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Summary

In this report, consideration is given to the spectral method on elliptic boundary

value problems, in order to develop weak solution of given problem, first some basic

mathematical concepts are given . Then orthogonal polynomials, in particular, Jacobi

and related Chebyshev and Legendre polynomials are defined and related approximation

(error) analyses explored. We first study description of the spectral method on the

two point boundary problems. Several order Legendre orthogonal polynomials used

to show the how approximate solution approach to the exact analytical solution. An

application of spectral method to the real world problem was undertaken in the final

section where the flow in an eccentric microannulus problem considered, which arise from

the micro electromechanical systems and oil industry. It is shown that Debye− Hückel

approximation can be used for governing semilinear Possion-Boltzmann elliptic partial

differential equation for low zeta function. Finally, Fourier Legendre pseudo spectral

method is used to obtain the approximate analytical solution for Debye− Hückel

approximation and reduced momentum equation solved analytically. The effects of the

parameters involved in our flow problem are demonstrated graphically.
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Introduction

Education in mathematical methods and principles usually begin with introduction

discrete systems and this description develops toward to the continuous systems. For

example at first, numbers that a child counts in a sing-song manner are just a sequence

of words (positive integers). Then all of a sudden the words become useful as the child

learns to match them to an amount by counting fingers. Later child develop skill and

study decimals and finally real numbers which begin understanding of the location of

object in (x, y) space for all points. Students first consider the slope of the curve in

this space, they first try to calculate slope of the curve by using discrete expression
∆y

∆x
.

Understanding of the slope completed when they are able to calculate the slope of any

point on arbitrary curve using continuous expression
dy

dx
.Mathematical model in science

and engineering presented by algebraic equation, like F = ma, but this expression in fact

represent Navier Stokes equation as

ρ

(
∂u∗

∂t∗
+ u∗.∇∗u∗

)
= −∇p∗ + µ∇∗2u∗ + ρeE

∗ (t) ,

Since, the fluid flows are of engineering and science significance due to the variety of

applications that depend on understanding its behaviours. Because of this, this subject

has been extensively studied both physically and mathematically. Numerical methods,

namely, replace the differential expression with discrete one and solve this reduced

equation to represent the solution of the differential system. But this approximation

for differential expression should be in a tolerable error bound. A Fundamental idea for

Numerical method is the reduction of differential equation to the approximation algebraic

system. This reduction replace a continuous differential equation, whose solution space

is generally infinite dimensional, with a finite set of algebraic equations whose solution

space is finite dimensional. The most commonly used numerical methods in commercial

available software are the Finite Volume Method (FVM), the Finite Differences Method

II



(FDM) and the Finite Element Method (FEM), they uses the same approach but has a

different mathematical foundation. The previous methods can be applicable in a range

of different flow geometries without any difficulty, but require careful consideration when

designing the computational mesh domain in order to obtain results that successfully

model the flow field. In this thesis, we use pseudo spectral method (PSM), which

is characterised by its high accuracy for space variables, indeed this main advantage

to use this approach. Its main disadvantages of PSM are the need of a regularly

distributed mesh, which prevent its use in complicated flow geometries, and, like all

methods previously mentioned, a high physical memory requirement to be capable of

modelling the smaller scales of motion present in any fluid flow. Sometimes this difficulty

can be avoided by using different coordinates system. The organization of the thesis is as

follows: In chapter 1 devoted to the basic mathematical tools which are needed follow up

chapter, we examine the properties of classical orthogonal polynomials. Chapter 2 deals

with the properties of spectral methods. Chapter 3 focuses on the application of Pseudo

Spectral method to flow problems and numerical results and in chapter 4 we discuss

the numerical results of the method and effect of parameters involved in our problems

on electric potential and flow field. Because of regulation in writing the project which

require number of page must be less than 40(forty), many mathematical detail such as

existence of weak solution, uniqueness of the solution and error analysis in chapter 3 were

omitted.
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Chapter 1

Terminologies ans Concepts

A sequence {xn} in a metric space (X; d), is called a Cauchy sequence, if for every positive

real number ε > 0 there is a positive integer N such that for all positive m,n > N , the

distance

d(xm, xn) = |xm − xn| < ε,

or equivalently

d(xm, xn)→ 0 as m, n →∞,

If every Cauchy sequence in a metric space X converges to an element in X, then X is

said to be a complete space.

1.1 Banach Spaces

Definition : Let X be a real vector space, a function ‖ · ‖ : X → R defines a norm on

X such that

1. ‖u+ v‖ ≤‖u‖+‖v‖ , ∀u, v ∈ X;

2. ‖αu‖ = |α|‖u‖ , ∀u ∈ X and ∀α ∈ R;

3. ‖u‖ ≥ 0 , ∀u ∈ X;

4. ‖u‖ = 0 if and only if u = 0.

If the first three conditions holds, then a function | · | : X → R defines a semi-norm on

X.
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The space (X, ‖ · ‖) is called a normed vector space. A Banach space is a complete

normed vector space with respect to the metric :

d(u, v) =‖u− v‖ , ∀u, v ∈ X.

1.2 Hilbert Spaces

Definition 1.2.1. An inner product on a vector space X is a function

(u, v) : X ×X → R such that

1. (u, v) = (v, u), ∀u, v ∈ X;

2. (αu+ βv, w) = α(u,w) + β(v, w), ∀u, v, w ∈ X and ∀α, β ∈ R;

3. (u, u) ≥ 0, ∀u ∈ X;

4. (u, u) = 0 if and only if u = 0.

A Banach space with an inner product defined on it, is called Hilbert space.

Definition 1.2.2. In an inner product space X, u, v ∈ X are said to be orthogonal,If

(u, v) = 0,

The inner product (·, ·) induces a norm on X,defined by

‖u‖ =
√

(u, u), ∀u ∈ X. (1.2.1)

Or the metric on X can be defined by d(u, v) =‖u− v‖.

A Hilbert space is a complete inner product space.

Lemma 1.2.1. In a Hilbert space, Cauchy-Schwarz inequality holds∣∣(u, v)
∣∣ ≤‖u‖‖v‖ , ∀u, v ∈ X. (1.2.2)

Proof : Can be proven easily as in [3]

The standard inner product on Rn is given by

(x, y) =
n∑
j=1

xjyj

where x = (x1, x2, · · · , xn) , y = (y1, y2, · · · , yn) with xi, yi ∈ R.

This space is complete hence it is finite dimensional Hilbert space.

And L2[0, 1] , L2[a, b] , and L2(R) are all Hilbert spaces with respect to the inner product.
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1.3 Lax-Milgram Lemma

Definition 1.3.1. Let X be a Hilbert space with norm ‖·‖. If for any u, v, w ∈ X and

α, β ∈ R a functional a(·, ·) : X ×X → R defines a bilinear form as follow,

a(αu+ βv, w) = αa(u,w) + βa(v, w), (1.3.1)

a(u, αv + βw) = αa(u,w) + βa(v, w). (1.3.2)

That mean , for any fixed u, both the functionals a(u, ·) : X → R and a(·, u) : X → R

are linear.

If a(u, v) = a(v, u) for any u, v ∈ X. the bilinear form is called as symmetric.

Definition 1.3.2. A bilinear form a(·, ·) on a Hilbert space X is called continuous, if

there exists a constant C > 0 such that

∣∣a(u, v)
∣∣ ≤ C‖v‖‖u‖ , ∀u, v ∈ X (1.3.3)

and coercive on X, if there exists a constant α > 0 such that

a(u, u) ≥ α‖u‖2 , ∀u ∈ X. (1.3.4)

Theorem 1.3.1. (Lax-Milgram lemma) LetX be a Hilbert space, and a(·, ·) : X×X → R

be a continuous and coercive bilinear form, and assume that F : X → R be a linear

functional in X ′. Then the variational problem:
Find u ∈ X such that

a(u, v) = F (v), ∀v ∈ X,
(1.3.5)

has a unique solution.Furthermore, we have

‖u‖ ≤ 1

α
‖F‖X′ (1.3.6)

1.4 Lp-Space

Assume Ω is a Lebesgue-measurable subset of Rd (d = 1, 2, 3) with non-empty interior,

and let u be a Lebesgue measurable function on Ω. The following integrations are in

Lebesgue sense.
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Definition 1.4.1. For 1 ≤ p ≤ ∞, we define the following set

Lp(Ω) := {u : u is measurble on Ω and ‖u‖Lp(Ω) <∞} (1.4.1)

where for 1 ≤ p ≤ ∞,

‖u‖Lp(Ω) :=

(∫
Ω

∣∣u(x)
∣∣p dx) 1

p

(1.4.2)

and

‖u‖L∞(Ω) = ess sup
x∈Ω

∣∣u(x)
∣∣ (1.4.3)

The space Lp(Ω) where Lp(Ω) endowed with ‖·‖Lp(Ω) is the Banach space.

