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Summary

In this report, consideration is given to the spectral method on elliptic boundary
value problems, in order to develop weak solution of given problem, first some basic
mathematical concepts are given . Then orthogonal polynomials, in particular, Jacobi
and related Chebyshev and Legendre polynomials are defined and related approximation
(error) analyses explored. We first study description of the spectral method on the
two point boundary problems. Several order Legendre orthogonal polynomials used
to show the how approximate solution approach to the exact analytical solution. An
application of spectral method to the real world problem was undertaken in the final
section where the flow in an eccentric microannulus problem considered, which arise from
the micro electromechanical systems and oil industry. It is shown that Debye — Hiickel
approximation can be used for governing semilinear Possion-Boltzmann elliptic partial
differential equation for low zeta function. Finally, Fourier Legendre pseudo spectral
method is used to obtain the approximate analytical solution for Debye — Hiickel
approximation and reduced momentum equation solved analytically. The effects of the

parameters involved in our flow problem are demonstrated graphically.



Introduction

Education in mathematical methods and principles usually begin with introduction
discrete systems and this description develops toward to the continuous systems. For
example at first, numbers that a child counts in a sing-song manner are just a sequence
of words (positive integers). Then all of a sudden the words become useful as the child
learns to match them to an amount by counting fingers. Later child develop skill and
study decimals and finally real numbers which begin understanding of the location of
object in (z,y) space for all points. Students first consider the slope of the curve in
this space, they first try to calculate slope of the curve by using discrete expression A—i
Understanding of the slope completed when they are able to calculate the slope of any
point on arbitrary curve using continuous expression Z—i.Mathematical model in science

and engineering presented by algebraic equation, like F' = ma, but this expression in fact

represent Navier Stokes equation as

8 *
p ( (;tl* + u*.V*u*) = —Vp* + uV*=2u* + p.E* (1),

Since, the fluid flows are of engineering and science significance due to the variety of
applications that depend on understanding its behaviours. Because of this, this subject
has been extensively studied both physically and mathematically. Numerical methods,
namely, replace the differential expression with discrete one and solve this reduced
equation to represent the solution of the differential system. But this approximation
for differential expression should be in a tolerable error bound. A Fundamental idea for
Numerical method is the reduction of differential equation to the approximation algebraic
system. This reduction replace a continuous differential equation, whose solution space
is generally infinite dimensional, with a finite set of algebraic equations whose solution
space is finite dimensional. The most commonly used numerical methods in commercial

available software are the Finite Volume Method (FVM), the Finite Differences Method
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(FDM) and the Finite Element Method (FEM), they uses the same approach but has a
different mathematical foundation. The previous methods can be applicable in a range
of different flow geometries without any difficulty, but require careful consideration when
designing the computational mesh domain in order to obtain results that successfully
model the flow field. In this thesis, we use pseudo spectral method (PSM), which
is characterised by its high accuracy for space variables, indeed this main advantage
to use this approach. Its main disadvantages of PSM are the need of a regularly
distributed mesh, which prevent its use in complicated flow geometries, and, like all
methods previously mentioned, a high physical memory requirement to be capable of
modelling the smaller scales of motion present in any fluid flow. Sometimes this difficulty
can be avoided by using different coordinates system. The organization of the thesis is as
follows: In chapter 1 devoted to the basic mathematical tools which are needed follow up
chapter, we examine the properties of classical orthogonal polynomials. Chapter 2 deals
with the properties of spectral methods. Chapter 3 focuses on the application of Pseudo
Spectral method to flow problems and numerical results and in chapter 4 we discuss
the numerical results of the method and effect of parameters involved in our problems
on electric potential and flow field. Because of regulation in writing the project which
require number of page must be less than 40(forty), many mathematical detail such as
existence of weak solution, uniqueness of the solution and error analysis in chapter 3 were

omitted.
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Chapter 1

Terminologies ans Concepts

A sequence {z,} in a metric space (X d), is called a Cauchy sequence, if for every positive
real number € > 0 there is a positive integer /N such that for all positive m,n > N, the
distance

ATy Tp) = T — 0| <€,

or equivalently

d(Tp, ) =0 as m,n — oo,

If every Cauchy sequence in a metric space X converges to an element in X, then X is

said to be a complete space.

1.1 Banach Spaces

Definition : Let X be a real vector space, a function || - || : X — R defines a norm on

X such that
L fluol <llull +lloll . Yu,v e X;
2. ||| =|all|u]| , Vu € X and Va € R;
3. lull >0, VueX;
4. ||lu|]| = 0 if and only if u = 0.

If the first three conditions holds, then a function | - | : X — R defines a semi-norm on

X.



The space (X, | - ||) is called a normed vector space. A Banach space is a complete

normed vector space with respect to the metric :

d(u,v) =|lu—v||, VYu,veX.

1.2 Hilbert Spaces

Definition 1.2.1. An inner product on a vector space X is a function

(u,v) : X x X — R such that

1. (u,v) = (v,u), Yu,v € X;
2. (au+ fv,w) = a(u,w) + f(v,w), Yu,v,w € X and Vo, 5 € R;

3. (u,u) >0, VueX;

o

(u,u) = 0 if and only if u = 0.

A Banach space with an inner product defined on it, is called Hilbert space.
Definition 1.2.2. In an inner product space X, u,v € X are said to be orthogonal If
(u,v) =0,
The inner product (-, -) induces a norm on X ,defined by
lul = v/(u,u), YueX. (1.2.1)

Or the metric on X can be defined by d(u,v) = ||lu — v||.

