





## **Course Specification**

— (Bachelor)

**Course Title:: Nanochemistry** 

Course Code: CHM 1449

**Program: Bachelor of Science in Chemistry** 

**Department: Chemistry** 

College: Science

Institution: Imam Mohammed Ibn Saud Islamic University

**Version**: 2024 V **1** 

Last Revision Date: 19 October 2024





## **Table of Contents**

| A. General information about the course:                                       | 3 |
|--------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 |
| C. Course Content                                                              | 5 |
| D. Students Assessment Activities                                              | 6 |
| E. Learning Resources and Facilities                                           | 7 |
| F. Assessment of Course Quality                                                | 7 |
| G. Specification Approval                                                      | 8 |





#### A. General information about the course:

#### 1. Course Identification

| 1  | Credit | hours: 2  | 12 | Lectures, | n T | utorial | c N  | I ah |
|----|--------|-----------|----|-----------|-----|---------|------|------|
| ш. | CIEUIL | IIUUIS. Z | 14 | Lectures, | U I | uturiai | 3, U | Lav  |

2 (2 Lectures, 0 Tutorials, 0 Lab)

|            |          | _    |
|------------|----------|------|
|            | Course ' | twne |
| <b>6</b> . | Course   | LANC |

| Α. | □University | □College | □ Departm     □ | ent    | □Track | □Others |
|----|-------------|----------|-----------------|--------|--------|---------|
| В. | ☐ Required  |          | $\boxtimes$     | Electi | ve     |         |

## 3. Level/year at which this course is offered: Level 7 / Year 4

#### 4. Course general Description:

The course covers the following topics: Inorganic Materials Chemistry and Nanochemistry; Basics Nanomaterials, Nanoparticles: Types, compositions, and structures. The course will extend to Metal and semiconductor nanocrystals, Porous inorganic nanoparticles, Organic nanoparticles. It also designed to cover Optical characterization and structural characterization.

#### 5. Pre-requirements for this course (if any):

**Electrochemistry and Corrosion / CHM 1343** 

6. Co-requisites for this course (if any):

#### **None**

#### 7. Course Main Objective(s):

#### At the end of the course, Students should be able:

- To recognize the basic information of nanochemistry and nanomaterials concepts and their applications.
- To describe the concept of nanomaterials preparation
- To state the application of nanochemistry and nanotechnology in the industrial field.
- To outline the physical and chemical characterization of nanomaterials.
- To differentiate between the different types of nanomaterials.
- To predict the physical properties of nanomaterials.

#### 2. Teaching mode (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                                     | 30            | 100%       |
| 2  | E-learning                                                                | 0             | 0          |
| 3  | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> | 0             | 0          |
| 4  | Distance learning                                                         | 0             | 0          |





## **3. Contact Hours** (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 30            |
| 2.    | Laboratory/Studio | 0             |
| 3.    | Field             | 0             |
| 4.    | Tutorial          | 0             |
| 5.    | Others (specify)  | 0             |
| Total |                   | 30            |

# **B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods**

| Code | Course Learning<br>Outcomes                                                                            | Code of PLOs<br>aligned with<br>program | Teaching Strategies                                                                                                                                             | Assessment<br>Methods                                                                                   |
|------|--------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1.0  | Knowledge and under                                                                                    | standing                                |                                                                                                                                                                 |                                                                                                         |
| 1.1  | To recognize the basic information of nanochemistry and nanomaterials concepts and their applications. | K1; K2; K3                              | <ul> <li>Two hours are weekly, containing lectures.</li> <li>A Private study, including work on the home exam.</li> </ul>                                       | <ul><li>Quizzes</li><li>Assignments</li><li>Oral Discussion</li><li>Participation.</li></ul>            |
| 1.2  | To describe the concept of nanomaterials preparation                                                   | K1; K2; K3                              | <ul><li>Two weekly hours,<br/>lectures</li><li>Group discussion</li></ul>                                                                                       | <ul><li>Assignments.</li><li>Quizzes.</li><li>Final exam.</li></ul>                                     |
| 1.3  | To state the application of nanochemistry and nanotechnology in the industrial field.                  | <b>K1</b>                               | <ul> <li>Group discussions.</li> <li>A Private study, including work on homework.</li> <li>Think and outline nanochemistry and nanotechnology impact</li> </ul> | <ul><li>Midterms.</li><li>Assignments.</li><li>Oral test</li><li>Quizzes.</li><li>Final exam.</li></ul> |
| 1.4  | To outline the physical and chemical characterization of nanomaterials.                                | К1; КЗ                                  | <ul> <li>Two hours are weekly, containing lectures.</li> <li>A Private study, including work on the home exam.</li> </ul>                                       | <ul><li>Quizzes</li><li>Assignments</li><li>Oral Discussion</li><li>Participation.</li></ul>            |