In particular, the space L2(Ω) endowed with the inner product

(u, v)L2(Ω) =

∫
Ω

u(x) v(x) dx, ∀u, v ∈ L2(Ω). (1.4.4)

is the Hilbert space

Definition 1.4.2. Let p and q are positive real numbers , if

1

p
+

1

q
= 1,

then p and q are called conjugate exponents.1 and ∞ are also regarded as conjugate

exponents.

Theorem 1.4.1. Holder’s inequality. Assume that p and q be conjugate exponents

with 1 ≤ p ≤ ∞. If u ∈ Lp(Ω) and v ∈ Lq(Ω), then uv ∈ L1(Ω), and∫
Ω

∣∣u(x) v(x)
∣∣ dx ≤‖u‖Lp(Ω)‖v‖Lq(Ω) (1.4.5)

For p = 2,Holders inequality reduces to well known Cauchy-Schwarz inequality (1.2.2).

Theorem 1.4.2. Minkowski’s inequality. If u, v ∈ Lp(Ω) with 1 ≤ p ≤ ∞, then

u+ v ∈ Lp(Ω) and

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) +‖v‖Lp(Ω) (1.4.6)

Remark. Let us assume that ω(x), which is almost everywhere positive and Lebesgue

integrable on Ω, ω(x) dx also defines a Lebesgue measure on Ω. Replacing dx in (1.4.2)

by ω(x) dx, we define the norm ‖·‖Lpω(Ω) and the weighted Lpω(Ω) space with 1 ≤ p <∞,

which is a Banach space. In particular, the weighted space L2
ω(Ω) is a Hilbert space with

the following inner product and norm

(u, v)ω =

∫
Ω

u (x) v (x)ω (x) dx, ‖u‖ω =
√

(u, u)ω (1.4.7)
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1.5 Sobolev Spaces

1.5.1 Weak Derivatives

A multi-index α = (α1, ..., αm) is a m-tuple of non-negative integers {αi}. Denote |α| =∑m
i=1 αi,and define the partial derivative operator

Dα =
∂ |α|

∂xα1
1 · · · ∂xαmm

Definition 1.5.1. A function f ∈ L1
(loc)(Ω) where Ω in Rm, is weakly differentiable with

respect to xi, if there exists a function f ∈ L1
(loc)(Ω) such that∫

Ω

f∂iφdx = −
∫

Ω

giφdx forallφ ∈ C∞c (Ω) (1.5.1)

Then the function gi is called the weak ith derivative of f , which is shown as ∂if

Therefore, we can state weak derivative as integration by parts formula∫
Ω

f∂iφdx = −
∫

Ω

∂fiφdx (1.5.2)

since C∞c (Ω) is dense in L1
loc

(
Ω)
)

this definition hold for all φ ∈ C∞c (Ω)¿ Moreover,

the weak derivative of a continuously differentiable function agrees with the pointwise

derivative. Higher-order derivatives are defined in a smiler manner.

Definition 1.5.2. Suppose α = (α1, · · · , αm) is a multi-index, a function f ∈ L1
loc(Ω)

has weak derivative ∂αf ∈ L1
loc(Ω) if

∫
Ω

f Dαφ dx = (−1)|α|
∫

Ω

f (∂αφ) , dx ∀φ ∈ C∞c (Ω).

We restrict our discussions to the Hilbert spaces (i.e., with p = 2),

1.5.2 Sobolev space definition

Sobolev spaces consist of functions whose weak derivative belong to Lp [2]. These spaces

one of the most useful settings for the analysis of partial differential equations

Definition 1.5.3. The Sobolev space Hk(Ω) with k ∈ N is the space of functions u ∈

L2(Ω) such that all the distributional derivatives of order up to m can be represented by

functions in L2(Ω). That is,

Hk(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for 0 ≤|α| ≤ k} (1.5.3)
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equipped with the norm and semi-norm

‖u‖k,Ω =

 k∑
|α|=0

‖Dαu‖2
L2(Ω)

1/2

, |u|k,Ω =

 k∑
|α|=0

‖Dαu‖2
L2(Ω)

1/2

(1.5.4)

In particular, the space Hk(Ω) is a Hilbert space endowed with the inner product

(u, v)k,Ω =
k∑

|α|=0

∫
Ω

Dαu(x)Dαv(x)dx.
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Chapter 2

Orthogonal Polynomials and Related

Approximation Results

2.1 Approximability of Orthogonal Polynomials

Theorem 2.1.1. (Weierstrass Approximation Theorem) Let u(x) ∈ C[a, b] . Then there

exist a sequence of polynomials pn(x) that converge uniformly to u(x) on [a, b] , i.e any

ε > 0 , there exist n ∈ N and pn ∈ Pn such that

‖u− pn‖L∞
(a,b)

< ε,∀n ≥ N (2.1.1)

Proof: See for example Shen [1]

The best approximation problem facilitate as to construct of pn(Minimax polynomial):
Given a fixed n ∈ N , find p∗n ∈ Pn , such that

‖u− p∗n‖L∞
(a,b)

= inf
pn∈ Pn

‖u− pn‖L∞
(a,b)

(2.1.2)

For 1 ≤ p ≤ ∞ , Lp(Ω) = {u : u is measurable on Ω and ‖u‖Lp(Ω) <∞}

with ‖u‖Lp(Ω) =

(∫ ∣∣u(x)
∣∣p dx) 1

p

, ‖u‖L∞(Ω) = ess sup
∣∣u(x)

∣∣.

Theorem 2.1.2. Let I be any interval finite or an infinite. Then for any given u ∈ L2
ω(I)

and n ∈ N , there exists a unique q∗n ∈ Pn , such that

‖u− q∗n‖ω = inf
qn∈ Pn

‖u− qn‖ω (2.1.3)
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where,q∗n(x) linear combination of polynomials pk(x) as

q∗n(x) =
n∑
k=0

ûkpk(x) with ûk =
(u, pk)ω

‖pk‖2
ω

(2.1.4)

and {pk}nk=0 forms an L2
ω-orthogonal basis of Pn.

The L2
ω-orthogonal projection is defined by

(u− πnu, φ)ω = 0 , ∀φ ∈ Pn. (2.1.5)

It is clear that πnu is the first n+ 1-term truncation of the series u =
∑∞

k=0 ûkpk(x).

2.2 Jacobi Polynomials

In mathematics, Jacobi polynomials sometimes called called hypergeometric polynomials

is denoted by Jα,βn (x), are classical orthogonal polynomials. They are orthogonal with

respect to the weight function ωα,β (x) : = (1− x)α(1 + x)β over I := [−1, 1],basically,∫ 1

−1

Jα,βn (x) Jα,βm (x)ωα,β (x) dx = γα,βn δmn, (2.2.1)

where γα,βn =
∥∥Jα,βn

∥∥2

ωα,β
.The weight function ωα,β belongs to L1(I) if and only if α, β > −1

Furthermore, Gegenbauer, Legendre and Chebyshev polynomials are special case of the

Jacobi polynomials. One of the important basic properties of Jacobi polynomials are the

solution of following linear homogeneous differential equations

2.2.1 Sturm-Liouville Equation

Now, we define singular Sturm-Liouville operator as

Lα,βu : = −(1− x)−α(1 + x)−β∂x

(
(1− x)α+1(1 + x)β+1∂xu(x)

)
= (x2 − 1)∂2

xu(x) + {α− β + (α + β + 2)x}∂xu(x)
(2.2.2)

By (2.2.2) and weight function of Jacobi polynomial we can show that

Lα,βJ
α,β
n = −ω−α,−β∂x

(
ωα+1,β+1∂xJ

α,β
n

)
we are now ready to prove following theorem
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Theorem 2.2.1. The Jacobi polynomials are the eigen functions of the singular