A Hilbert space is a complete inner product space.
Lemma 1.2.1. In a Hilbert space, Cauchy-Schwarz inequality holds
(wv)] <Jllllel], Va0 € X. (1.2.2)

Proof : Can be proven easily as in [3]

The standard inner product on R" is given by

(z,y) = Z TiYj
j=1

where z = (l’l,l’g, e 7xn) y Y= <y17y27 e 7yn) with Ti, Y € R.
This space is complete hence it is finite dimensional Hilbert space.

And L?[0,1], L?*[a,b] , and L*(R) are all Hilbert spaces with respect to the inner product.
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1.3 Lax-Milgram Lemma

Definition 1.3.1. Let X be a Hilbert space with norm ||-||. If for any u,v,w € X and

a, € R a functional a(-,-) : X x X — R defines a bilinear form as follow,

alou + puv,w) = aalu,w) + Ba(v,w), (1.3.1)

a(u,av + pw) = aa(u,w)+ Pa(v,w). (1.3.2)

That mean , for any fixed u, both the functionals a(u,-) : X — R and a(-,u) : X - R
are linear.

If a(u,v) = a(v,u) for any u,v € X. the bilinear form is called as symmetric.

Definition 1.3.2. A bilinear form a(-,-) on a Hilbert space X is called continuous, if

there exists a constant C' > 0 such that
‘a(u,v)} < C|vll|lul, Yu,veX (1.3.3)
and coercive on X, if there exists a constant a > 0 such that
a(u,u) > ollul|®, Yue X. (1.3.4)

Theorem 1.3.1. (Lax-Milgram lemma) Let X be a Hilbert space, and a(-,-) : XxX — R
be a continuous and coercive bilinear form, and assume that F' : X — R be a linear

functional in X’. Then the variational problem:

Find v € X such that

(1.3.5)
a(u,v) = F(v), YveJX,
has a unique solution.Furthermore, we have
1
lull < = [1#]x (1.3.6)

1.4 Ly,-Space

Assume  is a Lebesgue-measurable subset of R? (d = 1,2,3) with non-empty interior,
and let u be a Lebesgue measurable function on 2. The following integrations are in

Lebesgue sense.



Definition 1.4.1. For 1 < p < oo, we define the following set

LP(€2) := {u : u is measurble on @ and |[ul| ;g < oo} (1.4.1)

ol = (] !u<x>1pdx)’l’ (14:2)

[wll oo ) = ess Slelg |U(5F)| (1.4.3)

where for 1 < p < oo,
and

The space LP(§2) where LP(€2) endowed with [|-|| ;o) is the Banach space.

In particular, the space L?(§2) endowed with the inner product
(u,v) [2(0) = / u(z) v(z) dx, Vu,v € L*(9). (1.4.4)
Q

is the Hilbert space
Definition 1.4.2. Let p and ¢ are positive real numbers , if

1 1

+
p q

then p and ¢ are called conjugate exponents.l1 and oo are also regarded as conjugate

exponents.

Theorem 1.4.1. Holder’s inequality. Assume that p and ¢ be conjugate exponents

with 1 < p < oco. If u € LP(Q) and v € L4(RQ), then uv € L'(Q2), and

/Q () v(@)| dz < llull ey 0] oo (1.4.5)

For p = 2,Holders inequality reduces to well known Cauchy-Schwarz inequality (1.2.2).

Theorem 1.4.2. Minkowski’s inequality. If u,v € LP(Q2) with 1 < p < oo, then
u+wv € LP(Q) and

Ju+ UHLP(Q) < ||u||LP(Q) +”U||Lp(9) (1.4.6)
Remark. Let us assume that w(z), which is almost everywhere positive and Lebesgue
integrable on €2, w(z) dz also defines a Lebesgue measure on 2. Replacing dz in (1.4.2)
by w(z) dz, we define the norm ||-[|;» o) and the weighted L%, (€2) space with 1 < p < oo,
which is a Banach space. In particular, the weighted space L2 (f2) is a Hilbert space with

the following inner product and norm
(u,v), = / u(z)v(r)w(x)de, lull,, = v/ (u, w)w (1.4.7)
Q
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1.5 Sobolev Spaces

1.5.1 Weak Derivatives

A multi-index a = (v, ..., @) 18 @ m-tuple of non-negative integers {«;}. Denote |a| =
>, aj,and define the partial derivative operator

o lel

peY—__“
a1 m
Ox* - - Ox

Definition 1.5.1. A function f € L%loc)(Q) where 2 in R™, is weakly differentiable with
respect to x;, if there exists a function f € L%loc)(Q) such that
/ foipdx = — / gipdx forallp € C (Q) (1.5.1)
Q Q

Then the function g; is called the weak ith derivative of f, which is shown as 0;f

Therefore, we can state weak derivative as integration by parts formula

| so0is =~ [ ofods (152)

since C2°(Q) is dense in L}, (€2)) this definition hold for all ¢ € C(2); Moreover,
the weak derivative of a continuously differentiable function agrees with the pointwise

derivative. Higher-order derivatives are defined in a smiler manner.

Definition 1.5.2. Suppose o = (aq, -+ ,q,,) is a multi-index, a function f € L}, _(Q)

has weak derivative 9°f € L}, .(Q) if

loc

[1prds=(-0e! [ f@0).ar  voecE@),
Q Q

We restrict our discussions to the Hilbert spaces (i.e., with p = 2),

1.5.2 Sobolev space definition

Sobolev spaces consist of functions whose weak derivative belong to LP [2]. These spaces

one of the most useful settings for the analysis of partial differential equations

Definition 1.5.3. The Sobolev space H*(Q2) with k € N is the space of functions u €
L?(2) such that all the distributional derivatives of order up to m can be represented by

functions in L*(Q). That is,
H*(Q) = {u € L*(Q) : D*u € L*(Q) for 0 <|a| < k} (1.5.3)

bt



equipped with the norm and semi-norm

1/2 1/2

k k
« 2 6% 2
HquQ = ZHD UHL2(Q) Nulke = ZHD UHL?(Q) (1.5.4)

|oe|=0 |or|=0

In particular, the space H*(Q) is a Hilbert space endowed with the inner product

(u, V) = Z /QDO‘u(:c)D%(x)dx.