| Code | Course Learning                                                                                                                     | Code of PLOs<br>aligned with | Teaching Strategies                                                                                             | Assessment                                                                                                                                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Outcomes                                                                                                                            | program                      |                                                                                                                 | Methods                                                                                                                                                |
| 2.0  | Skills                                                                                                                              |                              | •                                                                                                               |                                                                                                                                                        |
| 2.1  | To differentiate between the different types of nanomaterials, and summarize the nanomaterials synthesis.                           | S1, S2, S3,                  | <ul> <li>Lectures activity</li> <li>Think and talk about types of nanomaterials synthesis.</li> </ul>           | <ul> <li>Questions in<br/>Lectures.</li> <li>Short Quizzes and<br/>Exams.</li> <li>Participation<br/>through Classwork<br/>and Homework.</li> </ul>    |
| 2.2  | To analyze data and results through analytical thinking, with evaluation of the gained information.                                 | S1, S2, S3                   | Introduce some examples of the nanomaterials IMPACT                                                             | <ul> <li>Questions in<br/>Lectures.</li> <li>Short Quizzes and<br/>Exams.</li> <li>Participation</li> <li>Oral Discussion<br/>and Homework.</li> </ul> |
| 2.3  | To develop oral and network communication, technical writing skills through writing, oral presentation of mini reports              | <b>S3</b>                    | Lectures activity                                                                                               | <ul> <li>Questions in<br/>Lectures.</li> <li>Short Quizzes and<br/>Exams.</li> <li>Participation.</li> <li>Oral Discussion and<br/>Homework</li> </ul> |
| 3.0  | Values, autonomy, and                                                                                                               | d responsibility             |                                                                                                                 |                                                                                                                                                        |
| 3.1  | To illustrate teamwork, make a decision, and maintain scientific integrity during different assessments, projects, and minireports. | V1, V2                       | <ul> <li>Seminars</li> <li>Group discussion and assignments</li> <li>Homeworks</li> <li>Mini reports</li> </ul> | <ul> <li>Presentation marks</li> <li>Oral tests</li> <li>Assignments and homeworks</li> <li>Mini reports assignment</li> </ul>                         |

## **C. Course Content**

| No | List of Topics                                                                                                                                                    | Contact<br>Hours |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1  | <b>Introduction to nanochemistry</b> : Inorganic Materials Chemistry and Nanochemistry; Basics Nanomaterials, Nanoparticles: Types, compositions, and structures. | 6                |





| chemical reactivity and equilibria (pKa's, redox potentials)  Applications in structural materials, imaging, lighting, energy conversion (Solar Cells), catalysis and Photocatalysis (Environmental remediation) and Nanoelectronics/Nano-photonics Applications  Environmental, safety, and ethical aspects of nanotechnology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Structural characterization: XRD, TEM, AFM, Deviations between bulk and near-<br>surface crystal structures  Chemistry of small surfaces: Curvature and neighboring-charge effects on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 |
| <ul> <li>Metal and semiconductor nanocrystals: Porous inorganic nanoparticles, Organic (latexes), Carbon-based nanoparticles (carbon nanotubes, grapheme), Porous inorganic nanoparticles, Organic (latexes) and carbon-based nanoparticles (carbon nanotubes, graphene), Nanoparticle synthesis: Basic synthesis and fabrication methods for nanomaterials (CVD, sol-gel, microemulsion, template, hydrothermal)         , Classical Colloid Theory: Nucleation and growth, Ostwald ripening, Homogeneous vs. heterogeneous nucleation, Applications of nanomaterials, Anisotropic growth and shape control, Catalyzed (seeded) growth, Nanocrystal doping, solid solutions and Vegard's rule</li> <li>Optical characterization: Absorption and photoluminescence (PL &amp; PLE) spectroscopies, steady-state vs. fast spectroscopy, dynamic light scattering</li> </ul> | 2 |