Sturm-Liouville problem:

Lα,βJ
α,β
n (x) = λα,βn Jα,βn (x). (2.2.3)

and the corresponding eigenvalues are

λα,βn = n(n+ α + β + 1) (2.2.4)

Proof. For any u ∈ Pn, we have Lα,βu ∈ Pn. Performing integration by parts twice, we

get that for any φ ∈ Pn−1,(
Lα,βJ

α,β
n , φ

)
ωα,β

=

∫ 1

−1

[
−ω−α,−β∂x

(
ωα+1,β+1∂xJ

α,β
n (x)

)]
φ(x) ωα,βdx

=

∫ 1

−1

−∂x
(
ωα+1,β+1∂xJ

α,β
n (x)

)
φ(x) dx

= −ωα+1,β+1∂xJ
α,β
n (x)φ(x)

∣∣∣∣1
−1

+

∫ 1

−1

ωα+1,β+1∂xJ
α,β
n (x)∂xφ(x) dx

=

∫ 1

−1

ωα+1,β+1∂xJ
α,β
n (x)∂xφ(x) dx since ωα+1,β+1(±1) = 0

= Jα,βn (x)ωα+1,β+1∂xφ(x)

∣∣∣∣1
−1

−
∫ 1

−1

Jα,βn (x)∂x

(
ωα+1,β+1∂xφ(x)

)
dx

= −
∫ 1

−1

Jα,βn (x)∂x

(
ωα+1,β+1∂xφ(x)

)
dx since ωα+1,β+1(±1) = 0

=

∫ 1

−1

Jα,βn (x)

[
−ω−α,−β∂x

(
ωα+1,β+1∂xφ(x)

)]
ωα,β dx since ω−α,−βωα,β = 1

=
(
Jα,βn ,Lα,βφ

)
ωα,β

Now since Lα,βφ ∈ Pn−1, and Jα,βn an orthogonal polynomial we have(
Lα,βJ

α,β
n , φ

)
ωα,β

=
(
Jα,βn ,Lα,βφ

)
ωα,β

= 0

Jα,βn (x) orthogonal any polynomial of degree less than n. we have Lα,βJ
α,β
n ∈ Pn, and

using the uniqueness of orthogonal polynomials which implies that there exists a constant

λα,βn such that

Lα,βJ
α,β
n = λα,βn Jα,βn
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To determine λα,βn , comparing the coefficient of the leading term xn on both sides,

Lα,βx
n = (x2 − 1)∂2

xx
n + {α− β + (α + β + 2)x}∂xxn

= (x2 − 1)n(n− 1)xn−2 + {α− β + (α + β + 2)x}nxn−1

= n(n− 1)xn − n(n− 1)xn−2 + n(α− β)xn−1 + n(α + β + 2)xn

= n(n+ α + β + 1)xn + n(α− β)xn−1 − n(n− 1)xn−2

= λα,βn xn

Therefore λα,βn = n(n+ α + β + 1).

Remark. It can be shown that Sturm-Liouville operator Lα,β is self-adjoint with respect

to the inner product (·, ·)ωα,β i.e.(
Lα,βφ, ψ

)
ωα,β

=
(
φ,Lα,βψ

)
ωα,β

(2.2.5)

for any φ , ψ ∈ {u : Lα,βu ∈ L2
ωα,β

(Ω)}

The proof is not difficult in fact , for any φ , ψ ∈ L2
ωα,β

(Ω)}, if we apply integration

by parts twice, then we obtain that for any φ ∈ Pn−1,

(
Lα,βφ, ψ

)
ωα,β

=

∫ 1

−1

[
−ω−α,−β∂x

(
ωα+1,β+1∂xφ(x)

)]
ψ(x) ωα,βdx

=

∫ 1

−1

−∂x
(
ωα+1,β+1∂xφ(x)

)
ψ(x) dx

= −ωα+1,β+1∂xφ(x)ψ(x)

∣∣∣∣1
−1

+

∫ 1

−1

ωα+1,β+1∂xφ(x)∂xψ(x) dx

=

∫ 1

−1

ωα+1,β+1∂xφ(x)∂xψ(x) dx since ωα+1,β+1(±1) = 0

= φ(x)ωα+1,β+1∂xψ(x)

∣∣∣∣1
−1

−
∫ 1

−1

φ(x)∂x

(
ωα+1,β+1∂xψ(x)

)
dx

= −
∫ 1

−1

φ(x)∂x

(
ωα+1,β+1∂xψ(x)

)
dx since ωα+1,β+1(±1) = 0

=

∫ 1

−1

φ(x)

[
−ω−α,−β∂x

(
ωα+1,β+1∂xψ(x)

)]
ωα,β dx since ω−α,−βωα,β = 1

=
(
φ(x),Lα,βψ(x)

)
ωα,β

Theorem 2.2.2. (Szego 1975) The differential equation

Lα,βu = λu
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has a polynomial solution not identically zero if and only if λ has the form n(n+α+β+1).

This solution is Jα,βn (x) (up to a constant), and no solution which is linearly independent

of Jα,βn (x) can be a polynomial.

We prove this by using Frobenous method ,

(x2 − 1)u′′(x) + α− β + (α + β + 2)xu′(x)− λu(x) = 0 (2.2.6)

Let p(x) =
α− β + (α + β + 2)x

x2 − 1
, q(x) =

−λ
x2 − 1

here we have ±1 are the singular points of (2.2.6).

For the singularity at x = 1 ,

(x− 1)p(x) =
α− β + (α + β + 2)x

x+ 1
, (x− 1)2q(x) =

−λ(x− 1)

x+ 1

both are analytic at x = 1. Hence, 1 is a regular singular point.

For x = −1 ,

(x+ 1)p(x) =
{α− β + (α + β + 2)x}

x− 1
, (x+ 1)2q(x) =

−λ(x+ 1)

x− 1

both are analytic at x = −1. Hence, −1 is a regular singular point.

Now for the indicial equation

r(r − 1) + por + qo = 0

where p0 = lim
x→1

(x− x0)p(x), q0 = lim
x→1

(x− x0)2q(x)

For x = 1 :

p0 = lim
x→1

α− β + (α + β + 2)x

x+ 1
= α + 1

q0 = lim
x→1

−λ(x− 1)

x+ 1
= 0

Hence, the indicial equation is r(r−1)+(α+1)r = 0 which implies that r = 0 or r = −α.

For x = −1 :

p0 = lim
x→−1

{α− β + (α + β + 2)x}
x− 1

= β + 1

q0 = lim
x→−1

−λ(x+ 1)

x− 1
= 0

11



Hence, the indicial equation is r(r−1)+(β+1)r = 0 which implies that r = 0 or r = −β.

Now for x0 = 1, r = 0, let u(x) =
∞∑
k=0

ak(x− 1)k, we substitute u(x) in (2.2.6),

(x2 − 1)
∞∑
k=0

k(k − 1)ak(x− 1)k−2 + (α− β + (α + β + 2)x)
∞∑
k=0

kak(x− 1)k−1 − λ
∞∑
k=0

ak(x− 1)k = 0

∞∑
k=0

[(
k2 + k + (α + β)k − λ

)
ak +

(
2k2 + 2k + (k + 1)(2α + 2)

)
ak+1

]
(x− 1)k = 0.

which yields the recurrence formula

(
k2 + k + (α + β)k − λ

)
ak +

(
2k2 + 2k + (k + 1)(2α + 2)

)
ak+1 = 0, k = 0, 1, · · ·

ak+1

ak
=
λ− k (k + α + β + 1)

2(k + 1) (k + α + 1)
, k = 0, 1, · · · (2.2.7)

Assuming that u is a polynomial, let us suppose that an is the last nonzero coefficient.

