

المملكة العربية السعودية - جامعة الإمام محمد بن سعود الإسلامية - كلية العلوم

CURRICULUM VITAE

PERSONAL DATA

Name	Aliyah Abdullah Mohammed Alsharif
Nationality	Saudi
Position	Lecturer
E-Mail	aaalshareef@imamu.edu.sa
Phone	+966551020308

EDUCATION

Year	Academic Degree	Institution
2010	Bachelor	King Saud University
2015	Master	King Saud University
2023	Doctorate	University of Liverpool

WORK EXPERIENCE

Period	Position	Address
2013-2016	Teacher assistant	Al-Imam Mohammed Ibn Saud Islamic University
2016-2023	PhD student	University of Liverpool
2023 to date	Lecturer	Al-Imam Mohammed Ibn Saud Islamic University

RESEARCH INTERESTS

Heterogeneous Catalysis- Biomass transformation into valuable chemicals by metal oxides.

المملكة العربية السعودية - جامعة الإمام محمد بن سعود الإسلامية - كلية العلوم

KINGDOM OF SAUDI ARABIA-Imam Mohammad Ibn Saud Islamic University-College of Science

PUBLICATIONS

- 1- Probing the Catalytic Efficiency of Supported Heteropoly Acids for Esterification: Effect of Weak Catalyst Support Interactions.

 https://www.hindawi.com/journals/jchem/2018/7037461/
- 2- Dehydroisomerisation of α -Pinene and Limonene to p-Cymene over Silica-Supported ZnO in the Gas Phase. https://www.mdpi.com/2073-4344/11/10/1245
- 3- Selective dehydroisomerization of cyclic monoterpenes to p-cymene over silica-supported CdO. https://www.sciencedirect.com/science/article/abs/pii/S092633732300005X