

Course Specification

— (Postgraduate Programs)

Course Title: Advanced Physical Chemistry

Course Code: CHM 6141

Program: Master of science in chemistry

Department: Chemistry

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: Course Specification Version Number

Last Revision Date: Pick Revision Date.

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	14
D. Students Assessment Activities:	14
E. Learning Resources and Facilities:	15
F. Assessment of Course Quality:	15
G. Specification Approval Data:	16

A. General information about the course:

4			
1	COURCA	Identifica	tion.
4.4	Course	IUEILLIILA	LILJII.

1. 0	redit hours: ()			
4 (4	Lectures, 0 Lab, 0	Tutorials)			
2. 0	ourse type				
A.	□University	□College	□Department	□Track	
В.	⊠ Required		□Elect	ive	
3. L	3. Level/year at which this course is offered: (Level 2/ Year 1)				
4. Course General Description:					
				stry for advanced studemistry. This course ex	

materials processes from the perspective of thermodynamics and kinetics. The thermodynamics aspect includes laws of thermodynamics, solution theory and equilibrium diagrams. The kinetics aspect includes diffusion, phase

5. Pre-requirements for this course (if any):

transformations, and the development of microstructure.

None

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

- Know, the basic principles of physical chemistry, in particular, Kinetics, Thermodynamics and Materials Science.
- Describe the advanced principles of thermodynamic, and classical thermodynamics.
- Be familiar with materials and materials processes from the perspective of thermodynamics and kinetics.
- Familiarize the classifications of materials, solid solutions, alloys, phase diagrams, composites, advanced materials. Recognize the different application of materials in the industry: metallurgical industry.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning		
3	HybridTraditional classroom		

No	Mode of Instruction	Contact Hours	Percentage
	E-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	60
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

1. Inorganic Chemistry Track

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To recall knowledge of Classical Physical Chemistry and Chemical Kinetics Concepts.	K1. Inorg.; K4. Inorg	Five hours/week lectures.Self-study Home-exam.	Regular ExamsAssignmentsShort QuizzesOral Discussion Participation.
1.2	To list and memorize different concepts of Thermodynamic Laws and the Physical Properties of Materials	K2. Inorg.; K4. Inorg	 Five hours/week lectures. Think, to justify thermodynamic laws and the physical properties of materials, using available references (SDL) online. Open discussion. 	 Oral Discussion marks Literatures Survey Mini-seminar. Participation.

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.3	To record the Statistical Thermodynamics.	K4. Inorg	Five hours/week lectures. Group Discussion using available references (SDL) online.	 Midterm. Assignments. Group Discussions. Literatures Survey Mini-seminar. Participation.
1.4	To describe Materials and Materials Processes from the Perspective of Thermodynamics and Kinetics.	K1. Inorg.; K2. Inorg	 Five hours/week lectures. Group Discussion on materials processes thermodynamically and kinetically using available references (SDL) online. 	 Assignments Open Discussions. Literatures Survey Mini-seminar. Participation.
2.0	Skills			
2.1	To analyze problems and explore strategies for their solution, with justify the optimum approaches to appropriate Thermodynamics Laws and Kinetics Laws.	S1. Inorg.; S2. Inorg	 Lectures activity Self-study. Deep discussion on the appropriate thermodynamics laws and kinetics laws approaches. 	 Questions in Lectures. Short Quizze and Exams. Open Discussions. Participation Mini -seminar.
2.2	To interpret the catalytic reactions on variation operational conditions and contrast scientific data on materials and arguments clearly and correctly.	S1. Inorg.; S2. Inorg.; S3. Inorg.	 Practice examples of the interpretation of the catalytic reactions for a variety of operational conditions achieving. Brainstorming. Self-study 	 Questions in Lectures. Participation Oral Discussion Short Quizzes.
2.3	To illustrate reasonable arguments for classifications of materials, solid solutions, alloys, phase diagrams, composites, and advanced materials.	S2. Inorg.; S3. Inorg.	LecturesOral Discussions.Brainstorming.Self-study	 Questions in Lectures. Short Quizze and Exams. Oral Discussion. Participation.