Then we see from (2.2.7) that for all k = n the coefficient of an must vanish, that is,

λ = n(n+ α + β + 1)

Hence, we show that

Jα,βn (x) =
n∑
k=0

ak(x− 1)k

ank+1

ank
=
λα,βn − k (k + α + β + 1)

2(k + 1) (k + α + 1)
(2.2.8)

There are many possible way to normalize Jacobi polynomials and each of the natural

ways has advantages and disadvantages. The normalization we have used by using the

Gamma function has advantage being leading coefficient can be expressed as a division

of Gamma function

an0 = Jα,βn (1) =

(
n+ α

n

)
=

Γ(n+ α + 1)

n! Γ(α + 1)
, (2.2.9)

where Γ(·) is the Gamma function. Then the leading coefficient can be obtained from

(2.2.8) easily as

ann = kα,βn =
Γ(2n+ α + β + 1)

2nn! Γ(n+ α + β + 1)
. (2.2.10)

Furthermore, using (2.2.8)in above , we obtain

Jα,βn (x) =
Γ(n+ α + 1)

n! Γ(n+ α + β + 1)

n∑
k=0

(
n

k

)
Γ(n+ k + α + β + 1)

Γ(k + α + 1)

(
x− 1

2

)k
.

Orthogonality of {∂xJα,βn } follow from the direct consequence of this theorem

12



Corollary. ∫ 1

−1

∂xJ
α,β
n ∂xJ

α,β
m ωα+1,β+1dx = λα,βn γα,βn δnm (2.2.11)

Proof. Again, we first use integration by parts and then theorem(2.2.1), finally

orthogonality of {Jα,βn } provide us desired results as follows:∫ 1

−1

∂xJ
α,β
n ∂xJ

α,β
m ωα+1,β+1dx =

(
∂xJ

α,β
n , ∂xJ

α,β
m

)
ωα+1,β+1

=
(
Jα,βn ,Lα,βJ

α,β
m

)
ωα,β

Using integration by parts

= λα,βn

∥∥∥Jα,βn

∥∥∥2

δnm By eq(2.2.3)

= λα,βn γα,βn δnm

since {∂xJα,βn } is orthogonal with respect to the weight ωα+1,β+1, which state that

∂xJ
α,β
n must be proportional to Jα+1,β+1

n−1 , this is

∂xJ
α,β
n (x) = µα,βn Jα+1,β+1

n−1 (x) (2.2.12)

Leading coefficients on both sides leads provide that there should be proportionality

constant between the leading coefficient which is

µα,βn =
nkα,βn

kα+1,β+1
n−1

eq(2.2.10)
=

1

2
(n+ α + β + 1) (2.2.13)

This relation gives the following important derivative relation:

∂xJ
α,β
n (x) =

1

2
(n+ α + β + 1)Jα+1,β+1

n−1 (x) (2.2.14)

Applying this formula recursively, we can obtain the general formula for derivative relation

∂xJ
α,β
n (x) = dα,βn,kJ

α+k,β+k
n−k (x), n ≥ k (2.2.15)

where

dα,βn,k =
Γ(n+ k + α + β + 1

2kΓ(n+ α + β + 1)
(2.2.16)

Recurrence Formulas

The Jacobi polynomials are generated by the three-term recurrence relation:

Jα,βn+1(x) = (aα,βn x− bα,βn )Jα,βn (x)− cα,βn Jα,βn−1(x), n ≥ 1,

Jα,β0 (x) = 1, Jα,β1 (x) =
1

2
(α + β + 2)x+

1

2
(α− β),

(2.2.17)
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where

aα,βn =
(2n+ α + β + 1)(2n+ α + β + 2)

2(n+ 1)(n+ α + β + 1)

bα,βn =
(β2 − α2)(2n+ α + β + 1)

2(n+ 1)(n+ α + β + 1)(2n+ α + β)

cα,βn =
(n+ α)(n+ β)(2n+ α + β + 2)

(n+ 1)(n+ α + β + 1)(2n+ α + β)

when we use the Jacobi differential equation, we can show the above relations which

allows us to evaluate the Jacobi polynomials at any given x ∈ [−1, 1] , and it is the

starting point to derive other properties.

Theorem 2.2.3. Suppose that

Jα,βn (x) =
n∑
k=0

ĉnkJ
a,b
k (x), a, b, α, β > −1 (2.2.18)

Then

ĉnk =
Γ(n+ α + 1)(2k + a+ b+ 1)Γ(k + a+ b+ 1)

Γ(n+ α + β + 1)Γ(k + a+ 1)

×
n−k∑
m=0

(−1)mΓ(n+ k +m+ α + β + 1)Γ(m+ k + a+ 1)

m!(n− k −m)!Γ(k +m+ α + 1)Γ(m+ 2k + a+ b+ 2)

(2.2.19)

2.3 Legendre Polynomials

In mathematics, Legendre polynomials is the solution of Legendre differential equations.

Furhermore, this polynomials are the special case of the Jacobi polynomials (where α =

β = 0 )

Ln(x) = J0,0
n (x), n ≥ 0, x ∈ I = (−1, 1). (2.3.1)

The distinct feature of the Legendre polynomials is that they are mutually orthogonal

with respect to the uniform weight function ω(x) ≡ 1.

Most important properties of Legendre Polynomials are

• Legendre’s differential equation

(1− x2)u”− 2xu′ +mu = [(1− x2)u′]′ +mu = 0,where m = n(n = 1), n = 0, 1.2

(2.3.2)

• Three recurrence relation:

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x), n ≥ 1, (2.3.3)

14



and the first few Legendre polynomials which are the solution of Legendre’s

differential equations

L0(x) = 1, L1(x) = x, L2(x) =
1

2
(3x2 − 1), L3(x) =

1

2
(5x3 − 3x)

• The Legendre polynomial has the expansion

Ln(x) =
1

2n

[n/2]∑
l=0

(−1)l
(2n− 2l)!

2nl!(n− l)!(n− 2l)!
xn−2l, (2.3.4)

and the leading coefficient is

k=
(2n)!

2n(n!)2
(2.3.5)

• Sturm-Liouville problem:

((1− x2)L′n(x))′ + λnLn(x) = 0, λn = n(n+ 1). (2.3.6)

Equivalently,

(1− x2)L′′n(x)− 2xL′n(x) + n(n+ 1)Ln(x) = 0. (2.3.7)

• Rodrigues formula:

Ln(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
, n ≥ 0 (2.3.8)

• Orthogonality: ∫ 1

−1

Ln(x)Lm(x)dx = γnδmn, γn =
2

2n+ 1
, (2.3.9a)

∫ 1

−1

L′n(x)L′m(x)(1− x2)dx = γnλnδmn. (2.3.9b)

• Symmetric property:

Ln(−x) = (−1)nLn(x), Ln(±1) = (±1)n (2.3.10)

Hence, Ln(x) is an odd (resp. even) function, if n is odd (resp. even). Moreover,we

have the uniform bound

∣∣Ln(x)
∣∣ ≤ 1, ∀x ∈ [−1, 1], n ≥ 0. (2.3.11)
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• Derivative recurrence relations:

(2n+ 1)Ln(x) = L′n+1(x)− L′n−1(x), n ≥ 1, (2.3.12a)

L′n(x) =
n−1∑
k=0

k+n odd

(2k + 1)Lk(x), (2.3.12b)

L′′n(x) =
n−2∑
k=0

k+n even

(
k +

1

2

)
(n(n+ 1)− k(k + 1))Lk(x) (2.3.12c)

(1− x2)L′n(x) =
n(n+ 1)

2n+ 1

(
Ln−1(x)− Ln+1(x)

)
(2.3.12d)

• The boundary values of the derivatives:

L′n(±1) =
1

2
(±1)n−1n(n+ 1), (2.3.13a)

L′′n(±1) = (±1)n(n− 1)n(n+ 1)(n+ 2)/8. (2.3.13b)

2.4 Error Estimates for Polynomial Approximation

2.4.1 Inverse Inequalities for Jacobi Polynomials

Since all norms of a function in any finite dimensional space are equivalent, we have

‖∂xφ‖ ≤ CN‖φ‖, ∀φ ∈ PN

which is an example of inverse inequalities. The inverse inequalities are very useful for

analyzing spectral approximations of nonlinear problems.

