

Course Specification

— (Bachelor)

Course Title: Chemistry of Colloids

Course Code: CHM 1444

Program: Bachelor of Science in Chemistry

Department: Chemistry

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 2024 V1

Last Revision Date: 19 October 2024

Table of Contents

A. General information about the course:	Error! Bookmark not defined.
B. Course Learning Outcomes (CLOs), Teaching Stra	itegies and Assessment
Methods	Error! Bookmark not defined.
C. Course Content	Error! Bookmark not defined.
D. Students Assessment Activities	Error! Bookmark not defined.
E. Learning Resources and Facilities	Error! Bookmark not defined.
F. Assessment of Course Quality	Error! Bookmark not defined.
G. Specification Approval	Error! Bookmark not defined.

A. General information about the course:

1. Course Identification

1. Credit hours: 2 (1 Lectures, 3 Lab, 0 Tutorials)

2 (1 Lectures, 3 Lab, 0 Tutorials)

2. (z. Course type					
A.	□University	□College	⊠ Depa	rtment	□Track	□Others
В.	☐ Required			⊠ Electi	ive	

3. Level/year at which this course is offered: Level 7 / Year 4

4. Course general Description:

The course will give knowledge about the Colloidal State of matter: Classification, preparation and physical properties, Electro kinetic phenomena, Colloidal electrolytes and their uses, Emulsion, preparation, properties, stability, and use. Surface Chemistry: Solid surfaces and their characterization; Adsorption on solid surfaces: technique for measurement of adsorption from gas phase and solution; Langmuir, Freundlich and BET adsorption isotherm: Enthalpy of adsorption; Adsorption on liquid surface. Gibb's adsorption equation; Surface film; Electrocapillary phenomena.

5. Pre-requirements for this course (if any):

Physical Chemistry (2) –CHM 242

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

At the end of the course, Students should be able:

- Describe the basic principles of colloid preparation, purification, stability theory, instability, and main types of stabilization.
- Outline the electro-kinetic and optical properties of colloids.
- Define surface chemistry and adsorption-desorption process.
- List techniques for measurement of adsorption from gas phase and solution.
- Analyze data and results through analytical thinking, evaluating the gained information.
- Operate laboratory instruments and diagram and illustrate experimentally obtained data.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning	0	0
3	HybridTraditional classroom	0	0

No	Mode of Instruction	Contact Hours	Percentage
	E-learning		
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	15
2.	Laboratory/Studio	45
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To memorize the state, classification, and physical properties of colloids.	K1; K2; K3;	 Four hours are weekly, containing lectures and laboratory activities. A Private study including a home exam. 	 Quizzes Assignments Discussions. Participation
1.2	To describe the basic principles of colloid preparation, purification, stability theory, instability, and main types of stabilization.	K1; K2; K3	 Four hours weekly containing lectures and Laboratory activities Group discussion 	 Quizzes Assignments. Oral Discussion Laboratory Reports
1.3	To outline the electro- kinetic and optical properties of colloids.	K1	lectures and Laboratory activitiesGroup discussion	 Quizzes Home exam Oral Discussions. laboratory reports

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.4	To define surface chemistry and the adsorption-desorption process, and list techniques for measuring adsorption.	K1; K3	Laboratory activitiesGroup discussion	 Participation, Quizzes and MCQs, laboratory performance
2.0	Skills			
2.1	To calculate Adsorption parameters using problems and their solutions and estimate kinetic, physical, and optical parameters of colloidal systems.	S1; S2; S3	Introduce some examples of Adsorption parameters using problems	 Questions in Lectures. Short Quizzes and Exams. Participation Oral Discussion, Laboratory Reports Home Exam.
2.2	To analyze data and results through analytical thinking, with evaluation of the gained information.	S1; S2; S3	 Group Discussions Laboratory Experiments	 Questions in Lectures. Laboratory Reports Short Quizzes and Exams. Oral Discussion
2.3	To demonstrate skills to participate in class by asking questions and giving answers.	S3	LecturesOral Discussions.Brainstorming Exercises	Questions in Lectures.Short QuizzesExams.
2.4	To diagram and explain experimentally obtained data during laboratory classes and field tasks, and to demonstrate oral and network communication and technical writing skills.	S2; S4	 Encourage the students to use the Chemicals, Glassware, and Instruments with caring and safety Laboratory activities. 	AssignmentsLaboratory Report.
3.0	Values, autonomy, and re	esponsibility		
3.1	To appraise coordination and raise knowledge during various evaluations,	V1; V2	Brain Storms ExercisesGroup Discussion	Oral Discussion.Group DiscussionAssignments

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	initiatives, and mini reports to uphold scientific integrity.			• Group work sheets

