

Course Specification

— (Bachelor)

Course Title: Catalysis and Surface chemistry

Course Code: CHM 1447

Program: Bachelor of Science in Chemical Laboratories

Department: Chemistry

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

Version: 1446-10-v1

Last Revision Date: 1446-10-v1

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:

1. Course Identification

4 6 10 1			1
1 Credit ho	111rc · 2 /	2	
1. Credit ho	uis. J	J, 1	U, U

3 (3 Lectures, 0 Lab and 0 Tutorials)

2.	Co	urse	ty	pe

A.	□University	□College	□ Department	□Track	□Others
В.	☐ Required		⊠ Elect	ive	

3. Level/year at which this course is offered: Level 7/ Fourth year

4. Course general Description:

This course describes the definitions and types of homogeneous and heterogeneous catalysts, extending to the preparation methods and characterization. This course designed to provide with the concepts of heterogeneous catalysis, theoretical, methodological and technical knowledge of the catalysts and catalytic cycle. The course will cover surface Chemistry: Solid surfaces and their characterization; Adsorption on solid surfaces: technique for measurement of adsorption.

5. Pre-requirements for this course (if any):

Physical Chemistry- CHM 1346

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s): Industrial Catalysis, Reactions

The student will gain information about surface Chemistry: Solid surfaces and their characterization; Adsorption on solid surfaces: technique for measurement of adsorption from gas phase and solution; Langmuir, Freundlich and BET adsorption isotherm: Enthalpy of adsorption; Adsorption on liquid surface. Gibb's adsorption equation; Surface film; Electrocapillary phenomena. This includes initiation to catalysis specifically acid-base and enzymatic catalysis.operate laboratory instruments.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100%
2	E-learning	0	0
3	HybridTraditional classroomE-learning	0	0
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understa	nding		
1.1	To list the main concepts and applications of homogeneous heterogeneous catalysis.	K1; K2; K3	 Lectures and Group Discussions A Private study including home exam. 	Direct: ✓ Quizzes ✓ Discussion ✓ Participatio Exams
1.2	To recognize the concept of acid-base catalysis and proton transfer and describe the acid-base cycle and its industrial application.	K1; K2; K3	 Lectures with group discussion. Think, talk, and discuss concept of acid-base catalysis 	Direct: ✓ Oral Discussion ✓ Exams ✓ Participation
1.3	To define surface chemistry and adsorption-desorption process, and list techniques for measurement of adsorption and surface area.	K1; K3	 Lectures with group discussion. Think, talk, and discuss surface chemistry and adsorption-desorption process 	Direct: ✓ Quizzes ✓ Home exam ✓ Oral discussions.
2.0	Skills			

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
2.1	To differentiate homogenous and heterogeneous catalysis mechanisms, and estimate the kinetics and thermodynamic parameters of catalytic reactions and to calculate the adsorption parameters.	S1; S2; S3	✓ Interactive lectures ✓ Brainstorming Group discussions	Direct: ✓ Short Quizzes and Exams. ✓ Participation ✓ Oral Discussion,
2.2	To analyze data and results through analytical thinking, with evaluation of the gained information.	S1; S2; S3	✓ Interactive lectures Group discussions	Direct: ✓ Questions in Lectures. ✓ Short Quizzes and Exams. ✓ Participation ✓ Oral Discussion,
2.3	To demonstrate ability to participate in class by asking questions and giving answers.	S3	✓ Interactive lectures✓ Brainstorming Group discussions	Direct: ✓ Short Quizzes and Exams. ✓ Participation ✓ Oral Discussion,
2.4	To show technical writing and oral communication skills through writing and oral presentation of minireports and operate electronic mail and Network in communicating with others.	S2; S3; k4	 ✓ Interactive lectures ✓ Brainstorming Group discussions 	Direct: ✓ Short Quizzes and Exams. ✓ Participation ✓ Oral Discussion,
3.0	Values, autonomy, and re	esponsibility		
3.1	To appraise coordination and raise knowledge during various evaluations,	V1; V2	 Group discussion and assignments homework	Direct: ✓ Oral tests ✓ Assignment s

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
	initiatives, and mini reports to uphold scientific integrity.			homework marks

C. Course Content

No	List of Topics	Conta ct Hours
1.	Introduction, Bulk, surface, Adsorption, adsorbate, adsorbent, Desorption, absorption, Physisorption, Chemisorption, surface area.	6
2.	Adsorption at Solid Liquid interface. Adsorption at Solid Gas interface, specific surface area.	9
3.	Adsorption isotherm, Henry's equation, Freundlich isotherm, Langmuir isotherm, Potential theory of adsorption, Dubinin-Radushkevich.	9
4.	Catalyst and catalysis, Types of catalysis, Classification of catalysis.	6
5.	Characteristics of catalytic reactions, Catalytic promoters, Catalytic poisons.	6
6.	Theories of catalysis. Biochemical or enzyme catalysis. Acid-base catalysis. Heterogeneous Catalysis. Industrial applications of catalysts	9
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm 1	6 th /7 th week	20 %
2.	Midterm 2	11 th / 12 th week	20 %
3.	Quizzes, Home Works, class participation, and mini projects	During the semester	20 %
5.	Final Exam	16 th week	40 %
6.	Total	All weeks	100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Duncan J. Shaw, Introduction to Colloid and Surface Chemistry , ASIN: 0750611820, Butterworth-Heinemann; 4th edition (April 1, 1992), ISBN-10: 9780750611824, ISBN-13: 978-0750611824
Supportive References	 Paul C. Hiemenz, Raj Rajagopalan, <i>Principles of Colloid and Surface Chemistry</i>, Third Edition, Revised and Expanded, CRC Press; 3rd edition (March 18, 1997), ISBN-10 : 0824793978, ISBN-13 : 978-0824793975 R.A. van Santen, Hans (J.)W. Niemantsverdriet, <i>Chemical Kinetics and Catalysis</i>, Springer (May 10, 2013), ISBN-10 : 1475796447, ISBN-13 : 978-1475796445
Electronic Materials	Blackboardwww. Elesevier.com
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Each of the class room should be equipped with a whiteboard and a projector, with a maximum of 20 students.
Technology equipment	The rooms are equipped with data show, Smart
(projector, smart board, software)	Board, WI-FI access.
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students Course Responsible	Direct: Questionnaire. Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of students assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.
Quality of learning resources	Students	Indirect: Second examiner checklist-Course report.

Assessment Areas/Issues	Assessor	Assessment Methods
	Faculty (Academic Advisory) Program Leaders	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
		Direct: Course e-Portfolio. Indirect: Course evaluation survey-Observations-Syllabus review-Accreditation review.
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course e- Portfolio. Indirect: Second examiner checklist-Course report. Indirect: Exams.
	Program Leaders	indirect: Exams.
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COUNCIL OF DEPARTMENT OF CHEMISTRY
REFERENCE NO.	3 (NO. 1/3)
DATE	5/3/1446- 8/09/2024