laf=0



Chapter 2

Orthogonal Polynomials and Related

Approximation Results

2.1 Approximability of Orthogonal Polynomials

Theorem 2.1.1. (Weierstrass Approximation Theorem) Let u(x) € C|a,b] . Then there
exist a sequence of polynomials p,(x) that converge uniformly to u(x) on [a,b] , i.e any

€ > 0, there exist n € N and p,, € P, such that
||U_pn||Lg>ob) <&Vn>N (2.1.1)
Proof: See for example Shen [1]

The best approximation problem facilitate as to construct of p,(Minimax polynomial):

Given a fixed n € N | find p} € P, , such that
(2.1.2)
e = inf [lu— pnll; e
Ju=pill, = it = palle,

For 1 <p<oo, LP(Q) = {u : u is measurable on 2 and [Ju[},q) < oo}

1
p
with fulgoy = ( [ @) de) " gy = es5 supfu(o)|.

Theorem 2.1.2. Let I be any interval finite or an infinite. Then for any given u € L2 (I)

and n € N | there exists a unique ¢ € P, , such that

=g, = inf Jlu— g, (2.13)

dn n

7



where, g’ (z) linear combination of polynomials py(z) as

gr(@) =Y upr(x) with iy = (u’pkz)w (2.1.4)
k=0 (724
and {py}7_, forms an L2-orthogonal basis of P,.
The L?-orthogonal projection is defined by
(u—Tmau, ), =0, Vo € P,. (2.1.5)

It is clear that m,u is the first n + 1-term truncation of the series u = > -, Ugpr(z).

2.2 Jacobi Polynomials

In mathematics, Jacobi polynomials sometimes called called hypergeometric polynomials
is denoted by J# (z), are classical orthogonal polynomials. They are orthogonal with

respect to the weight function w®? (z) : = (1 — 2)*(1 + z)? over I := [—1, 1] basically,

1
/ T8 (2) J%8 (1) w0 (2) do = 426, (22.1)

1

where yF = H JoP Hiaﬁ.The weight function w®? belongs to L'(I) if and only if o, 8 > —1
Furthermore, Gegenbauer, Legendre and Chebyshev polynomials are special case of the
Jacobi polynomials. One of the important basic properties of Jacobi polynomials are the

solution of following linear homogeneous differential equations

2.2.1 Sturm-Liouville Equation

Now, we define singular Sturm-Liouville operator as

Losui=—(1—2)°(1 +2)7%0, ((1 — )1 4 x)ﬁ“axu(x))
(2.2.2)
= (2* = 1)0%u(z) + {a = B+ (a + B + 2)z}dpu(x)

By (2.2.2) and weight function of Jacobi polynomial we can show that
LT3 =~ P, (w1, g0 )

we are now ready to prove following theorem



Theorem 2.2.1. The Jacobi polynomials are the eigen functions of the singular

Sturm-Liouville problem:

LI (2) = NP JoP (). (2.2.3)

and the corresponding eigenvalues are
AP =nn+a+B+1) (2.2.4)

Proof. For any u € P,, we have .Z, su € P,. Performing integration by parts twice, we
get that for any ¢ € P,_1,

1

(zaﬁjgﬁ@)ww = /_1 [—wo"ﬁax (waﬂ’*@“@xt]g’ﬁ(x))} o(z) w*Pdx

_ / " (wa“vﬁﬂamjgﬂ(x)) é(x) do

-1

—w I, T8 () b ()

1 1
+ / WOt TP (2)0,p(2) da
—1 —1

1
= / WOt TP (2)0,p(x) dz since w AT (£1) =0
-1

1

1
= J2 (@) 0, 6(x)|  — / T ()0, (w0 10,0(x)) d
-1

= —/ JoB ()0, ( LY, b (w0 )) since w* AT (£1) = 0

-1

/ JP (x {—wa’ﬁﬁm (wa+1’6+laz¢(x))] w*? dx since w™* P =1

= (27 Za0)

w8

Now since %, 3¢ € P,_1,and J?an orthogonal polynomial we have

(Zusi?0) = (I Zags) =0

wavﬁ

JP(z) orthogonal any polynomial of degree less than n. we have %, 3J%% € P,, and
using the uniqueness of orthogonal polynomials which implies that there exists a constant
%% such that

Lo T3 = N g



To determine A%, comparing the coefficient of the leading term z,, on both sides,

L = (2 = 122" + {a— B+ (a+ B+ 2)x} 02"
=(* = nn—-12" 2 +{a—- B+ (a+ B +2)ztnz"!
=n(n—1)z2" —nn - 12" +n(a - B)z" '+ n(a+ 8 +2)z"
=nn+a+pB+1)z" +nla—B)z" ' —n(n—1)z""2

= \2Pgn

Therefore A% = n(n +a+ B+ 1). O

Remark. It can be shown that Sturm-Liouville operator .Z,, s is self-adjoint with respect

to the inner product (-,) a.s i.€.