development of micro-structure and material science in the industry: and its impact in KSA, development of micro-structure and material science in the industry and its impact in KSA, Exams. Giving mark for Ora industry and its impact in KSA, Lectures.	Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
To Perform communications to integrity, academic ethical practices to find solutions for scientific and social issues, and a commitment to responsible citizenship and using IT. To Appraise effectively in research or professional groups and make decisions, develop knowledge, enhance society's quality, and contribute To Values, autonomy, and responsibility Brain Storms Exercises Group Discussion. Oral Discussion. Foroup Discussion Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini-projects.	2.4	Communication on application of development of microstructure and material science in the industry: and its impact in KSA, accompanying writing of mini- Reports, operating electronic mail, and Network in communicating with		and Assignments Suggest examples micro-structure and material science in the industry and its impact in KSA, which will require reading, writing, and oral presentation. Encourage students to use electronic mail to submit Home Exams and	Discussion. Quizzes, and Exams. Giving marks for Oral Discussion in Lectures. Marks given for
communications to integrity, academic ethical practices to find solutions for scientific and social issues, and a commitment to responsible citizenship and using IT. To Appraise effectively in research or professional groups and make decisions, develop knowledge, enhance society's quality, and contribute To Inorg.; V2. Inorg. Exercises Group Discussion. Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini-projects.	3.0	Values, autonomy, an	d responsibility	753igiirieits.	
in research or professional groups and make decisions, develop knowledge, enhance society's quality, and contribute Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini-project(s).	3.1	communications to integrity, academic ethical practices to find solutions for scientific and social issues, and a commitment to responsible citizenship	V1. Inorg.	Exercises	Discussion. Group Discussion
		To Appraise effectively in research or professional groups	V1 Inorg · V2 Inorg	Open discussion at classroom.	•

2. Organic Chemistry Track

C	Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
	1.0	Knowledge and understanding			

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.1	To recall knowledge of Classical Physical Chemistry and Chemical Kinetics Concepts.	K1. <i>Org.</i> ; K2. <i>Org</i>	Five hours/week lectures.Self-study Home-exam.	Regular ExamsAssignmentsShort QuizzesOral DiscussionParticipation.
1.2	To list and memorize different concepts of Thermodynamic Laws and the Physical Properties of Materials	K2. Org.; K4. Org.	 Five hours/week lectures. Think, to justify thermodynamic laws and the physical properties of materials, using available references (SDL) online. Open discussion. 	 Oral Discussion marks Literatures Survey Mini-seminar. Participation.
1.3	To record the Statistical Thermodynamics.	K2. Org.	 Five hours/week lectures. Group Discussion using available references (SDL) online. 	 Midterm. Assignments. Group Discussions. Literatures Survey Mini-seminar. Participation.
1.4	To describe Materials and Materials Processes from the Perspective of Thermodynamics and Kinetics.	K1. <i>Org.</i> ; K2. <i>Org.</i> ; K3. <i>Org.</i>	 Five hours/week lectures. Group Discussion on materials processes thermodynamically and kinetically using available references (SDL) online. 	 Assignments Open Discussions. Literatures Survey Mini-seminar. Participation.
2.0	Skills			
2.1	To analyze problems and explore strategies for their solution, with justify the optimum approaches to appropriate Thermodynamics Laws and Kinetics Laws.	S1. <i>Org</i> .	 Lectures activity Self-study. Deep discussion on the appropriate thermodynamics laws and kinetics laws approaches. 	 Questions in Lectures. Short Quizzes and Exams. Open Discussions. Participation Mini -seminar.
2.2	To interpret the catalytic reactions on variation operational	\$1. <i>Org.</i> ; \$2. <i>Org.</i> ; \$3. <i>Org.</i>	Practice examples of the interpretation of	Questions in Lectures.Participation