#### **D. Students Assessment Activities**

| No | Assessment Activities *                        | Assessment timing<br>(in week no) | Percentage<br>of Total<br>Assessment<br>Score |
|----|------------------------------------------------|-----------------------------------|-----------------------------------------------|
| 1. | Quizzes, Attendance, Participation, Home Exams | All the semester                  | 20 %                                          |
| 2. | Midterm Exam 1                                 | Around 6th & 7th week             | 20 %                                          |
| 3. | Midterm Exam 2                                 | Around 11th & 12th<br>week        | 20 %                                          |
| 4. | Final Exam                                     | Around 16-17th week               | 40 %                                          |
| 5. | Total                                          |                                   | 100%                                          |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).





## **E. Learning Resources and Facilities**

## 1. References and Learning Resources

| Essential References     | Nanochemistry, G.B. Sergeev, K.J. Klabunde, Elsevier, 2013, ISBN: 978-0-444-59397-9                                                                                                                                    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | Nanoscale Science and Technology, Robert Kelsall, Ian W. Hamley, Mark Geoghegan, Wiley   2005-04-29   ISBN: 0470850868  Nanomaterials and Nanochemistry, C Brechignac, P Houdy, M Lahmani2011, Wiley, ISBN: 0444593977 |
| Electronic Materials     | Blackboard                                                                                                                                                                                                             |
| Other Learning Materials | • None                                                                                                                                                                                                                 |

## 2. Required Facilities and equipment

| Items                                                                           | Resources                                                                             |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | Each classroom is equipped with PC and retro projector with a maximum of 25 students. |
| Technology equipment (projector, smart board, software)                         | The rooms are equipped with data show, Smart Board, WI-FI access.                     |
| Other equipment (depending on the nature of the specialty)                      | None None                                                                             |

## F. Assessment of Course Quality

| Assessment Areas/Issues               | Assessor           | Assessment Methods                                                                           |
|---------------------------------------|--------------------|----------------------------------------------------------------------------------------------|
| Effectiveness of teaching             | Students           | Direct: Questionnaire.                                                                       |
|                                       | Course Responsible | <b>Direct:</b> Course e-Portfolio. <b>Indirect:</b> Second examiner checklist-Course report. |
|                                       | Peer Reviewer      | <b>Direct:</b> Questionnaire. <b>Indirect:</b> External assessor report.                     |
| Effectiveness of Students' assessment | Program Leaders    | Direct: Course e-Portfolio. Indirect: Course report.                                         |





| Assessment Areas/Issues                     | Assessor                     | Assessment Methods                                                                                                |
|---------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Quality of learning resources               | Students                     | Indirect: Second examiner checklist-Course report.  Direct: course                                                |
|                                             | Faculty ( Academic Advisory) | Entrance/Exit. Indirect: Observations Accreditation review.                                                       |
|                                             | Program Leaders              | Direct: Course e-Portfolio. Indirect: Course evaluation survey Observations- Syllabureview- Accreditation review. |
| The extent to which CLOs have been achieved | Course Responsible           | Direct: Exams - Course e-<br>Portfolio.<br>Indirect: Second examine<br>checklist-Course report.                   |
|                                             | Program Leaders              | Indirect: Exams.                                                                                                  |

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

## **G. Specification Approval**

| COUNCIL /COMMITTEE | COUNCIL OF DEPARTMENT OF CHEMISTRY |
|--------------------|------------------------------------|
| REFERENCE NO.      | 7 (NO. 2/3)                        |
| DATE               | 29/3/1446 - 2/10/2024              |