("g’payﬁqb’ ¢)wa,ﬁ = (¢a ga,ﬁ¢)wa,ﬁ (225)

for any ¢ ¢ € {u: L, puec L2, ()}

The proof is not difficult in fact , for any ¢ ,¢ € L2, 5(Q)}, if we apply integration
by parts twice, then we obtain that for any ¢ € P, 1,

(Zastnt) s = [ oo, (w97 0000) | ote)
-1

- /_11 —0, (wo‘ﬂ’ﬁﬂamqb(x)) (zx) dx

1

1 1
oY () +/ WA, () D) () d
-1 —

1

1
— / waﬂ’ﬂ*l@zqﬁ(as)@rw(x) dr  since w*™H P (£1) =0
-1
/ ¢ oz+1,,8+1axw($)> dr

1
—/ é(x)0, waﬂ’ﬁﬂdcqﬁ(x)) dr  since w*TH P (£1) =0
-1

— ¢(aj)wo¢+l /3-1-18

1

= / ¢(z) [_W_a’_ﬂax (Waﬂ’ﬂﬂax@/)(x))] w*? dx since w™* P =1
-1

= (¢($)7$a,ﬁ¢($)>wa,ﬁ

Theorem 2.2.2. (Szego 1975) The differential equation

L pu = M

10



has a polynomial solution not identically zero if and only if A has the form n(n+a+5+1).
This solution is J¥(z) (up to a constant), and no solution which is linearly independent

of J%#(z) can be a polynomial.

We prove this by using Frobenous method ,

(2 — D" (z) + o — B+ (a+ B+ 2)zu' (x) — Mu(z) =0 (2.2.6)
Let p(z) = ~— 0 +x(2a_+16 * 2>x, q(z) = :CQ_—_AI

here we have £1 are the singular points of (2.2.6).
For the singularity at x =1 ,

(@~ 1pla) = TITOTIHDT gy = 2D
both are analytic at x = 1. Hence, 1 is a regular singular point.
For z = -1,
(o + 1)p(a) = LZIHOETEIT gy = LD
both are analytic at x = —1. Hence, —1 is a regular singular point.

Now for the indicial equation

r(r—1)4 por+ ¢, =0

where py = lim (2 — z0)p(x), go = lim (x — z0)*q(x)
For z=1:
— 2
pozlima ﬁ+(a+ﬁ—|— )x =a+1
z—1 33—{—1
. —Ax—1)
do xl_fﬁ T+ 1

Hence, the indicial equation is 7(r — 1)+ (a+1)r = 0 which implies that r = 0 or r = —a.
For x = —1:

— lim {a=p+ (a+ B +2)x}
r——1 .CC—l

—A
o = lim —(x +1)
r——1 €r — 1

=B+1

=0

11



Hence, the indicial equation is 7(r — 1)+ (5 +1)r = 0 which implies that r = 0 or r = —f.

Now for zg = 1,7 = 0, let u(z) = > an(z — 1)*, we substitute u(z) in (2.2.6),
k=0

(x2—1)§:k:(k:—1)ak(:c—1)k2 +(a—=pF+(a+[+2)x Zkaka:—l )\i wz—1F=0

i[k)Q—Fk—f— (a+ Bk —A)ar + (2K + 2k + (k + )(2044—2))@;“1} (z=1)"=0.

k=0

which yields the recurrence formula

(B +k+(a+B8)k—Na,+ (2 +2k+ (k+1)20+2)) apy1 =0, k=01,

apr1 _ A—k(k+a+B+1)
ag 2+ 1) (k+a+1)’

=01, (2.2.7)

Assuming that u is a polynomial, let us suppose that a, is the last nonzero coefficient.
Then we see from (2.2.7) that for all k& = n the coefficient of a,, must vanish, that is,
A=nn+a+p+1)
Hence, we show that

n

T2(w) = 3 el — 1)

k=0
apy _ AP —k(k+a+B+1) (2.2.8)
a 2k + 1) (k+a+1)

There are many possible way to normalize Jacobi polynomials and each of the natural
ways has advantages and disadvantages. The normalization we have used by using the
Gamma function has advantage being leading coefficient can be expressed as a division
of Gamma function

:aquz(”Zf»:%%%%g%, (2.2.9)

where I'(+) is the Gamma function. Then the leading coefficient can be obtained from

(2.2.8) easily as
F'2n+a+5+1)

=kt =
2pl T(n4+a+6+1)

(2.2.10)

Furthermore, using (2.2.8)in above , we obtain

o Tn+a+1) ~(n\Tn+k+a+pf+1) (z—1)\"
() = n'F(n+a+5+1)Z<k) P(k+a+1) ( 2 )

Orthogonality of {9,J%?} follow from the direct consequence of this theorem

12



Corollary.
1
/ 0y JOP 0, JOP ot g = NP peBs (2.2.11)
-1

Proof. Again, we first use integration by parts and then theorem(2.2.1), finally

orthogonality of {J%#} provide us desired results as follows:

1
/ 8, JoB, JoB ot Lo+ gy — (awjgﬁ, axjgf)
-1

watl,f+1
= <ij"ﬁ, faﬂJﬁ;’B) s Using integration by parts
- A;‘;ﬂ( Jgﬁ‘r S By eq(2.2.3)
= X0 O

O

since {0,J%"} is orthogonal with respect to the weight w®"1#*1 which state that

9, J%% must be proportional to JO‘H’BJrl this is

0y JOP () = 2P JorbI () (2.2.12)

Leading coefficients on both sides leads provide that there should be proportionality
constant between the leading coefficient which is

af _ nka’ﬁ eq(2.2.10) 1

I ka+1,ﬁ+1 = 5(” +a+p+1) (2.2.13)

This relation gives the following important derivative relation:
1
Ou (1) = S(n + o B+ 1) S (a) (2.2.14)

Applying this formula recursively, we can obtain the general formula for derivative relation

0o I (x) = do TS (@), n>k (2.2.15)
where
'n+k+a+p+1
i 2.2.16
nh k(4 a+ B+ 1) ( )
Recurrence Formulas
The Jacobi polynomials are generated by the three-term recurrence relation:
wh(@) = (apPe — 0 P) I P () — P I (), n> 1,
) ) (2.2.17)
JoP (@) =1, JM(x) = 5(04 + B8+ 2)xr + 5(04 - B),

13



where

wp _ Cnt+a+B+1)(2n+a+ B +2)
"o 2m+1D(n+a+p+1)
(B2—a?)2n+a++1)
2+ )(n+a+B+1)2n+a+ f)
i _ (o)t B)ntatpt2)
" m+(n+a+B+1)2n+a+p)

[0

peP —

when we use the Jacobi differential equation, we can show the above relations which
allows us to evaluate the Jacobi polynomials at any given x € [—1,1] , and it is the

starting point to derive other properties.