Code	Course Learning Outcomes conditions and	Code of PLOs aligned with the program	Teaching Strategies the catalytic	Assessment Methods Oral Discussion
	contrast scientific data on materials and arguments clearly and correctly.		reactions for a variety of operational conditions achieving. ■ Brainstorming. Self-study	Short Quizzes.
2.3	To illustrate reasonable arguments for classifications of materials, solid solutions, alloys, phase diagrams, composites, and advanced materials.	\$1. <i>Org.</i> ; \$2. <i>Org.</i> ; \$3. <i>Org.</i>	LecturesOral Discussions.Brainstorming.Self-study	 Questions in Lectures. Short Quizzes and Exams. Oral Discussion. Participation.
2.4	To demonstrate Oral Communication on application of development of microstructure and material science in the industry: and its impact in KSA, accompanying writing of mini- Reports, operating electronic mail, and Network in communicating with others.	\$1. <i>Org.</i> ; \$3. <i>Org.</i> ; \$4. <i>Org.</i>	 Group Discussion and Assignments Suggest examples micro-structure and material science in the industry and its impact in KSA, which will require reading, writing, and oral presentation. Encourage students to use electronic mail to submit Home Exams and Assignments. 	 Oral Discussion. Quizzes, and Exams. Giving marks for Oral Discussion in Lectures. Marks given for Assignments
3.0	Values, autonomy, and	d responsibility		
3.1	To Perform communications to integrity, academic ethical practices to find solutions for scientific and social issues, and a commitment to responsible citizenship and using IT.	V1. Org.	Brain Storms ExercisesGroup Discussion.	Oral Discussion.Group DiscussionAssignments.

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
3.2	To Appraise effectively in research or professional groups and make decisions, develop knowledge, enhance society's quality, and contribute to its advancement.	V1. Org.; V2. Org.	 Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini-projects. 	ParticipationHomework'sMini-project(s).
•••				

3. Analytical Chemistry Track

Code	Course Learning Outcomes	Code of PLOs aligned Teaching with the program Strategies		Assessment Methods			
1.0	Knowledge and understanding						
1.1	To recall knowledge of Classical Physical Chemistry and Chemical Kinetics Concepts.	K1. Anal.; K4. Anal.	Five hours/week lectures.Self-study Home-exam.	Regular ExamsAssignmentsShort QuizzesOral DiscussionParticipation.			
1.2	To list and memorize different concepts of Thermodynamic Laws and the Physical Properties of Materials	K1. Anal.; K4. Anal.;	 Five hours/week lectures. Think, to justify thermodynamic laws and the physical properties of materials, using available references (SDL) online. Open discussion. 	 Oral Discussion marks Literatures Survey Mini-seminar. Participation. 			
1.3	To record the Statistical Thermodynamics.	record the Five hours/week lectures.		 Midterm. Assignments. Group Discussions. Literatures Survey Mini-seminar. Participation. 			
1.4	To describe Materials and Materials Processes from the Perspective of	K1. Anal.; K4. Anal.	Five hours/week lectures.Group Discussion on materials processes	AssignmentsOpen Discussions.Literatures Survey			

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
	Thermodynamics and Kinetics.		thermodynamically and kinetically using available references (SDL) online.	• Mini-seminar. Participation.
2.0	Skills			
2.1	To analyze problems and explore strategies for their solution, with justify the optimum approaches to appropriate Thermodynamics Laws and Kinetics Laws.	S1. Anal.; S2. Anal.	 Lectures activity Self-study. Deep discussion on the appropriate thermodynamics laws and kinetics laws approaches. 	 Questions in Lectures. Short Quizzes and Exams. Open Discussions. Participation Mini -seminar.
2.2	To interpret the catalytic reactions on variation operational conditions and contrast scientific data on materials and arguments clearly and correctly.	S1. Anal.; S2. Anal.; S3. Anal.	 Practice examples of the interpretation of the catalytic reactions for a variety of operational conditions achieving. Brainstorming. Self-study 	 Questions in Lectures. Participation Oral Discussion Short Quizzes.
2.3	To illustrate reasonable arguments for classifications of materials, solid solutions, alloys, phase diagrams, composites, and advanced materials.	S1. Anal.; S2. Anal.; S3. Anal.	LecturesOral Discussions.Brainstorming.Self-study	 Questions in Lectures. Short Quizzes and Exams. Oral Discussion. Participation.
2.4	To demonstrate Oral Communication on application of development of microstructure and material science in the industry: and its impact in KSA, accompanying writing of mini- Reports, operating electronic mail, and Network in	S1. Anal.; S3. Anal.; S4. Anal.	 Group Discussion and Assignments Suggest examples micro-structure and material science in the industry and its impact in KSA, which will require reading, writing, and oral presentation. 	 Oral Discussion. Quizzes, and Exams. Giving marks