The first inverse inequality relates two norms weighted with different Jacobi weight

functions. We give the following theorem which are the bases for error analysis without

proof, interested reader can find the proof of theorems in the book of Shen [1]

Theorem 2.4.1. For α, β > −1 and any φ ∈ PN , we have

‖∂xφ‖ωα+1,β+1 ≤
√
λα,βN ‖φ‖ωα,β , (2.4.1)

where λα,βN = N(N + α + β + 1)

Theorem 2.4.2. For α, β > −1 and any φ ∈ P 0
N ,

‖∂xφ‖ωα,β . N‖φ‖ωα−1,β−1 , (2.4.2)

where λα,βN = N(N + α + β + 1)
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Theorem 2.4.3. For any φ ∈ PN ,

‖∂xφ‖ ≤
1

2
(N + 1)(N + 2)‖φ‖. (2.4.3)

where λα,βN = N(N + α + β + 1)
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Chapter 3

Spectral Methods and its

Application

3.1 Spectral Methods for Second-Order Two-Point

Boundary Value Problems

In the following we take the famous example of Prof. Shen [1]. Consider the two-point

boundary value problem :

−εU ′′ + p(x)U ′ + q(x)U = F , x ∈ (−1, 1) (3.1.1)

where ε > 0 and (3.1.1) with the general Robin boundary conditions

a−U(−1) + b−U
′(−1) = c− , a+U(1) + b+U

′(1) = c+ (3.1.2)

without loss of generality , we assume that :

(i) a∓ ≥ 0.

(ii) a2
− + b2

− 6= 0. (3.1.3)

(iii) q(x)− p′(x)

2
≥ 0 , ∀x ∈ (−1, 1).

(iv) p(1) > 0 if b+ 6= 0, p(−1) < 0 if b− 6= 0.

The above conditions are necessary for well-posedness of (3.1.1) − (3.1.2). The proof of

well posedness can be found for example Atkinson [4]. In order to apply any spectral

method we need to do boundary conditions homogeneous, in the following this is done
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for both two cases:

Case I :

a∓ = 0 and b∓ 6= 0 , ũ = βx2 + γx and β , γ are uniquely determined by asking ũ to

satisfy (3.1.2)  −2b−β + b−γ = c−

2b+β + b+γ = c+

∆ =

∣∣∣∣∣∣∣
−2b− b−

2b+ b+

∣∣∣∣∣∣∣ = −4b−b+ 6= 0

Case II :

a2
− + a2

+ 6= 0 , ũ = βx+ γ and again we have : (−a− + b−)β + a−γ = c−

(a+ + b+)β + a+γ = c+

∆ =

∣∣∣∣∣∣∣
−a− + b− a−

a+ + b+ a+

∣∣∣∣∣∣∣ = −2a−a+ + a+b− − a−b+ 6= 0 where b− ≤ 0 and b+ ≥ 0

Now set u = U − ũ , f = F − (−εũ′′ + p(x)ũ′ + q(x)ũ)

substitute this into (3.1.1) we obtain

−εu′′ + p(x)u′ + q(x)u = f x ∈ (−1, 1) = Ω (3.1.4)

with the homogeneous boundary condition

a−u(−1) + b′u(−1) = 0 a+u(1) + b+u
′(1) = 0 (3.1.5)

Let us denote

H1
0 (Ω) = {u ∈ H1(Ω) : u(±1) = 0 if b± = 0}

Then, a standard weak formulation of (3.1.4) with (3.1.5) is : Find u ∈ H1
0 (Ω) such that

B(u, v) = (f, v) ,∀v ∈ H1
0 (Ω)
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B(u, v) = ε(u′, v′) + (p(x)u′, v) + (q(x)u, v)

= ε

∫
u′v′ dx+ p(x)

∫
u′v dx+ q(x)

∫
uv dx

≤ ε‖u‖H1‖v‖H1 + |p(x)|‖u‖H1‖v‖L2 + |q(x)| ‖u‖L2‖v‖L2

where above, we used integration by parts for second order derivatives and homogenous

boundary condition. Then using the Poincare inequality , we obtain :

≤‖u‖H1‖v‖H1 + C|p(x)| ‖u‖H1‖v‖H1 + C1|q(x)| ‖u‖H1‖v‖H1

Since p(x) and q(x) are continuous on Ω , we have : |p(x)| ≤‖p‖∞ , |q(x)| ≤‖q‖∞
So, B(u, v) ≤ C‖u‖H1

0
‖v‖H1

0
. Therefore B(u, v) bounded.

On the other hand ,

B(u, u) = ε

∫
u′

2
+ |p(x)|

∫
Ω

u′u dx+ |q(x)|
∫
u2 dx

= ε

∫
u′

2
+ |p(x)|

∫
Ω

1

2

d

dx
(u2) + |q(x)|

∫
u2 dx

= ε

∫
u′

2
+ |p(x)|

(
1

2
u2

∣∣∣∣1
−1

)
+ |q(x)|

∫
u2 dx

= ε‖u‖2
H1

0
+ |q(x)| ‖u‖2

L2 Since

(
1

2
u2

∣∣∣∣1
−1

)
= 0

≥ ε‖u‖2
H1

0
Since |q(x)| ‖u‖2

L2 alaways positive

B(u, u) is coercive. Hence, by Lax-Milgram lemma solution exist and unique.

3.2 Galerkin Method

3.2.1 Legendre-Galerkin Method

We set fN = INf , the Legendre interpolation polynomial of f . Then Galerkin method

becomes

−
∫

Ω

u′′NvN dx+ α

∫
Ω

INfvN dx, ∀vN ∈ XN (3.2.1)

This method is called Legendre-Galerkin method.

This system depends on the choice of basis functions of XN . Namely we look for basis

function as a compact combination of Legendre polynomials, basically,

φk(x) = Lk(x) + akLk+1(x) + bkLk+2(x) (3.2.2)
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for example, for the the boundary conditions:

a−u(−1) + b−u
′(−1) = 0 , a+u(1) + b+u

′(1) = 0

Using the properties of Legendre polynomial and their derivatives, we have Lk(±1) =

(±1)k and L′k(±) = 1
2
(±1)k−1k(k + 1) and application for above boundary conditions we

obtain following system of equations for {ak, bk} :

(
a+ +

b+

2
(k + 1)(k + 2)

)
ak +

(
a+ +

b+

2
(k + 2)(k + 3)

)
bk = −a+ −

b+

2
k(k + 1)

−
(
a− −

b−
2

(k + 1)(k + 2)

)
ak +

(
a− −

b−
2

(k + 2)(k + 3)

)
bk = −a− +

b−
2
k(k + 1)

(3.2.3)

This system of equations can be solved easily.

First determinant of the coefficient matrix is

detk = 2a+a− + a−b+(k + 2)2 − a+b−(k + 2)2 − b−b+(k + 1)(k + 2)2(k + 3)/2

ak =
(2k + 3)(a+b− + a−b+)

detk

bk =
−2a−a+ + (k + 1)2(a+b− − a−b+) + b−b+

2
k(k + 1)2(k + 2)

detk

if a± = 1 and b± = 0 (Dirichlet boundary conditions), we have ak = 0 and bk = −1

if a± = 0 and b± = ±1 (Neumann boundary conditions), we have ak = 0 and bk =

−k(k+1)
(k+2)(k+3)

It can be seen that {φk} are linearly independent. So,

XN = span{φk : k = 0, 1, ..., N − 2}

Remark. In the very special case for example

−uxx = f, x ∈ (−1, 1); ux(±1) = 0

with the condition
∫ 1

−1
fdx = 0 (this is known as Hadamard stability condition). Since

the solution is only determined up to a constant,

we should use

XN = span{φk : k = 0, 1, ..., N − 2}
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Lemma 3.2.1. The stiffness matrix S is diagonal matrix with

skk = −(4k + 6)bk, k = 0, 1, ...

The mass matrix M is symmetric penta-diagonal whose nonzero elements are

mjk = mkj =



2

2k + 1
+ a2

k

2

2k + 3
+ b2

k

2

2k + 5
, j = k,

ak
2

2k + 3
+ ak+1bk

2

2k + 5
, j = k + 1,

bk
2

2k + 5
, j = k + 2.

Proof. Integrate by parts and using the fact that φk satisfy boundary conditions , we

have

sjk = −
∫ 1

−1

φ′′k(x)φj(x)dx

= −φ′k(x)φ′j(x)
∣∣∣1
−1

+

∫ 1

−1

φ′k(x)φ′j(x)dx

= −
∫ 1

−1

φk(x)φ′′j (x)dx = skj

For Noumman boundary condition , we have ak = 0 , bk =
−k(k + 1)

(k + 2)(k + 3)

φk(x) = Lk(x)− k(k + 1)

(k + 2)(k + 3)
Lk+2(x)

from above and the definition of {φk} that S is a diagonal matrix.

