

Course Specification

— (Postgraduate Programs)

Course Title: : Advanced Coordination Chemistry

Course Code: CHM 6113

Program: Master of science in chemistry

Department: Chemistry

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: Course Specification Version Number

Last Revision Date: Pick Revision Date.

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	7
D. Students Assessment Activities:	8
E. Learning Resources and Facilities:	8
F. Assessment of Course Quality:	9
G. Specification Approval Data:	10

A. General information about the course:

	_								-				
- 4	_	_		 _		-		_:	1	ca	-	-	
		т.					п	TI	т		т		٠.
_	 •	u	ч		-								

1. Credit hours	: 3 (3 Lectures	s, 0 Lab, 0 Tutor	ials)
-----------------	-----------------	--------------------	-------

2. C	2. Course type						
A.	□University	□College	□Depa	rtment	□Track		
В.	□Required			⊠ Elect	ive		
3. L	3. Level/year at which this course is offered: Level 2/Year 1						

4. Course General Description:

This course provides students with an introduction of advanced coordination chemistry, Molecular Orbital Treatment, Octahedral (with and without pi bonding) Tetrahedral and Square Planer Complexes in a Qualitative Manner .The course will cover the Synthesis of Coordination Compounds, Reaction of a Metal Salt with a Ligand, Ligand Replacement Reactions, Reaction of Two Metal Compounds, Oxidation-Reduction Reactions as well the Mixed Ligand Complexes. Magnetic Behavior will be included.

5. Pre-requirements for this course (if any):

Inorganic Molecular Spectroscopy – CHM 6111

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

- Recognize the Theories of Metal-Ligand bonding.
- Be familiar for Transition Metal Preparation.
- Elucidate the Coordination Compounds Structures.
- Understand the Mixed Ligand Complexes stability and its role in a biological system.
- Study and compare the Magnetic Behavior of Coordination Compounds.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100 %
2	E-learning		
3	HybridTraditional classroom		

No	Mode of Instruction	Contact Hours	Percentage
	E-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and und			
1.1	To list the different theories of Bonding in Complexes.	K1. Inorg.; K2. Inorg.; K4. Inorg	lectures. • Self-study • Home-exam.	 Regular Exams Assignments Short Quizzes Oral Discussion Participation .
1.2	To describe the transition metal preparation and study of coordination compounds structures and the magnetic behavior of complexes	K1. Inorg.; K4.Inorg	eek lectures.Think and justify the transition metal	 Oral Discussion marks Literatures Survey Miniseminar.

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
			coordination compounds structures, using available references (SDL) online. Open discussion.	• Participation .
1.3	To state the importance of coordination chemistry in the biological systems.	K3. Inorg.; K4.Inorg	 Five hours/week lectures. Group Discussion on coordination chemistry in the biological systems using available references (SDL) online. 	 Midterm. Assignments. Group Discussions. Literatures Survey Miniseminar. Participation .
1.4	To define the application Mimicking reactions in biological systems, Magnetic Behavior and Magnitude of Magnetic Moments.	K1. Inorg.; K3.Inorg.; K4.Inorg.	 Five hours/week lectures. Group Discussion using available references (SDL). 	 Assignments. Open Discussions. Literatures Surve. Miniseminar. Participation .
2.0	Skills			
2.1	To explain the concepts of different theories in the coordination and complexes chemistry.	S1. Inorg.; S2. Inorg.	 Lectures activity Self-study. Think, differentiate and discuss the coordination and complexes 	 Questions in Lectures. Short Quizzes and Exams. Open Discussions. Participation

Code	Course Learning	Code of CLOs aligned	Teaching	Assessment
	Outcomes	with program	Strategies chemistry theories	• Mini - seminar.
2.2	To summarize the different methods for Transition Metals preparation and studies of Coordination compounds structures.	S1. Inorg.; S2. Inorg.	 Practice some examples for Transition Metals preparation methods achieving. Brainstormin g. Self-study 	 Questions in Lectures. Participation Oral Discussion S hort Quizzes and Exams.
2.3	To justify the magnetic properties relationship with the electronic configurations of complexes.	S1. Inorg.; S2. Inorg.; S3. Inorg.	 Lectures. Oral Discussions. Brain storming Exercises. Self-study 	 Questions in Lectures. Short Quizzes and Exams. Oral Discussion. Participation
2.4	To operate communication to Coordination Compounds formation and its applications, accompanying writing of mini- Reports, operating electronic mail, and Network in communicating with others.	S1. Inorg.; S2. Inorg.; S4. Inorg.	 Group Discussion and Assignments. Practice on examples for coordination compounds applications, which will require reading, writing, and oral presentation in groups. Encourage students to use 	 Oral Discussion, Quizzes, and Exams. Giving marks for Oral Discussion in Lectures. Marks given for Assignments .

