

Course Specification (Bachelor)

Course Title: General Physics

Course Code: PHY 1101

Program:

Bachelor of Science in Physics.

Bachelor of Science in Applied Mathematics.

Bachelor of Science in Chemistry. Bachelor of Science in Biology.

Department: Physics

College: Science

Institution: Imam Mohammad Ibn Saud Islamic University

Version: 4

Last Revision Date: 16/11/2022

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:

-						
1		ırse		111	1621	CION
4.	LUL	11 3C	IU		ıvaı	UUII

1. 0	1. Credit hours: (4)						
4 Cr	4 Credit hours (2 Lect, 2 tut, 2 lab)						
2. C	Course type						
Α.	□University	□ College	□Depar	tment	□Track	□Others	
В.	□Required			□Elect	ive		
3. L	evel/year at w	hich this course i	s offered	: (Leve	l 1/Year 1)		
4. C	Course general	Description:					
a de		of these concepts an				Students will gain with his course will provide	
5. P	5. Pre-requirements for this course (if any):						
None							
6. Co-requisites for this course (if any):							
7 6	Course Main Ob	. ! ! / - \ .					

7. Course Main Objective(s):

- Provide the basic concepts and build a strong foundation in the principles of classical mechanics.
- Analyze different physical situations and phenomena in terms of the fundamental laws of classical mechanics.
- Understand how these principles are applied in the world around us.
- Gain an understanding of the classical laws of physics and how they are applied to real world problems.
- Observe and analyze physical data relevant to some of the experiments in mechanics.
- Develop critical thinking and analytical problem-solving skills.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	90	100%
2	E-learning		
	Hybrid		
3	 Traditional classroom 		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	-
4.	Tutorial	30
5.	Others (specify)	0
Total		90

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Cod e	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understand	ling		
1.1	Describe the concepts and principles in introductory dynamics in one and two dimensions.	K1, K2	Lectures.Tutorials.Class discussions.	Exams.Participation.Discussions.
1.2	Outline physical phenomena using Newton's laws of motion.	K1, K2	Lectures.Tutorials.Class discussions.	Exams.Homework.Quizzes.
1.3	Describe physical phenomena using energy and work concepts.	K1, K2	Lectures.Class discussions.Tutorials.	Participation.Exams.Discussions.Homework.
2.0	Skills			
2.1	Explain and summarize the basic knowledge gained from studying mechanics.	S1, S2	Lectures.Class discussions.Tutorials.	Exams.Discussions.Participation.
2.2	Develop the students ability to solve and analyze problems in physics related the topics covered by the course.	S2, S3	 Problem classes and group tutorial. Homework assignments as well as problems solutions. 	Exams.Discussions.Homework.
2.3	Explain and use information from the	S2, S3	Experiments setting up, data recording and calculations	Compare with standard results.

Cod e	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods		
	output of experiment to draw conclusions.		based on lab manual and lectures (co-requisites).	 Feedback and explanations. 		
2.4	Summarize conclusions and write reports.	S3, S4	Experiments setting up, data recording and calculations based on lab manual and lectures (co-requisites).	Compare with standard results.Feedback and explanations.		
2.5	Communicate in a clear and concise manner orally, and using IT for acquiring and analyzing information.	S4, S5	 Lectures. Class discussions. Tutorials. Encourage students to use electronic mail and internal network for submitting homework and assignments. Use digital library. 	 Exams. Participation and activities of students in the course community and blackboard. Homework. 		
3.0						
3.1	Show the collaboration and inter-professionalism in class discussions or team works, as well as solve problems independently.	V1, V2, V3	Small team tasksOpen discussion at classroom.Office hours.	Participation.Homework.Mini-project(s).		

C. Course Content

No	List of Topics	Contact Hours
1.	Physics and Measurements: Standards of length, mass, and time, dimensional analysis, conversion of units, estimates and order-of-magnitude calculations, significant figures.	4
2.	Motion in one dimension: Displacement, velocity and acceleration, one dimensional motion with constant acceleration, freely falling objects.	12
3.	Vectors: Vector and scalar quantities, some properties of vectors, components of a vector and unit vectors	8
4.	The laws of motion: The concept of force, Newton's first law, Newton's second law, the force of gravity and weight, Newton's third law, some applications of Newton's laws, forces of friction.	12
5.	Work and kinetic energy: The scalar product of two vectors, work done by a constant force, kinetic energy and the work-kinetic energy theorem.	12
6.	Potential energy and conservation of energy: Potential energy, conservative and non conservative forces, conservative forces and potential energy, conservation of mechanical energy, work done by non-conservative forces, Power.	12

	List of Topics (Laboratory	
1.	Experiment 1: Measurements and uncertainties. Virtual experience.	2
2.	Experiment 2: Free fall.	2
3.	Experiment 3: Forces in equilibrium.	2
4.	Experiment 4: Simple pendulum.	2
5.	Experiment 5: Constant Spring.	2
6.	Experiment 6: Simple harmonic motion.	2
7.	Experiment 7: Free fall: Conservation of mechanical energy of a uniformly accelerated mass.	2
8.	Experiment 8: Describe the movement of an object moving at a constant speed and constant acceleration.	2
9.	Experiment 9: Friction and Newton's second law.	2
10.	Experiment 10: Ohm's Law.	2
	Total	90

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Class Activities (class quizzes, homework, solving problems, etc)	weekly	10 %
2.	Laboratory	All the semester	30 %
3.	Midterm Exam 1	6 th week	10 %
4.	Midterm Exam 2	12 th week	10 %
5.	Final Exam	16 th week	40 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Serway R.A. and Jewett J.W., <i>Physics for Scientists and Engineers</i> with <i>Modern Physics</i> , 9th Edition, Brooks/Cole, Belmont, CA, USA (2014).
Supportive References	Halliday D. and Resnick R., <i>Physics</i> , 9 th Edition, John Wiley and sons (2011).
Electronic Materials	https://units.imamu.edu.sa/colleges/en/science/Pages/default .aspx

Other Learning Materials

- Laboratory Manual supplied by the Department of Physics. Laboratory Manual is available at the website of the Department of Physics.

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms.Labs.
Technology equipment (projector, smart board, software)	- Classroom equipped with a whiteboard and a projector.
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students Second examiner	Indirect (The students complete the evaluation forms at the end of term. Final exam is evaluated by the second examiner)
Effectiveness of Students assessment	Instructors	Direct (exams, HW, project,)
Quality of learning resources	Faculty Students	indirect (surveys)
The extent to which CLOs have been achieved	Instructors Program Leaders	Direct (excel sheet)
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Quality Unit-Physics Department
REFERENCE NO.	Department council No. 5
DATE	16/11/2022