Theorem 2.2.3. Suppose that

ToP(x) =it (x), abo, B> -1 (2.2.18)

k=0
Then
w Tm+a+1)2k+a+b+1)I'(k+a+b+1)
ko Pn+a+B+1)I(k+a+1)

X"Zk —)"T(n+k+m+a+B8+DI(m+k+a+1)
—mlin—k—m)T'(k+m+a+DI'(m+2k+a+b+2)

(2.2.19)

2.3 Legendre Polynomials

In mathematics, Legendre polynomials is the solution of Legendre differential equations.

Furhermore, this polynomials are the special case of the Jacobi polynomials (where a =
B=0)
Lo(z) =J"2), n>0,vel=(-1,1). (2.3.1)

The distinct feature of the Legendre polynomials is that they are mutually orthogonal
with respect to the uniform weight function w(z) = 1.

Most important properties of Legendre Polynomials are
e Legendre’s differential equation

(1 —2Hu” — 200 +mu = [(1 — 2°)u] +mu =0,where m =n(n=1),n=0,1.2
(2.3.2)

e Three recurrence relation:
(n+1)Lp(z) = 2n+ 1)aL,(z) —nLl,—1(z), n>1, (2.3.3)
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and the first few Legendre polynomials which are the solution of Legendre’s

differential equations

Lo@) =1, Lix) =z LZ(:I;):%@:K?—D, La(z) =

The Legendre polynomial has the expansion

1 [n/2]

; (2n — 21)! 2
L) = 5 ;(_1) 21 l(n — 1)i(n — 201" ;

and the leading coefficient is

Sturm-Liouville problem:

(1 — 2L (2)) + M\Ln(x) =0, A =n(n+1).

Equivalently,
(1—a2*)L!(x) — 22L,(z) +n(n+1)L,(z) = 0.

Rodrigues formula:

1
—onpl dan

L,(x) [(z* = 1)"], n >0

Orthogonality:

1
2
Ln Lm dx = namny n — 5
[ E@ e = =g

1
| L@ @)1 = 2)ds = .

1

Symmetric property:

Lo(—2) = (=1)"Ly(z),  Ly(£1) = (£1)"

1

—(52® — 37)

2

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9a)

(2.3.9b)

(2.3.10)

Hence, L, (x) is an odd (resp. even) function, if n is odd (resp. even). Moreover,we

have the uniform bound

|Ly(x)| <1,  Vzel-1,1],n>0.

15
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e Derivative recurrence relations:

(2n+1)L,(x) = L), 1 (x) — L;,_(z), n>1, (2.3.12a)
L (z) = 3 (2k + 1)Ly (2), (2.3.12Db)
ke
i S !
L (z) = Z (k + 5) (n(n+1) —k(k+1))Ly(x) (2.3.12¢)
2\ 717 n(n + 1)
(1—2*) L, (z) = 1 (Ln-1(2) = Lyt () (2.3.12d)

e The boundary values of the derivatives:
1
L (£1) = §(i1)n_1n(n +1), (2.3.13a)

L/(£1) = (£1)"(n — Dn(n + 1)(n +2)/8. (2.3.13)

2.4 Error Estimates for Polynomial Approximation

2.4.1 Inverse Inequalities for Jacobi Polynomials
Since all norms of a function in any finite dimensional space are equivalent, we have
10:0] < Cnlloll, V¢ € Py

which is an example of inverse inequalities. The inverse inequalities are very useful for
analyzing spectral approximations of nonlinear problems.

The first inverse inequality relates two norms weighted with different Jacobi weight
functions. We give the following theorem which are the bases for error analysis without

proof, interested reader can find the proof of theorems in the book of Shen [1]
Theorem 2.4.1. For o, 8 > —1 and any ¢ € Py, we have
10clluarrars < AfAR N llues, (2.4.1)
where A%’ = N(N +a+ 5 +1)
Theorem 2.4.2. For o, 3 > —1 and any ¢ € Py,
10:0llues S Nldllusoms, (2.4.2)

where A" = N(N +a+ 3+ 1)
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Theorem 2.4.3. For any ¢ € Py,
1
1001 < (N + DN +2)[|]]. (2.4.3)

where A%’ = N(N +a+ 5 +1)
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Chapter 3

Spectral Methods and its

Application

3.1 Spectral Methods for Second-Order Two-Point
Boundary Value Problems

In the following we take the famous example of Prof. Shen [1]. Consider the two-point

boundary value problem :
—eU" + p(z)U' + q(x)U = F , z € (—1,1) (3.1.1)
where € > 0 and (3.1.1) with the general Robin boundary conditions
a U1 +b U(-1)=c_, a U1)+b.U(1) =cy (3.1.2)
without loss of generality , we assume that :

(i) ax > 0.
(ii) a®> +b* # 0. (3.1.3)
/
(i41) q(z) — @ >0, Vz e (—1,1).
(iv) p(1) > 0 if by #0,p(—1) < 0 if b_ # 0.
The above conditions are necessary for well-posedness of (3.1.1) — (3.1.2). The proof of

well posedness can be found for example Atkinson [4]. In order to apply any spectral

method we need to do boundary conditions homogeneous, in the following this is done

18



for both two cases:
Case [ :
ax =0 and b+ # 0, @ = f2? + yo and B, 7 are uniquely determined by asking @ to
satisfy (3.1.2)
—2b_B+b_y=c_
2by B+ by =cy