Code	Course Learning Outcomes Values, autonomy, a	Code of CLOs aligned with program and responsibility	Teaching Strategies electronic mail to submit Home Exams and Assignments.	Assessment Methods
3.1	To perform a scientific presentation, research, and work independently and integrate with a collaborated group, Using IT to acquire, analyze, and communicate information.	V1. Inorg.	 Brainstormi ng. Exercises Group Discussion. Team work. 	 Oral Discussion. Group Discussion Assignments
3.2	To demonstrate his ability to the effectively collaboration and inter-professionalism in class discussions or team works, as well as independently.	V1. Inorg.; V2.Inorg.	 Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini- projects 	 Participation Homework's Miniproject(s).

C. Course Content:

No	List of Topics	Contact Hours
	Theories of Metal-Ligand bonding: Molecular Orbital Treatment,	
1.	Octahedral (with and without pi bonding) Tetrahedral and Square Planer	13
	Complexes in a Qualitative Manner, Comparison of Theories of Bonding,	

	Valance Bond Theory (VBT), Crystal-Field Theory (CFT), Ligand Field Theory (LFT) and Molecular Orbital Theory (MOT).	
2.	Transition Metal Preparation and Structural Studies of Coordination Compounds: Synthesis of Coordination Compounds, Reaction of a Metal Salt with a Ligand, Ligand Replacement Reactions, Reaction of Two Metal Compounds, Oxidation-Reduction Reactions, Partial Decomposition, Size and Solubility Relationships, Reactions of Metal Salts with Amine Salts, Compounds of First Transition Series Elements, with Respect to their Electronic spectra, magnetic & thermal properties (DTA, TGA).	12
3.	Mixed Ligand Complexes: Stabilities of ternary Complexes, Dynamics of Formation of Ternary complexes reaction of Coordination ligand in Ternary Complexes, Mimicking reactions in biological systems, enzyme models, Amino acids Ester Hydrolysis, Peptide Synthesis & Hydrolysis, Detarbodylation of β -Keto acids.	10
4.	Magnetic Behavior: Diamagnetism, Para Magnetism, Ferro & Ferri, Antiferro and Magnetic Interaction, The Origin of Para Magnetism, Magnetic Behavior of Complexes, Simplification of Van Velck Equation, Magnitude of Magnetic Moments, Determination of Magnetic Susceptibility by Gouy and Faraday Method.	10
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessme nt timing (in week no)	Percentage of Total Assessment Score
1	Class Activities (Open Discussion, Mini-	weekly	30 %
1.	reports, Oral Presentation, solving questions)		
2.	Midterm Exam	9th week	30 %
3.	Final Exam	17 th week	40 %
4.	Total		100%

E. Learning Resources and Facilities:

1. References and Learning Resources:

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

Essential References	 Introduction to Coordination Chemistry, G. A. Lawrance, John Wiley & Sons Ltd, 2010. ISBN: 978-0-470-51930-1 (HB), 978-0-470-51931-8 (PB). Descriptive inorganic, coordination, and solid-state chemistry, G. E. Rodgers, 3rd Ed., Cengage Learning, 2011, ISBN: 978-0840068460
Supportive References	•
Electronic Materials	 European Journal Of Inorganic Chemistry American Chemical Society (Relevant Journals) Saudi Digital Library.
Other Learning Materials	 Blackboard Multimedia associated with the text book and the relevant websites.

3. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Each of the classroom should be equipped with a whiteboard and a projector, with a maximum of 20 students.
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board,WI-FI access.
Other equipment (depending on the nature of the specialty)	• None

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Direct: Questionnaire.
Effectiveness of teaching	Course Responsible	Direct: Course e-Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of students assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory-GCC)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
Quality of learning resources	Program Leaders	Direct: Course e-Portfolio. Indirect: Course evaluation survey-Observations-Syllabus review- Accreditation review.
	Course Responsible	
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course e- Portfolio. Indirect: Second examiner checklist-Course report.
	Program Leaders	Indirect: Exams.

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Council of Chemistry Department
REFERENCE NO.	10 (No. 2/10)
DATE	21/04/1444- 15/11/2022