C. Course Content

No	List of Topics	Contact Hours
1	History, component, dispersed phase, dispersion medium, micelles, aggregation, classification, Lyophilic, Lyophobic properties, Tyndall effect, Brownian movement, Adsorption, Electrical charge, Zeta potential, electrophoresis.Preparation, dispersion method, Bredig's Electric Arc, mechanical dispersion, Ultrasonic Dispersion, peptization dispersion, Condensation or Aggregation Methods, Lowering of solubility by exchange of solvent, Passing vapours of an element into a liquid, Excessive cooling, Preparation of colloidal sol by chemical methods. Purification, Dialysis, Electrodialysis, Ultra-filtration, Ultracentrifugation; Application and chemical impact, Removal of dirt from sewage, Leather tanning, Laundry, medicine, Colloid Chemistry	3
2	Sedimentation: driving force, liquid resistance, frictional coefficient, Stoke's law, sedimentation rate. Brownian motion, Diffusion, rate of diffusion, Fick's first law, diffusion coefficient, average translational kinetic energy, Einstein's equation. Ultracentrifuge, centrifugal force, sedimentation velocity, sedimentation coefficient.	3
3	Light scattering : Tyndall effect, turbidity, size and shape, Debye scattering, Rayleigh Scattering, Molar Masses, Doppler Broadening; Ultramicroscope. micro electrophoresis, particle charge, resolution	2
4	Theory of stability , instability, main types of stabilization, Van der Waals attractive interactions, Hamaker constants; DLVO Theory, Electrostatic stability, Electric double layer, resultant (total) potential, conditions for colloid stability, thermodynamic and kinetic aspects	2
5	Introduction, Bulk, surface, Adsorption, adsorbate, adsorbent, Desorption, Occlusion, absorption, Physisorption, Chemisorption, surface area, Temperature, pressure, Applications. Adsorption at Solid Liquid interface. Adsorption at Solid Gas interface, specific surface area. Adsorption isotherm, thermodynamic consideration, equilibrium, Henry's equation, Freundlich isotherm, Langmuir isotherm, Potential theory of adsorption, Dubinin-Radushkevich, The BET theory, Capillary condensation, Pores classification, surface tension	5
	Total	15

Topics to	be covered (Laboratories)	
Lab 01	Safety and Laboratory equipment and measurements and How to make a	1
Lab 02	report Preparation of colloid solutions and measuring their optical properties	5
Lab 03	Determination of the flocculation value of Fe(OH) ₃ sol	3
Lab 04	Emulsion and emulsifying agent and determination of stability	3
Lab 05	Determination of the type of emulsion	3
Lab 06	Determination of critical micelle concentration of sodium dodecyl sulphate (SDS) from the measurement of conductivities	3
Lab 07	Viscosity: Part 1: Determination of the time of flow for a given pure solvent.	6
	Part 2: Determination of the radius of a molecule (glycerol).	
Lab 08	Determination of the molecular mass of polyvinyl chloride from viscosity	3
Lab 09	Surface Tension of Liquids	3
Lab 10	Determination the surface adsorption of amyl alcohol (or tween 80) from aqueous solutions using capillary rise method.	3
Lab 11	Determination of the adsorption isotherm of oxalic acid on bone charcoal.	3
Lab 12	Determination of Heat of Adsorption of Acetic Acid on Charcoal	3
Lab 13	Analysis of the experimental data obtained in Lab 11 and Lab 12	3
Lab 14	Review	3
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1	Midterm 1	6th/ 7th week	10 %
2	Midterm 2	11th/ 12th week	10 %
3	Quizzes, Home Works, class participation, and mini-projects	During the semester	10 %
4	Laboratory	15 th week	30 %
5	Final Exam	All the semester	40 %
6	Total	16- 17 th week	100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Principle of Colloids and Surface Chemistry. Duncan J. Shaw, 4 th Edition esc, PhD, FRS, Liverpool Polytechnic, (ISBN 07506 11820).
Supportive References	Colloid Science: Principles, Methods and Applications, Terence Cosgrove, Blackwell (2005).
Supportive References	Principle of Colloids and Surface Chemistry, Hiemenz and Raj Rajagopala 3 rd Edition, CRC (1997).
Electronic Materials	Blackboard http://www.funsci.com/fun3_en/exper2/exper2.htm http://www.kt.dtu.dk/english/Education/Continuing_education /Business/Colloid_and_surface_chemistry.
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students. In each laboratory, a list of safety and precautions are provided. In each lab has proper ventilation and is well equipped with instruments. In each lab, there are containers for solid waste, liquid waste, and crushed glasses. Each lab has a small pharmacy for first aid in case of an accident In each lab, the rules, conditions, and safety mechanism as well list of Risks, Safety precautions according to Merck Catalogue, are hanging in the lab Appropriate Glasswares for carrying the requested experiments (conical flasks, beakers, measuring cylinders) Appropriate fine chemicals and solvents (distilled Water ammonium nitrate) Analytical balance (3 digits), Set gas laws with the glass jacket Data acquisition set for gas laws with glass jacket, PC, Windows® 95 or higher, calorimeter, thermometer, Filter papers, clamps, stands
Technology equipment (projector, smart board, software)	

Items	Resources
	The rooms are equipped with a data show, Smart Board, and WI-FI access.
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students Course Responsible Peer Reviewer	Direct: Questionnaire. Direct: Course e- Portfolio. Indirect: Second examiner checklist- Course report. Direct: Questionnaire. Indirect: External
Effectiveness of students assessment	Program Leaders	assessor report. Direct: Course e- Portfolio. Indirect: Course report.
Quality of learning resources	Students Faculty (Academic Advisory)	Indirect: Second examiner checklist-Course report. Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
Quality of fourthing resources	Program Leaders	Portfolio. Indirect: Course evaluation survey-Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Course Responsible Program Leaders	Direct: Exams - Course e-Portfolio. Indirect: Second examiner checklist- Course report. Indirect: Exams.

Assessment Areas/Issues	Assessor	Assessment Methods
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	7 (NO. 2/3)
DATE	29/3/1446 - 2/10/2024

