

Course Specification

— (Postgraduate Programs)

Course Title: Catalysis and its Industrial Applications

Course Code: CHM 6144

Program: Master of science in chemistry

Department: Chemistry

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: Course Specification Version Number

Last Revision Date: *Pick Revision Date.*

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	7
D. Students Assessment Activities:	8
E. Learning Resources and Facilities:	8
F. Assessment of Course Quality:	9
G. Specification Approval Data:	10

A. General information about the course:

		_		_		-	
-1			LIKCO		Onti	tica	tion
	L	LU	urse	ΙU	еши	IILA	LIUII.

1. Credit hours: 3	(3 Lectures,	0 Lab, 0	Tutorials)
--------------------	--------------	----------	------------

2. C	2. Course type					
A.	□University	□College	□Departme	nt	□Track	
В.	□Required		⊠E	lecti	ve	
3. L	3. Level/year at which this course is offered: Level 2/Year 1					

4. Course General Description:

This course is designed in two parts. The first one will cover the fundamentals addressing the activity patterns, adsorption—desorption phenomena, and advanced theories. The second part will provide the conventional methods of characterizing properties; and methods of preparation with pre/post-treatment; the most important traits, with examples and practices; spectroscopic characterizations, even in situ; Nanostructured catalysts the micro kinetic chemistry and surface mechanisms, and finally the evaluation of an industrial catalyst process.

5. Pre-requirements for this course (if any):

Advanced Physical Chemistry – CHM 6141

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

- Improve their knowledge of the fundamentals and concepts of Homogeneous and Heterogeneous catalysis.
- Recognize the Homogeneously and Heterogeneously Catalyzed in industrial process.
- Develop their knowledge of Bio-catalysis, and Electro-catalysis.
- Be familiar with Planning, Development, and Testing of Catalysts.
- Outline Catalyst Shapes and Production of homogeneous and Heterogeneous Catalysts.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100 %
2	E-learning		
3	HybridTraditional classroom		

No	Mode of Instruction	Contact Hours	Percentage
	E-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods			
1.0	Knowledge and understanding						
1.1	To recall knowledge of Homogeneous and Heterogeneous Catalysis and its applications in Industrial Processes	K1. Phy.; K2. Phy.; K4. Phy.	Five hours/week lectures.Self-study Home-exam.	 Regular Exams Assignments Short Quizzes Oral Discussion Participation. 			
1.2	To state catalyst development, planning and, testing.	K1. <i>Phy.</i> ; K3. <i>Phy</i> .	■ Five hours/week lectures. ■ Think to justify Catalyst development, using available references (SDL) online. Open discussion.	 Oral Discussion marks Literatures Survey Mini-seminar. Participation. 			

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.3	To describe the biocatalysis and Electrocatalysis.	K1. <i>Phy.</i> ; K3. <i>Phy</i> .	■ Five hours/week lectures. Group Discussion using available references (SDL) online, with minireports.	 Midterm. Assignments Open Discussions. Literatures Survey Mini-seminar
1.4	To recognize on the catalysis Reactors and their development.	K3. Phy.; K4. Phy.	Five hours/week lectures. Open Discussion on Catalysis reactors applications using available references (SDL) online.	 Assignments Open Discussions. Literatures Survey Mini-seminar. Participation.
2.0	Skills			
2.1	To explain the concepts and principles of Homogeneous and Heterogeneous Catalysis in industry	S1. <i>Phy</i> .	 Lectures activity Self-study. Deep discussion on principles of homogeneous and heterogeneous catalysis. 	 Questions in Lectures. Short Quizzes and Exams. Open Discussions. Participation Mini -seminar.
2.2	To compare Homogeneously and Heterogeneously Catalyzed Industrial Processes and Biocatalysis.	S1. Phy.; S2. Phy.; S3. Phy.	 Practice some examples catalysts for mechanism optimization, achieving. Brainstorming. Self-study 	 Questions in Lectures. Short Quizzes and Exams. Open Discussions. Participation Mini -seminar.
2.3	To explain the individual steps in the Heterogeneous, and Homogenous Catalysis process and its mechanisms in catalytic reactions.	S1. Phy.; S2. Phy.; S3. Phy.	LecturesOral Discussions.Brainstorming.Self-study	 Questions in Lectures. Short Quizzes and Exams. Oral Discussion. Participation.