—2b_ b_
A - - —4b7b+ # 0
2, b

Case II :

a? +a% #0, 4= fz+ v and again we have :

(—a—+b_)B+a_y=c_
(ay +04)B+ary =cy

—a_+b_ a_
A= =—2a_ay+ab_—a_by #0 whereb_ <0and by >0

ay + b+ ay

Nowset u=U—a, f=F — (—et” + p(x)@’ + q(z)a)
substitute this into (3.1.1) we obtain

—eu" +p(2)u +q(x)u=f xe(-1,1)=Q (3.1.4)
with the homogeneous boundary condition
a_u(=1)+0,(-1)=0  ayu(l)+bu(1)=0 (3.1.5)

Let us denote

HY(Q) ={uec H(Q):u(£l) =0 if by =0}

Then, a standard weak formulation of (3.1.4) with (3.1.5) is :

Find u € H}(Q) such that
B(u,v) = (f,v) ,Yv € Hj(Q)

19



B(u,v) = e(u',v") + (p(x)u',v) + (g(x)u,v)

= 6/1/1/ dx + p(z) /u'v dr + q(x) /uv dx

< ellull galloll g + Ip@)ull o 0]l 2 + la(@)] {lull g2 llvl] 22

where above, we used integration by parts for second order derivatives and homogenous

boundary condition. Then using the Poincare inequality , we obtain :

<l llvll g + Clo@)] fullgallvll g+ Cila(@)] lull galloll g

Since p(x) and ¢(z) are continuous on Q , we have : |[p(z)| <|lp|l  le(x)] <llgll
So, B(u,v) < C||u||Hé||v||Hé . Therefore B(u,v) bounded.
On the other hand ,

B(u,u):6/U'2+|p(m)|/u’udx+|q(x)|/u2dx
z/u + |p(x I/ME )+ la(z |/ud:€

_ 5/1/2 + Ip(@)| (%uz 1_1> + |q(a;)\/u2 da

1
2 2 .
— el + gl el Since (§u2

1
=0
~1

> EHUH?{& Since |q(x)] |Jull3> alaways positive

B(u,u) is coercive. Hence, by Lax-Milgram lemma solution exist and unique.

3.2 Galerkin Method

3.2.1 Legendre-Galerkin Method

We set fy = Inf , the Legendre interpolation polynomial of f. Then Galerkin method

becomes

—/u’](,vN dx + a/ Infoy dz, Yoy € Xy (3.2.1)
Q Q
This method is called Legendre-Galerkin method.

This system depends on the choice of basis functions of X. Namely we look for basis

function as a compact combination of Legendre polynomials, basically,
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for example, for the the boundary conditions:
a_u(=1)+b_u'(-1)=0, aru(l)+bu'(1)=0

Using the properties of Legendre polynomial and their derivatives, we have Li(£1) =
(£1)* and Lj () = 3(£1)*'k(k + 1) and application for above boundary conditions we

obtain following system of equations for {ag, by} :

<a+ + %(k F1)(k+ 2)) a + (a+ + %(k +2)(k+3) ) by = —ay — %k(kz +1)

)
— (a — %‘(k +1)(k + 2)) a, + <a — %‘(k +2)(k + 3)) by = —a_ + %‘k(k +1)
(3.2.3)

This system of equations can be solved easily.

First determinant of the coefficient matrix is

dety = 2a,a_ +a_by(k+2)*> —ayb_(k+2)* —b_by(k+1)(k+2)*(k+3)/2

(2k + 3)(ash_ + a_b,)

ap =

d@tk
b —2a_ay + (k+1)%(ayb_ —a_by) + b’;* k(k+1)2(k + 2)
b detk
if ax = 1 and by = 0 (Dirichlet boundary conditions), we have ay = 0 and by = —1

if ax = 0 and by = £1 (Neumann boundary conditions), we have ay = 0 and b, =

—k(k+1)
(k+2)(k+3)

It can be seen that {¢x} are linearly independent. So,
Xy =span{¢y : k=0,1,.... N — 2}
Remark. In the very special case for example
—Upe = f, w€(—1,1); u(£l)=0

with the condition f_ll fdx = 0 (this is known as Hadamard stability condition). Since
the solution is only determined up to a constant,

we should use

Xy =span{¢p : k=0,1,.... N — 2}

21



Lemma 3.2.1. The stiffness matrix S is diagonal matrix with
Skk: —(4k’+6)bk7 ]C:O,l,

The mass matrix M is symmetric penta-diagonal whose nonzero elements are

/

9 , 2
b2 =k
k1 %opy3 g TN
- 2 2 ,
Mk = Myj = ak2k+3+ak+1bkm7 J=k+1,
2
b . P — k2.
"2k +5 J

Proof. Integrate by parts and using the fact that ¢, satisfy boundary conditions , we

have
= [ ()6, (x)de
= —4@ew)|, + [ s

1
=~ | o)) = s

— 1
For Noumman boundary condition , we have ap =0 , by = G +ké]; (Z +>3)
k(k+1)
=1L — L

from above and the definition of {¢;} that S is a diagonal matrix.
1
Lisa(@) = (k+ 5) (k+2)(k +3) = k(k + 1)) Li(2)

= (k+ 5)(4k + 6)Li(x)

1

— [ (@) Lele) = Wi (o) Lala) =~ L) Lsali) + BLL () Lale)) o

1

1
= —bk/ L o(x)Li(x) dx

1

_ /1(k; + %)(zug +6)Li(2) Li(x) da
— ek + %)(41{ 4 6)/ () du

-1

1
1
= —by(4k + 6) where /1 Li(z) = " Tdz
- 2
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3.3 Example in 1-D BVP

Consider the following BVP:

dx?

y(=1) =0, y(1) =0

We use Galerkin method to approximate the solution.