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
	communicating with others.		Encourage students to use electronic mail to submit Home Exams and Assignments.	
3.0	Values, autonomy, and	dresponsibility		
3.1	To Perform communications to integrity, academic ethical practices to find solutions for scientific and social issues, and a commitment to responsible citizenship and using IT.	V1. Anal.	Brain Storms	 Oral Discussion. Group Discussion Assignments.
3.2	To Appraise effectively in research or professional groups and make decisions, develop knowledge, enhance society's quality, and contribute to its advancement.	V1. Anal.; V2. Anal.	 Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini-projects. 	ParticipationHomework'sMini-project(s).

4. Physical Chemistry Track

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	To recall knowledge of Classical Physical Chemistry and Chemical Kinetics Concepts.	K1. Phy.; K2. Phy.; K3. Phy.; K4. Phy	Brain Storms ExercisesGroup Discussion.	Oral Discussion.Group DiscussionAssignments.
1.2	To list and memorize different concepts of Thermodynamic Laws	K1. <i>Phy.</i> ; K2. <i>Phy.</i> ; K3. <i>Phy.</i> ;	Small Group tasksOpen discussion at classroom.	ParticipationHomework'sMini-project(s).

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
	and the Physical Properties of Materials		Office hour guiding.Group Presentation of mini-projects.	
1.3	To record the Statistical Thermodynamics.	K1. <i>Phy</i> .	Brain Storms ExercisesGroup Discussion.	Oral Discussion.Group DiscussionAssignments.
1.4	To describe Materials and Materials Processes from the Perspective of Thermodynamics and Kinetics.	 Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini-projects. 		ParticipationHomework'sMini-project(s).
2.0	Skills			
2.1	To analyze problems and explore strategies for their solution, with justify the optimum approaches to appropriate Thermodynamics Laws and Kinetics Laws.	S1. Phy.; S2. Phy.; S3. Phy.	 Lectures activity Self-study. Deep discussion on the appropriate thermodynamics laws and kinetics laws approaches. 	 Questions in Lectures. Short Quizzes and Exams. Open Discussions. Participation Mini -seminar.
2.2	To interpret the catalytic reactions on variation operational conditions and contrast scientific data on materials and arguments clearly and correctly.	 Practice examples of the interpretation of the catalytic reactions for a variety of operational conditions achieving. Brainstorming. Self-study 		 Questions in Lectures. Participation Oral Discussion Short Quizzes.
2.3	To illustrate reasonable arguments for classifications of materials, solid solutions, alloys, phase diagrams, composites,	S1. Phy.; S2. Phy.; S3. Phy.; S4. Phy.;	LecturesOral Discussions.Brainstorming.Self-study	 Questions in Lectures. Short Quizzes and Exams. Oral Discussion. Participation.