L′′k+2(x) = (k +
1

2
)
(
(k + 2)(k + 3)− k(k + 1)

)
Lk(x)

= (k +
1

2
)(4k + 6)Lk(x)

skk =

∫ 1

−1

(
Lk(x)− bkLk+2(x)

) (
L′′k(x)− bkL′′k+2(x)

)
dx

=

∫ 1

−1

(
L′′k(x)Lk(x)− bkL′′k+2(x)Lk(x)− bkL′′k(x)Lk+2(x) + b2

kL
′′
k+2(x)Lk(x)

)
dx

= −bk
∫ 1

−1

L′′k+2(x)Lk(x) dx

= −bk
∫ 1

−1

(k +
1

2
)(4k + 6)Lk(x)Lk(x) dx

= −bk(k +
1

2
)(4k + 6)

∫ 1

−1

L2
k(x) dx

= −bk(4k + 6) where

∫ 1

−1

L2
k(x) =

1

k + 1
2

dx
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3.3 Example in 1-D BVP

Consider the following BVP:

d2y(x)

dx2
− y(x) = x, (3.3.1)

y(−1) = 0, y(1) = 0 (3.3.2)

We use Galerkin method to approximate the solution.

Now assume that the solution is in the form

yN(x) =
n∑
i=0

akφk(x) (3.3.3)

where φk(x) = Lk+2(x)− Lk(x).

for n=4 we have

yN(x) =
4∑
i=0

akφk(x) (3.3.4)

now we substitute (3.3.4) in (3.3.1)

eqi :=

1∫
−1

(
d2yN(x)

dx2
− yN(x)− x

)
φi(x) dx, i = 0, · · · , 4. (3.3.5)

Using matlab we get

eq0 :=
2

5
a3 −

42

5
a1

eq1 :=
2

7
a4 −

230

21
a2 +

2

3

eq2 :=
2

5
a1 −

658

45
a3 +

2

9
a5

eq3 :=
2

7
a2 −

1422

77
a4

eq4 :=
2

9
a3 −

2618

117
a5

Solving the linear system for ai, i = 0, · · · 4 , we have

a1 = 0, a2 = 0.06089414, a3 = 0, a4 = 9.42103× 10−4

Therefore

yN(x) = 0.00741906 x5 + 0.14163669 x3 − 0.14905576 x
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Figure 3.1: Approximated and exact solution

3.4 Electroosmotic and Pressure Driven Flow In An

Eccentric Micro-Annulus

3.4.1 Introduction

Due to many applications of microfluidic devices applications in microelectromechanical

systems and microbiological sensors such as laboratory on a chip.Microfluidic device

have become important.One of the method to transport the fluid through microtubes

or any other fluid conduit without mechanical moving part is to operate electro-osmosis

(EO).The principle for electro-osmosis is as follows.Generally solid surfaces carry a

negative electrostatic charge when in contact with a fluid containing dissociated salts.At

the same time, the fluid acquires a positive charge near the boundary.The charged fluid

can then be moved by an applied axial electric field. This has been discovered more than

two century ago [5].

Because of the difficulty associated with the commercialization of electroosmosis

was that it requires small length scales to take effect, it took long time to use
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the for electroosmosis to be used widely in practice. But after the development in

microfabrication technology which lead to the invention of many different microfluidic

device, considerable progresses achieved in this subject.

The concept of Electric Double Layer (EDL) was introduced by Helmholtz [6], who

realized that, if a charged metal surface is immersed into an electrolyte can attract

counter-ions towards the surface and repel co-ions away.Smoluchowski [7] to describe

EO velocity, this is known as Helmholz- Smoluchowski velocity. Later, Debye and Hückel

[8] studied on the ionic distribution in solutions of low ionic energy, where they used

linearization for the Boltzmann distribution. This simplification lead the way for the

development of analytical solutions for electroosmotic flow in slits and capillary tubes

by Burgreen and Nakache [9]. They afterward extended their solutions to account for

high surface potentials as well in [10]. Rice and Whitehead [11] investigated the fully

developed electroosmotic flow in a narrow cylindrical capillary for low zeta potentials,

using the Debye-Hückel linearization. Levine et al. [12] extended Rice and Whitehead’s

work to high zeta potentials in terms of a numerical approximation.

Recently, electroosmotic flow through an annular, Tsao [13] used DebyeHückel

linearization and obtained the analytical solution. Later Huang et al [14] extended Tsao

solution for high-zeta potential where he used Green function method. More recently,

Sadeghi et al [15] consider the Electroosmotic Flow in Hydrophobic Microchannels of

General Cross Section and they find that the flow rate is a linear increasing function of the

slip length with thinner electric double layers (EDLs) providing higher slip effects. They

also explored that, unlike the no-slip conditions, there is not a limit for the electroosmotic

velocity when EDL extent is reduced. But There are also many work on this subject with

different geometry which can be found [15][16]. We will show that this method is not

suitable for our geometry.

Regarding to eccentric flow geometry, there are many studies, in this geometry, first

analytical study belongs to Synder and Goldstain [17], they consider fully developed flow

of Newtonian fluid in a an eccentric annulus and derive the analytical solution, later

Debnath et al [18] consider the Hydromagnetic Flow between Two Rotating Eccentric

Cylinders and obtain approximate solution by using the perturbation parameter. More

recently , Alassar [19] investigate the slip flow case for above geometry, he obtained that

for a fixed aspect ratio, fully eccentric channels sustain the maximum average velocity
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(flow rate) under the same pressure gradient and slip conditions.

In this work, we consider the electroosmatic and pressure driven flow of Newtonian

fluid in an eccentric microannulus with DebyeHückel approximation which has not been

considered before that gives us enough motivation for the work under consideration,

where we first discuss the analytical solution linearized Poisson-Boltzmann equation and

show that this is not possible for our boundary condition .We then use Fourier Legendre

pseudo spectral method for above differential equation which is higher accurate, stable

and obtain approximate analytical solution . Finally analytical solution derived for our

flow problem. In section 2, we formulate the flow problem. Then we show that analytical

solution is not possible of linearized Poisson-Boltzmann equation because of our boundary

conditions, in section 3 and 4 Section devoted to the Fourier Legendre pseudo spectral

method and analytical solution of flow problem. Results and discussions are given in the

final section.

We mention that since analytical or approximate analytic solutions for EO flows

are rare and useful because they not only provide structured solutions to the problem

under investigation but also serve as an accuracy standard for approximate (numerical)

methods, therefore our exact solution can be used as benchmark case for further studies

in this subject.

3.4.2 Problem Formulation

Assuming that the electrolyte is a Newtonian fluid, and the flow is driven by both

electroosmosis and pressure forces or one of them which fluid motion is governed by

the Navier-Stokes (N-S) equation

ρ

(
∂u∗

∂t∗
+ u∗.∇∗u∗

)
= −∇p∗ + µ∇∗2u∗ + ρeE

∗ (t) , (3.4.1)

where ρ is the density, u∗ is the fluid velocity, p is the pressure, t∗ is the time, ρe is

the charge of electrolyte, and E∗(t) = (0, 0, E∗0(t∗)) is the externally applied longitudinal

electric field. Note that “*” indicates that parameters are in a dimensional form. Hence,

without star notation parameters and variables is in non dimensionless form. The flow

in this study is steady and parallel to the longitudinal direction (z-axis),hence Eq.(3.4.1)

with u∗ = (0, 0, w∗) is reduced to

µ∇∗2w∗ − dp∗

dz∗
+ ρeE

∗
0 = 0. (3.4.2)
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As shown in Fig.3.2 , annular microchannel between two eccentric circular cylinders of

radii δR̄ and R̄ is considered in which an electric field is applied along the length of

channel. We assume that inner and outer walls uniformly charged with zeta potential ζ1

and ζ0 respectively. The relation of EDL potential ψ∗ and electric charge density in a

symmetric electrolyte is expressed with the Poisson-Boltzmann equation,

ρe = −ε∇∗2ψ∗ = −2zen0 sinh

(
zeψ∗

kBT

)
, (3.4.3)

where ψ∗, z, e, n0, ε, kB and T are the electric potential, the valence, the electron charge,

the bulk ion concentration, the electric permittivity of the electrolyte, the Boltzmann