Now assume that the solution is in the form

n

yn(z) =) arp(z)

=0

where ¢p(x) = Liio(x) — Li(x).

for n=4 we have

now we substitute (3.3.4) in (3.3.1)

1 d2
o ‘:/ ( %I)—ym—x) o) dw, i=0,--- 4

-1

Using matlab we get

2 42

eqp ‘= —a3 — —a

do 5 3 54

2 230 2

eq1 ‘= =G4 — —a2 + =
7 21 3
2 658 2

eqr ‘= —a; — ——as + —as
5 45 9
2 1422

€qs = ?az - 77 a4
2 2618

B R AETT

Solving the linear system for a;, i =0,---4 , we have
a; = 0,ay = 0.06089414, a3 = 0, ay = 9.42103 x 107*

Therefore

yn(z) = 0.00741906 2° 4 0.14163669 2* — 0.14905576
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Figure 3.1: Approximated and exact solution

3.4 Electroosmotic and Pressure Driven Flow In An

Eccentric Micro-Annulus

3.4.1 Introduction

Due to many applications of microfluidic devices applications in microelectromechanical
systems and microbiological sensors such as laboratory on a chip.Microfluidic device
have become important.One of the method to transport the fluid through microtubes
or any other fluid conduit without mechanical moving part is to operate electro-osmosis
(EO).The principle for electro-osmosis is as follows.Generally solid surfaces carry a
negative electrostatic charge when in contact with a fluid containing dissociated salts.At
the same time, the fluid acquires a positive charge near the boundary.The charged fluid
can then be moved by an applied axial electric field. This has been discovered more than
two century ago [5].

Because of the difficulty associated with the commercialization of electroosmosis

was that it requires small length scales to take effect, it took long time to use
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the for electroosmosis to be used widely in practice. But after the development in
microfabrication technology which lead to the invention of many different microfluidic
device, considerable progresses achieved in this subject.

The concept of Electric Double Layer (EDL) was introduced by Helmholtz [6], who
realized that, if a charged metal surface is immersed into an electrolyte can attract
counter-ions towards the surface and repel co-ions away.Smoluchowski [7] to describe
EO velocity, this is known as Helmholz- Smoluchowski velocity. Later, Debye and Hiickel
[8] studied on the ionic distribution in solutions of low ionic energy, where they used
linearization for the Boltzmann distribution. This simplification lead the way for the
development of analytical solutions for electroosmotic flow in slits and capillary tubes
by Burgreen and Nakache [9]. They afterward extended their solutions to account for
high surface potentials as well in [10]. Rice and Whitehead [11] investigated the fully
developed electroosmotic flow in a narrow cylindrical capillary for low zeta potentials,
using the Debye-Hiickel linearization. Levine et al. [12] extended Rice and Whitehead’s
work to high zeta potentials in terms of a numerical approximation.

Recently, electroosmotic flow through an annular, Tsao [13] used DebyeHiickel
linearization and obtained the analytical solution. Later Huang et al [14] extended Tsao
solution for high-zeta potential where he used Green function method. More recently,
Sadeghi et al [15] consider the Electroosmotic Flow in Hydrophobic Microchannels of
General Cross Section and they find that the flow rate is a linear increasing function of the
slip length with thinner electric double layers (EDLs) providing higher slip effects. They
also explored that, unlike the no-slip conditions, there is not a limit for the electroosmotic
velocity when EDL extent is reduced. But There are also many work on this subject with
different geometry which can be found [15][16]. We will show that this method is not
suitable for our geometry.

Regarding to eccentric flow geometry, there are many studies, in this geometry, first
analytical study belongs to Synder and Goldstain [17], they consider fully developed flow
of Newtonian fluid in a an eccentric annulus and derive the analytical solution, later
Debnath et al [18] consider the Hydromagnetic Flow between Two Rotating Eccentric
Cylinders and obtain approximate solution by using the perturbation parameter. More
recently , Alassar [19] investigate the slip flow case for above geometry, he obtained that

for a fixed aspect ratio, fully eccentric channels sustain the maximum average velocity
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(flow rate) under the same pressure gradient and slip conditions.

In this work, we consider the electroosmatic and pressure driven flow of Newtonian
fluid in an eccentric microannulus with DebyeHiickel approximation which has not been
considered before that gives us enough motivation for the work under consideration,
where we first discuss the analytical solution linearized Poisson-Boltzmann equation and
show that this is not possible for our boundary condition .We then use Fourier Legendre
pseudo spectral method for above differential equation which is higher accurate, stable
and obtain approximate analytical solution . Finally analytical solution derived for our
flow problem. In section 2, we formulate the flow problem. Then we show that analytical
solution is not possible of linearized Poisson-Boltzmann equation because of our boundary
conditions, in section 3 and 4 Section devoted to the Fourier Legendre pseudo spectral
method and analytical solution of flow problem. Results and discussions are given in the
final section.

We mention that since analytical or approximate analytic solutions for EO flows
are rare and useful because they not only provide structured solutions to the problem
under investigation but also serve as an accuracy standard for approximate (numerical)
methods, therefore our exact solution can be used as benchmark case for further studies

in this subject.

