1/3)
DATE	5/3/1446- 8/09/2024