constant and the reference absolute temperature respectively. The above equation in

two-dimensional cylindrical co-ordinates can be written as

1

r

∂

∂r

(
r
∂ψ∗

∂r

)
+

1

r2

∂2ψ∗

∂θ2
=

2zen0

ε
sinh

(
zeψ∗

kBT

)
, (3.4.4)

the boundary conditions are

ψ∗
(
δR̄, θ

)
= ζ1, ψ∗

(
R̄, θ

)
= ζ0 and

∂ψ∗

∂θ
= 0, at θ = 0, π, (3.4.5)

using the following dimensionless form as

R =
r

R̄
and ψ =

ze

kBT
ψ∗ (3.4.6)

then we can rewrite (3.4.4) and (3.4.5) in dimensionless form as

1

R

∂

∂R

(
R
∂ψ

∂R

)
+

1

R2

∂2ψ

∂θ2
= K2 sinh(ψ) (3.4.7)

where K = κR is the length scale ratio (electrokinetic radius) and κ is the Debye-Hückel

parameter which is defined as

κ =

(
2z2e2n0

εkBT

)1/2

, (3.4.8)

where κ = 1/λD and λD is called as Debye length.Under Debye- Hückel approximation

the Eq.(3.4.7) is reduce to more simpler form

1

R

∂

∂R

(
R
∂ψ

∂R

)
+

1

R2

∂2ψ

∂θ2
= K2ψ (3.4.9)

and dimensionless boundary conditions

ψ(δ, θ) = Z1, ψ(1, θ) = Z0, and
∂ψ

∂θ
= 0, at θ = 0, π (3.4.10)
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We can use the method eigen function expansion like in [20] and [21], however end

up with system of equation which is singular, Also, the method used in [22] cannot be

used for our geometry, because, radius are fixed (constants) which give us singular system.

Because of this problems, many numerical method derive the solve Helmholtz equation in

irregular region, for example in [23], Gass used finite element method and more recently,

Green function method is used in [24]

3.4.3 Fourier Legendre pseudo spectral method for

Debye-Hückel approximation

The geometry of our flow problem shown in Fig.3.2 which is not suitable to use of Spectral

method, in order to use the spectral method, in order to use the spectral method, we use

bipolar coordinates system (η, ϕ, z) in Fig.3.2, the relation between the rectangular and

bipolar coordinates is shown to be

x =
C sinh(η)

cosh(η)− cos(ϕ)
, y =

C sin(ϕ)

cosh(η)− cos(ϕ)
and z = z, (3.4.11)

Where, if we specified the inner and outer radii of eccentric cylinders by δR̄, R̄ and the

eccentricity e, then the C is focal distance is given by

C =

√
(e− δR̄− R̄)(e− δR̄ + R̄)(e+ δR̄− R̄)(e+ δR̄ + R̄)

2e
. (3.4.12)

The surfaces of the inner and the outer cylinders are identified by η = η0 and η = η1 ,

where η0 = sinh−1 (C/r0) and η1 = sinh−1 (C/r1) respectively. Hence, given the radius of

each of the two cylinders (δR̄ and R̄) and the center-to-center distance (e), one can fix a

particular bipolar coordinates system (i.e.η0, η1 and C are obtained uniquely). Equation

(3.4.4) can be written in bipolar coordinates as

∂2ψ∗

∂η2
+
∂2ψ∗

∂ϕ2
= g∗K2ψ∗, g∗ =

C2

(cosh(η)− cos(ϕ))2
, (3.4.13)

and boundary conditions

ψ∗(η1, ϕ) = ζ1, ψ
∗(η2, ϕ) = ζ0 and

∂ψ∗

∂ϕ
= 0, at ϕ = 0, π. (3.4.14)

Let ψ = ψ∗

ψ0
, then equation can put into dimensionless form

∂2ψ

∂η2
+
∂2ψ

∂ϕ2
= gK2ψ, g =

1

(cosh(η)− cos(ϕ))2
, (3.4.15)
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and boundary condition becomes

ψ(η1, ϕ) = ζ1, ψ(η2, ϕ) = ζ0 and
∂ψ

∂ϕ
= 0, at ϕ = 0, π (3.4.16)

In order to make boundary conditions homogeneous, we change variable as ψ(η, ϕ) =

−η1Z0+Z1η2
η1−η2 + Z1−Z0

η1−η2 η + ψ1(η, ϕ), and we transform the region by x = 2η−(η2+η1)
η1−η2 from

[η1, η2] to [−1, 1] and substituting this into Eq.(3.4.15), we have

4

(η1 − η2)2

∂2ψ1

∂x2
+
∂2ψ1

∂ϕ2
=

gκ2

[
−η1Z0 + Z1η2

η1 − η2

+
Z1 − Z0

η1 − η2

[
(η1 − η2)x+ (η1 + η2)

2

]
+ ψ1(x, ϕ)

]
,

(3.4.17)

and boundary conditions became

ψ1(−1, ϕ) = 0, ψ1(1, ϕ) = 0 and
∂ψ1

∂ϕ
= 0, at ϕ = 0, π. (3.4.18)

For the Galerkin spectral method, we define set

SnM = span{ϕi(ρ)ωj(θ) : i, j = 0, 1, · · ·M} and V 2
M = {v ∈ S2

M} (3.4.19)

where ϕi(ρ) = Li+2(ρ)−Li(ρ), is the difference of two Lagendre polynomial) and ωj(θ) =

cos(jnθ), j = 0..M , then classical Fourier-Legendre Galerkin method is: Find ψ̂M ∈ V 2
M

such that ∀v ∈ V 2
M∫

Ω

ψ̂x
M
vx

4

(η1 − η2)2
dxdϕ

+

∫
Ω

ψ̂ϕ
M
vϕ dxdϕ

+

∫
Ω

ψ̂MK2

[
−η1Z0 + Z1η2

η1 − η2

+
Z1 − Z0

η1 − η2

[
(η1 − η2)x+ (η1 + η2)

2

]
+ v

]
1

(cosh(η)− cos(ϕ))2
dxdϕ = 0

(3.4.20)

Let us denote

ψ̂M =

M−2,M∑
i,j=0

ai,jϕ(ρ)ωj(θ) (3.4.21)

Taking v = ϕi(ρ)ωj(θ) in (3.4.20) for i, j = 0, 1, 2 · · · ,M − 2,M , since the integrand in

(3.4.20) cannot be integrated analytically, hence, we used in the last integration Gauss

quadrature method obtain the integration numerically (the results analysed carefully until
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we get the difference two consecutive numerical integration less than 10−10 and we stop)

and the integrals evaluated exactly, in this manner, we obtain system of equations which

we solved numerically. Note that we increase the number of the base elements until we

get the difference two consecutive approximation for Eq.(3.4.21) less than 10−7. In figure

(2) and (3), we show the effect of Debye length on the electric potential, we note here

that this has not been before.

3.4.4 Velocity Field

The momentum conservation equation in bipolar cylindrical coordinates reads

µ

(
∂2w∗

∂η2
+
∂2w∗

∂ϕ2

)
=

C2

(cosh(η)− cos(ϕ))2

dp∗

dz∗
+ εE∗0

(
∂2ψ∗

∂η2
+
∂2ψ∗

∂ϕ2

)
, (3.4.22)

introducing the following dimensionless parameters

w = − w∗µ

E∗0εψ0

, P =
Cp∗

E∗0εψ0

, Z =
z

C
and < = w + ψ (3.4.23)

then (3.4.22) can be written as a new operator

∂2<
∂η2

+
∂2<
∂ϕ2

= − 1

(cosh(η)− cos(ϕ))2

dP

dZ
(3.4.24)

∂<
∂ϕ

= 0 at ϕ = 0 and π (3.4.25)

< = Z1 at η = η1 and < = Z0 at η = η2. (3.4.26)

A particular solution of Eq.(3.4.24) is the
− cosh(η)dP

dZ

2(cosh(η)− cos(ϕ))
.Then the general solution

of equation (3.4.24) given by

<(η, ϕ) = −
cosh(η)

dP

dZ
2(cosh(η)− cos(ϕ))

+ a+ bη

+
∞∑
n=1

[
An sinh(n(η − η1)) +Bn sinh(n(η − η1))

]
cos(nϕ),

(3.4.27)

where a = η1Z0−η2Z1

η1−η2 , b = Z0−Z1

η1−η2 which make boundary conditions to be homogeneous. The

other coefficient easily obtained if someone use the orthogonality of cos(nϕ). Therefore

solution of momentum equation is given by

w(η, ϕ) = −
cosh(η)

dP

dZ
2(cosh(η)− cos(ϕ))

− ψ + a+ bη

+
∞∑
n=1

[
An sinh(n(η − η1)) +Bn sinh(n(η − η1))

]
cos(nϕ).