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.4	To operate communication to different categories of Catalysis, its applications and impact in KSA industrial sector accompanying writing of mini- Reports, operating electronic mail, and Network in communicating with others.	S1. <i>Phy.</i> ; S4. <i>Phy</i> .	 Group Discussion and Assignments. Suggest several catalysts to compare and differentiate for reading, writing, and oral presentation in groups. Encourage students to use electronic mail to submit Home Exams and 	 Oral Discussion. Quizzes, and Exams. Giving marks for Oral Discussion in Lectures. Marks given for Assignments.
3.0	Values, autonomy, a	nd responsibility	Assignments	
3.1	To perform a scientific presentation, research, and work independently and integrate with a collaborated group, Using IT to acquire, analyze, and communicate information.	V1. <i>Phy</i> .	Brainstorming.ExercisesGroup Discussion.Team work.	 Oral Discussion. Group Discussion Assignments.
3.2	To demonstrate his ability to the effectively collaboration and inter-professionalism in class discussions or team works, as well as independently.	V1. Phy.; V2. Phy.	 Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini-projects 	ParticipationHomework'sMini-project(s).

C. Course Content:

No	List of Topics	Contact Hours
1.	Introduction: homogenous and hetergenous catalysis	4
2.	Homogenous catalysis with metallo organic catalysts: The main reactions in homogeneous catalysis include the homogeneity and exchange of ligands (ligands), compound formation, acid-base reactions, redox reactions. Catalytic cycles, elastic and hard catalysis, characterization of homogeneous catalysis.	8
3.	Homogeneous catalysis industrial processes: Examples of some industrial processes, preparation of (Oxo) compounds and production of vinegar, selective oxidation of ethylene, cyclohexane oxidation, Suzuki coupling, asymmetric catalysis: catalysts, commercial applications, asymmetric hydrogenation.	5
4.	Biocatalysis: introduction, kinetics of enzyme-catalyzed reactions, biocatalytic industrial processes, acrylamide preparation from acrylonitrile	3
5	Heterogeneous catalysis - basics: individual steps in the heterogeneous catalysis process, study of kinetics and mechanisms of heterogeneous catalytic reactions, the importance of adsorption in heterogeneous catalysis, kinetic study and mechanisms of heterogeneous catalytic reactions that take place in gas media, Langmuir - Henschlewood mechanism, energy aspects of catalytic activity, performance of Catalyst, inhibition and activation of catalytic factors, characterization of heterogeneous catalysts	5
6	Forms of catalysts and production of heterogeneous catalysts: Production of catalysts	3
7	Selective catalyst: zeolite : composition and structure of zeolites, production of zeolites, catalytic properties of zeolites.	3
8	Heterogeneous catalytic processes in industry: an overview, examples of industrial processes, manufacture of circulating and rare chemicals	3
9	<i>Electrocatalysis:</i> electrochemical reactions and the study of electrode kinetics, electrical catalysis in fuel cells.	3
10	Catalyst development, planning and testing: Stages of catalyst development, example of catalyst planning	3
11	Catalysis reactors: two-state reactors, three-state reactors, stationary bed reactors, and homogeneous catalysis reactions.	3
12	The economic importance of catalysts.	2
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessme nt timing (in week no)	Percentage of Total Assessment Score
1	Class Activities (Open Discussion, Mini-	weekly	30 %
1.	reports, Oral Presentation, solving questions)		
2.	Midterm Exam	9th week	30 %
3.	Final Exam	17 th week	40 %
4.	Total		100%

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	Catalyst Preparation: Science and Engineering, Regalbuto, J., CRC Press 2016. ISBN 9781420006506. Heterogeneous Catalysts for Clean Technology: Spectroscopy, Design, and Monitoring, Wilson, K.; Lee, A. F., Wiley-VCH 2013. ISBN: 978-3-527-33213-7	
Supportive References	None	
Electronic Materials	 Catalysis Today Catalysis Communications Applied Catalysis B: Environmental Applied Catalysis A: General Catalysis Letters Saudi Digital Library 	
Other Learning Materials	 Blackboard Multimedia associated with the text book and the relevant websites. 	

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

3. Educational and Research Facilities and Equipment Required:

ltems	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Each of the classroom should be equipped with a whiteboard and a projector, with a maximum of 20 students.	
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.	
Other equipment (depending on the nature of the specialty)	None	

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Direct: Questionnaire.
Effectiveness of teaching	Course Responsible	Direct: Course e- Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of students assessment	Program Leaders	Direct: Course e- Portfolio. Indirect: Course report.
	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory- GCC)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
Quality of learning resources	Program Leaders	Direct: Course e- Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
	Course Responsible	
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course e- Portfolio.

Assessment Areas/Issues	Assessor	Assessment Methods
		Indirect: Second examiner checklist-Course report.
	Program Leaders	Indirect: Exams.
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Council of Chemistry Department
REFERENCE NO.	10 (No. 2/10)
DATE	21/04/1444- 15/11/2022

