

Course Specification

— (Postgraduate Programs)

Course Title: Physical Applications of Green Chemistry

Course Code: CHM 6248

Program: Master of science in chemistry

Department: Chemistry

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: Course Specification Version Number

Last Revision Date: *Pick Revision Date.*

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	6
D. Students Assessment Activities:	8
E. Learning Resources and Facilities:	8
F. Assessment of Course Quality:	9
G. Specification Approval Data:	. 10

A. General information about the course:

	_		 		_		
-1	 $\Gamma_{\Delta \Pi}$	rse	ont	-11-11	cat	·io	0

2. Course type	е
----------------	---

A. □University □College □Department □Track

B. □Required ⊠ Elective

3. Level/year at which this course is offered: Level 1/Year 2

4. Course General Description:

This course will provide a wealth of information to chemistry students involved in chemical synthesis and processing at the research, applied, and management levels and will also act as a catalyst in stimulating many more chemists to become involved in the design and use of chemical syntheses and processes in an environmentally responsible manner.

5. Pre-requirements for this course (if any):

Advanced Physical Chemistry - CHM 6141

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

- Know the environmental status and evolution and the Pollution and its prevention measures
- Understand the emerging greener technologies and alternative energy sources
- Be an expertise global warming and its effects
- Learn about the control and remedial measures of the greenhouse effect
- Know about designing greener processes and industrial case studies.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100 %
2	E-learning		
	Hybrid		
3	 Traditional classroom 		
	E-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods		
1.0	Knowledge and und	Knowledge and understanding				
1.1	To recall knowledge of the principles and concepts of Green Chemistry	K1. <i>Phy.</i> ; K3. <i>Phy</i> .	Five hours/week lectures.Self-study Home-exam.	Regular ExamsAssignmentsShort QuizzesOral DiscussionParticipation.		
1.2	To state the important application of Catalysis in Green Chemistry and Organic Solvents environmentally benign solutions and Renewable Resources.	K1. Phy.; K2. Phy.; K3. Phy	■ Five hours/week lectures. ■ Think to justify application of Catalysis in Green Chemistry and Renewable Resources, using available references (SDL) online. Open discussion.	 Oral Discussion marks Literatures Survey Mini-seminar. Participation. 		
1.3	To outline the designing greener processes and industrial case studies	K1. <i>Phy.</i> ; K3. <i>Phy</i>	Five hours/week lectures. Group Discussion using available references (SDL) online.	 Midterm. Assignments. Group Discussions. Literatures Survey Mini-seminar. Participation. 		

Ondo	Course Learning	Code of CLOs aligned	Teaching	Assessment
Code	Outcomes	with program	Strategies	Methods
1.4	To list the renewable Resources, and Emerging Greener Technologies, and Alternative Energy Sources.	K1. <i>Phy.</i> ; K2. <i>Phy.</i> ; K4. <i>Phy</i>	hours/week lectures. Group Discussion on Renewable Resources, and Emerging Greener Technologies, using available references (SDL) online.	 Assignments Open Discussions. Literatures Survey Mini-seminar. Participation.
2.0	Skills			
2.1	To explain the concepts of green chemistry and its applications.	S1. Phy.; S4. Phy.	 Lectures activity Self-study. Deep discussion on concepts and principles of green chemistry and its applications. 	 Questions in Lectures. Short Quizzes and Exams. Open Discussions. Participation Mini -seminar.
2.2	To analyze emerging greener technologies and alternative energy sources needs and solutions.	S1. <i>Phy.</i> ; S2. <i>Phy.</i> ; S3. <i>Phy</i> .	 Practice some examples emerging greener technologies analysis achieving. Brainstorming . Self-study 	 Questions in Lectures. Participation Oral Discussion Short Quizzes.
2.3	To summarize Waste, Production, Problems and Prevention and treatment methods to act as sustainable material in green way.	S1. <i>Phy.</i> ; S2. <i>Phy</i> .	 Lectures Oral Discussions. Brainstormin g. Self-study 	 Questions in Lectures. Short Quizzes and Exams. Oral Discussion. Participation.
2.4	To operate communication to Green Chemistry as a tool for more health environment, and its applications, accompanying writing	S1. Phy.; S4. Phy.	 Group Discussion and Assignments. Suggest several examples of Green Chemistry as a 	 Oral Discussion, Quizzes, and Exams. Giving marks for Oral

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	of mini- Reports, operating electronic mail, and Network in communicating with others.		tool for healthy environment, for reading, writing, and oral presentation in groups. Encourage students to use electronic mail to submit Home Exams and Assignments	Discussion in Lectures. Marks given for Assignments
3.0	Values, autonomy, a	nd responsibility		
3.1	To perform a scientific presentation, research, and work independently and integrate with a collaborated group, Using IT to acquire, analyze, and communicate information.	V1. <i>Phy</i> .	 Brainstorming. Exercises Group Discussion. Team work. 	 Oral Discussion. Group Discussion Assignments.
3.2	To demonstrate his ability to the effectively collaboration and inter-professionalism in class discussions or team works, as well as independently.	V1. Phy.; V2. Phy.	 Small Group tasks Open discussion at classroom. Office hour guiding. Group Presentation of mini-projects. 	ParticipationHomework'sMini-project(s).