(3.4.28)
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3.4.5 Results and Discussion

In the limiting case, if dP
dZ

= 0 ,we note that our solution reduce to the electroosmatic

flow and if ψ = 0 our solution reduce flow generated by constant pressure gradient case.

However, In the case of high zeta function Debye-Hückel approximation is not valid and

we need to solve the semi-linear Poisson-Boltzmann equation, in this case we cannot use

the Galerkin spectral method, we mean approximate analytical solution may not possible,

but, we can use the finite difference method as follows: First, due to strong gradients

of the electrical potential near the wall, it is necessary to have smaller grid sizes in this

region. Therefore, a transformation is used to cluster the grid points near the wall where

more information about EDL and velocity field is required [25]. The η and ϕ coordinates

are transformed into η∗ and ϕ∗ in bipolar coordinates:

η∗ =
ln
(
β+η
β−η

)
ln
(
β+1
β−1

) , ϕ∗ =
ln
(
β+ϕ
β−ϕ

)
ln
(
β+1
β−1

) , (3.4.29)

where β is the stretching parameter that controls the degree of clustering. With this

transformation, Eq.(3.4.7) in bipolar coordinates can be rewritten in terms of η∗ and ϕ∗

as

C2(η∗)
∂ψ

∂η∗
+ C2

1(η∗)
∂2ψ

∂η∗2
+ C2(ϕ∗)

∂ψ

∂ϕ∗
+ C2

1(ϕ∗)
∂2ψ

∂ϕ∗2

=
K2

(cosh η∗ − cosϕ∗)2
sinh(ψ),

(3.4.30)

where

C1(η∗) =
eΣη∗ + e−Ση∗ + 2

2βΣ
, C2(η∗) =

e2Ση∗ + 2eΣη∗ − 2e−2Ση∗ − e−2Ση∗

2βΣ

C1(ϕ∗) =
eΣϕ∗ + e−Σϕ∗ + 2

2βΣ
, C2(ϕ∗) =

e2Σϕ∗ + 2eΣϕ∗ − 2e−2Σϕ∗ − e−2Σϕ∗

2βΣ

(3.4.31)

and Σ is defined as Σ = ln ((β + 1)/(β − 1)).Then, Eq.(3.4.30) is numerically solved by

means of implicit finite difference method. Applying the central difference scheme, the

difference equations for the inner points are obtained as

A(ψi,j, η
∗, ϕ∗)ψi,j = A1ψi−1,j + A2ψi+1,j + A3ψi,j−1 + A4ψi,j+1 (3.4.32)
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where

A(ψi,j, η
∗, ϕ∗) = 2C2

1(η∗)
∆ϕ∗

∆η∗
+ 2C2

1(ϕ∗)
∆η∗

∆ϕ∗
+

(
sinh(ψi,j)

ψi,j

)prev

K2

(cosh η∗i − cosϕ∗j)
2
∆η∗∆ϕ∗,

A1 = − 1

2
C2(η∗)∆ϕ∗ + C2

1(η∗)
∆ϕ∗

∆η∗
, A2 =

1

2
C2(η∗)∆ϕ∗ + C2

1(η∗)
∆ϕ∗

∆η∗
,

A3 = − 1

2
C2(ϕ∗)∆η∗ + C2

1(ϕ∗)
∆η∗

∆ϕ∗
, A4 =

1

2
C2(ϕ∗)∆η∗ + C2

1(ϕ∗)
∆η∗

∆ϕ∗
,

(3.4.33)

where superscripts prev refers to previous iteration results, the first iteration guess values

provided. Then, we used SOR method to solve the Eq.(3.4.33), we iterate the solution

until the required overall error. The procedure continues until the required overall relative

error of 10−7 is achieved.

In this report, we first discuss the limitation of Debye-Hückel approximation(DHA),this

is done in Figure 3.3-a-b,3.4-a-b and 3.5a-b where the first figures are represent the

semi analytical solution for Debye-Hückel approximation and second figures represent

the finite difference solution of semi linear poisson-Boltzmann equation , we see

that relatively small for electrokinetic width and small zeta number, we can use the

Debye-Hückel approximation,also, this approximation does not depend on eccentricity,

this is given 3.6-a-b, 3.7-a-b and 3.8-a-b.So we can use Debye-Hückel approximation under

above restriction, then we have approximate analytical solution as shown in Equation

(3.4.21).We also note that higher value of electrokinetic radius for distribution of electric

potential is lower bigger side of eccentric region, the lowest value of electric potential

located in the canter of bigger side of eccentric region (Fig. 3.5 and 3.8). We also

observed distribution of electric potential more uniform for lower value of electrokinetic

radius. We now discuss the properties of the velocity field.Fig. 3.9-3.10-3.11-a-b show the

effect of pressure gradient and electrokinetic radius and eccentricity on the distribution of

velocity field. We first state that the value of velocity profiles in bigger side of eccentric

region always bigger than smaller side of eccentric region. In order to see the effect of

above parameters on the velocity distributions, same value of contour line are chosen. It

is interesting to see that there is like plateau on the graph and the size of plateau depend

on the parameters.
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we also observed that large enough electrokinetic radius or pressure gradient, there

is stagnation region where there is no flow ( See Fig. 3.11-a-b) also size of this region

depend on above parameters. This is also observed for other studies in this field.

The average value of velocity also important which can be calculated by following

formula

Wm =

2π∫
0

η2∫
η1

w(η, ϕ)

(cosh(η)− cos(ϕ))2
dηdϕ

2π∫
0

η2∫
η1

1

(cosh(η)− cos(ϕ))2
dηdϕ

(3.4.34)

The effect of the eccentricity on the average value of distribution is given in Fig.3.12 for

fixed value of pressure gradient and electrokinetic radius, we see

3.4.6 Conclusions

In this study, consideration is given to the electroosmotic and pressure driven flow of

Newtonian fluids in an eccentric microannulus.We used Fourier Legendre pseudo spectral

method to obtain new higher accurate approximate analytical solution of linearized

Poisson-Boltzmann in bipolar coordinates, we also used finite difference method to

solve full semilinear Poisson-Boltzmann numerically and we show that our approximate

analytical solution is valid for small zeta number, then we solved the governing momentum

equation analytically and finally we obtain approximate analytical solution our flow

problem which has not been given before. In a follow up our report, we shall work

on the electroosmotic and pressure driven flow of non-Newtonian fluids in an eccentric

microannulus.
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Figure 3.2: Schematic of the physical problem along with the coordinate system
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(a) For DHA

(b) For FPBE

Figure 3.3: The electric potential distribution λ = 1, e=1/2
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(a) For DHA

(b) For FPBE

Figure 3.4: The electric potential distribution λ =
√

50 ,e=1/2
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(a) For DHA

(b) For FPBE

Figure 3.5: The electric potential distribution λ = 10 ,e=1/2
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(a) For DHA

(b) For FPBE

Figure 3.6: The electric potential distribution λ = 1 ,e=3/4
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(a) For DHA

(b) For FPBE

Figure 3.7: The electric potential distribution λ =
√

50 ,e=3/4
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(a) For DHA

(b) For FPBE

Figure 3.8: The electric potential distribution λ = 10 ,e=3/4
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(a) For
dp

DZ
= 1

(b) For
dp

DZ
= 10

Figure 3.9: Velocity distribution λ = 1, e=1/2
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(a) For
dp

DZ
= 1

(b) For
dp

DZ
= 10

Figure 3.10: Velocity distribution λ = 10, e=1/2
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(a) For
dp

DZ
= 1

(b) For
dp

DZ
= 10

Figure 3.11: Velocity distribution λ = 1, e=3/4
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Figure 3.12: Average dimensionless velocity versus eccentricity (a) dp
DZ

= 1,λ = 1, (b)

dp
DZ

= 1,λ =
√

50
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