Code	Course Learning Outcomes and advanced materials.	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods		
2.4	To demonstrate Oral Communication on application of development of microstructure and material science in the industry: and its impact in KSA, accompanying writing of mini- Reports, operating electronic mail, and Network in communicating with others.	S1. Phy.; S2. Phy.; S4. Phy.	 Group Discussion and Assignments Suggest examples micro-structure and material science in the industry and its impact in KSA, which will require reading, writing, and oral presentation. Encourage students to use electronic mail to submit Home Exams and Assignments. 	 Oral Discussion. Quizzes, and Exams. Giving marks for Ora Discussion in Lectures. Marks given for Assignments 		
3.0	Values, autonomy, and responsibility					
3.1	To Perform communications to integrity, academic ethical practices to find solutions for scientific and social issues, and a commitment to responsible citizenship and using IT.	academic actices to ations for and social and a nt to a citizenship		 Oral Discussion. Group Discussion Assignments. 		
3.2	To Appraise effectively in research or professional groups and make decisions, develop knowledge, enhance society's quality, and contribute to its advancement.	V1. Phy.; V2. Phy.;	 Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini-projects 	ParticipationHomework'sMini-project(s).		

C. Course Content:

No	List of Topics	Contact Hours
1.	Kinetics: Introduction, The Rate Equation and Rate Laws, Reactions and Thermodynamic Equilibrium, Temperature Dependence of the Rate, Integrated Rate Equations, Time Dependence of Concentrations in Reactions of Different Orders, Coupled Reactions in Flow Reactors, The Steady-state Approximation, Coupled Reactions in Batch Reactors,	22
2.	Catalytic Reactions, Langmuir Adsorption Isotherms, Competitive Adsorption. Thermodynamics General Introduction: Classical thermodynamics: the first law of thermodynamics, Classical thermodynamics revisited: the second and third law of thermodynamics, Basic probability theory, The Boltzmann distribution, Ensembles in statistical thermodynamics and partition function, Calculation of state functions, Kinetic theory of gases, Lifson-Roig theory.	18
3.	Materials Science Introduction, the classifications of materials, solid solutions, alloys, phase diagrams, Composites, advanced materials, the determination of the crystal structures, crystal imperfections, X-ray Diffractions, Physical, optical properties, LASER, electrical, thermal, magnetic and mechanical properties of materials, interaction of radiation with the matter, applications of materials in the industry: metallurgical industry.	20
4.		
5.		
6.		
7. 8.		
0.	Total	60

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Class Activities (Open Discussion, Mini-reports, Oral Presentation, solving questions)	weekly	30 %
2.	Midterm Exam	9 th week	30 %
3.	Final Exam	Around	40 %

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
		17th week	
•••	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

	Concepts of Modern Catalysis and Kinetics, Chorkendorff, I.; Niemantsverdriet, J. W., Wiley-VCH, 2003.		
Essential References	Thermodynamics, Statistical Thermodynamics and Kinetics. Engel, Th., Reid, Ph., Pearson, Boston, 3rd edition. 2012. ISBN- 10: 0321766180		
Supportive References	None		
Electronic Materials	 The Journal of Physical Chemistry A The Journal of Physical Chemistry B The Journal of Physical Chemistry C The Journal of Physical Chemistry The Journal of Physical and Colloid Chemistry The Journal of Physical Chemistry Letters Saudi Digital Library 		
Other Learning Materials	Blackboard Multimedia associated with the text book and the relevant websites		

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Each of the classroom should be equipped with a whiteboard and a projector, with a maximum of 20 students.
Technology equipment (Projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.
Other equipment (Depending on the nature of the specialty)	None

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Direct: Questionnaire.
	Course Responsible	Direct: Course e-Portfolio.

Assessment Areas/Issues	Assessor	Assessment Methods
		Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of students' assessment	Program Leaders	Direct: Course e-Portfolio. Indirect: Course report.
Quality of learning resources	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory-GCC)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
	Program Leaders	Direct: Course e-Portfolio.
	Course Responsible	Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
The extent to which CLOs have been achieved	Students	Direct: Exams - Course e- Portfolio. Indirect: Second examiner checklist-Course report.
	Program Leaders	Indirect: Exams.
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Council of Chemistry Department
REFERENCE NO.	10 (No. 2/10)
DATE	21/04/1444- 15/11/2022