C. Course Content:

No	List of Topics	Contact Hours
1.	Principles and Concepts of Green Chemistry: Introduction on Green Chemistry. Reducing Toxicity: Measuring Toxicity	4

	Total	45
8	Industrial Case Studies: A Brighter Shade of Green, Greening of Acetic Acid Manufacture, EPDM Rubbers, Vitamin C, Leather Manufacture: Tanning, Fat liquoring, dyeing to be Green: Some Manufacturing and Products Improvements, Dye Application, Polyethene: Radical Process, Ziegler-Natta Catalysis, Metallocene Catalysis, Eco-friendly Pesticides: Insecticides.	6
7	Designing Greener Processes: Conventional Reactors: Batch Reactors, Continuous Reactors, Inherently Safer Design: Minimization, Simplification, Substitution, Moderation, Limitation, Process Intensification: Some PI Equipment.	6
6	Emerging Greener Technologies and Alternative Energy Sources: Design for Energy Efficiency, Photochemical Reactions Processes: Advantages of and Challenges Faced by Photochemical, Examples of Photochemical Reactions, Chemistry Using Microwaves: Microwave Heating, Microwave-assisted Reactions, Sonochemistry and Green Chemistry, Electrochemical Synthesis: Examples of Electrochemical Synthesis.	7
5	Renewable Resources: Biomass as a Renewable Resource, Energy: Fossil Fuels, Energy from Biomass, Solar Power, Other Forms of Renewable Energy, Fuel Cells, Chemicals from Renewable Feedstocks: Chemicals from Fatty Acids, Polymers from Renewable Resources, Some Other Chemicals fiom Natural Resources.	4
4.	<i>Organic Solvents:</i> Environmentally Benign Solutions: Organic Solvents and Volatile Organic Compounds, Solvent-free Systems, Water as a Reaction Solvent: Water-based Coatings, Ionic Liquids: Ionic Liquids as Catalysts, Ionic Liquids as Solvents.	5
3.	Catalysis and Green Chemistry: Introduction to Catalysis, Heterogeneous Catalysts: Comparison of Catalyst Types, Basics of Heterogeneous Catalysis, Zeolites and the Bulk Chemical Industry, Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries, Catalytic Converters, Homogeneous Catalysis, Biocatalysis, Photocatalysis.	8
2.	Waste: Production, Problems and Prevention: Introduction, Some Problems Caused by Waste, Sources of Waste from the Chemical Industry, The Cost of Waste, Waste Minimization Techniques: Physical Treatment, Chemical Treatment, Biotreatment Plants.	5

D. Students Assessment Activities:

No	Assessment Activities *	Assessme nt timing (in week no)	Percentage of Total Assessment Score
1	Class Activities (Open Discussion, Mini-	weekly	30 %
	reports, Oral Presentation, solving questions)		
2.	Midterm Exam	9th week	30 %
3.	Final Exam	17 th week	40 %
4.	Total		100%

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	Green Chemistry, an introduction, Lancaster, M., R.S.C paperbacks Cambridge, 2002. ISBN-13: 978-1847558732 Green Chemistry Education. Changing the Course of Chemistry, Anastas, P. T.; Levy, I. J.; Parent, K. E. American Chemical Society 2009, ISBN-13: 978-0841274471	
Supportive References	None	
Electronic Materials	 Green Chemistry Environmental Science & Technology Journal of Hazardous Materials ACS Sustainable Chemistry & Engineering Chemosphere Saudi Digital Library 	
Other Learning Materials	 Blackboard Multimedia associated with the text book and the relevant websites. 	

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

3. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Each of the classroom should be equipped with a whiteboard and a projector, with a maximum of 20 students.
Technology equipment (projector, smart board, software)	The rooms are equipped with data show, Smart Board, WI-FI access.
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
	Students	Direct: Questionnaire.
Effectiveness of teaching	Course Responsible	Direct: Course e- Portfolio. Indirect: Second examiner checklist-Course report.
	Peer Reviewer	Direct: Questionnaire. Indirect: External assessor report.
Effectiveness of students assessment	Program Leaders	Direct: Course e- Portfolio. Indirect: Course report.
	Students	Indirect: Second examiner checklist-Course report.
	Faculty (Academic Advisory-GCC)	Direct: course Entrance/Exit. Indirect: Observations - Accreditation review.
Quality of learning resources	Program Leaders	Direct: Course e- Portfolio. Indirect: Course evaluation survey- Observations- Syllabus review- Accreditation review.
	Course Responsible	
The extent to which CLOs have been achieved	Course Responsible	Direct: Exams - Course e- Portfolio. Indirect: Second examiner checklist-Course report.
	Program Leaders	Indirect: Exams.

Assessment Areas/Issues	Assessor	Assessment Methods
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Council of Chemistry Department
REFERENCE NO.	10 (No. 2/10)
DATE	21/04/1444- 15/11/2022