3.4.2 Problem Formulation

Assuming that the electrolyte is a Newtonian fluid, and the flow is driven by both
electroosmosis and pressure forces or one of them which fluid motion is governed by

the Navier-Stokes (N-S) equation

a *
p ( 81;* + u*.V*u*) = —Vp* + uV*2u* + p.E* (1), (3.4.1)

*

where p is the density, u* is the fluid velocity, p is the pressure, t* is the time, p. is
the charge of electrolyte, and E*(t) = (0,0, Ej(t*)) is the externally applied longitudinal
electric field. Note that “*” indicates that parameters are in a dimensional form. Hence,
without star notation parameters and variables is in non dimensionless form. The flow

in this study is steady and parallel to the longitudinal direction (z-axis),hence Eq.(3.4.1)

with u* = (0,0, w*) is reduced to

*

dp
Ly = 0. 4.2
e + pely =0 (3.4.2)

MV*Qw* o
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As shown in Fig.3.2 , annular microchannel between two eccentric circular cylinders of
radii 6R and R is considered in which an electric field is applied along the length of
channel. We assume that inner and outer walls uniformly charged with zeta potential (;
and (y respectively. The relation of EDL potential ¢* and electric charge density in a

symmetric electrolyte is expressed with the Poisson-Boltzmann equation,

zey*
pe = —eV**Y* = —2zen, sinh L4 , (3.4.3)

kgT
where ¥, z,e,n9, €, kg and T are the electric potential, the valence, the electron charge,
the bulk ion concentration, the electric permittivity of the electrolyte, the Boltzmann

constant and the reference absolute temperature respectively. The above equation in

two-dimensional cylindrical co-ordinates can be written as

10 [ oy 1 0%Y*  2zeny . ze*
-—— — = h 4.4
ror (r or > - r2 062 E kgT ) (3:4.4)
the boundary conditions are
_ _ o
Vv* (6R, 0) =G, ¥* (R, 6) =( and 5 = 0, at 0 =0, 7, (3.4.5)
using the following dimensionless form as
r ze
. = * .4.
R 2 and T Y (3.4.6)

then we can rewrite (3.4.4) and (3.4.5) in dimensionless form as

10 o Lo .,

where K = kR is the length scale ratio (electrokinetic radius) and & is the Debye-Hiickel

22%e’n 12
K= ( 0> : (3.4.8)

parameter which is defined as

€]€BT

where k = 1/Ap and Ap is called as Debye length.Under Debye- Hiickel approximation

the Eq.(3.4.7) is reduce to more simpler form

1 0 oY 1 0%y 9
- - — K 4.
ROR (RaR) T e -V (8:4.9)
and dimensionless boundary conditions
o
W(6,0) =21, (1,0) =2y, and — =0, at 6 =0, 7 (3.4.10)
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We can use the method eigen function expansion like in [20] and [21], however end
up with system of equation which is singular, Also, the method used in [22] cannot be
used for our geometry, because, radius are fixed (constants) which give us singular system.
Because of this problems, many numerical method derive the solve Helmholtz equation in
irregular region, for example in [23], Gass used finite element method and more recently,

Green function method is used in [24]

3.4.3 Fourier Legendre pseudo spectral method for

Debye-Hiickel approximation

The geometry of our flow problem shown in Fig.3.2 which is not suitable to use of Spectral
method, in order to use the spectral method, in order to use the spectral method, we use
bipolar coordinates system (7, ¢, z) in Fig.3.2, the relation between the rectangular and
bipolar coordinates is shown to be

_ C'sinh(n) y— C'sin(y)
cosh(n) — cos(p)’ cosh(n) — cos(p)

and z = z, (3.4.11)

Where, if we specified the inner and outer radii of eccentric cylinders by R, R and the

eccentricity e, then the C' is focal distance is given by

o _ Ve—0R - R)(e— 3R+ R)(c + R ~ R)(e +0R + R)
2e ’

(3.4.12)

The surfaces of the inner and the outer cylinders are identified by n = ny and n = ny ,
where 19 = sinh™" (C/ry) and 5, = sinh™" (C/r}) respectively. Hence, given the radius of
each of the two cylinders (R and R) and the center-to-center distance (e), one can fix a
particular bipolar coordinates system (i.e.ng, 7, and C' are obtained uniquely). Equation

(3.4.4) can be written in bipolar coordinates as

627,0* 82¢* 02
=g K", g = 3.4.13
op o Y v (cosh(n) — cos(¢p))?’ ( )
and boundary conditions
V(s ) = G, ¥ (2, 0) = Co and By = 0, at ¢ =0, 7. (3.4.14)
Let ¢ = %, then equation can put into dimensionless form
0%y 0% 1
Z P gK?2 = 3.4.15
o o =9 (o) — con()” (3419)
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and boundary condition becomes

U, ) = G, (e, ¢) = Go and g—z =0, at o =0,7 (3.4.16)

In order to make boundary conditions homogeneous, we change variable as 1(n, @) =

_ _ . on—
mnzlo_tf“” -+ ii_f;n + Y1(n, ), and we transform the region by = = % from

[m1,m2] to [—1,1] and substituting this into Eq.(3.4.15), we have

4 0*y n Oy
(m —m2)? 022 O0¢?

(3.4.17)
—mZy+ Z 7z — 7 —
gu? | ZZ T2 | 2= 2o | Z m)e ¥ (m +n2)} +w1(x,90)] :
M — 2 m =12 2
and boundary conditions became
_ _ Y1 _ _

P1(—1,¢) =0,91(1,¢) = 0 and D0 0, at p =0, 7. (3.4.18)

For the Galerkin spectral method, we define set
Sy = span{p;(p)w;(0) :i,j =0,1,--- M} and V5 = {v € S3,} (3.4.19)

where ¢;(p) = Liy2(p) — Li(p), is the difference of two Lagendre polynomial) and w;(0) =
cos(ynb),j = 0..M , then classical Fourier-Legendre Galerkin method is: Find DM € Vi
such that Yo € V&

~ M 4
y Up———— dxd
Q/l/) (m — m2)? 4

+ / @ESDM% dxde

Q (3.4.20)
N —Mm 2 A 71— 7 -
_|_/¢MK2 4o + Z112 L4 0 [(771 772)$+(771+772)} T
2 nm—1n m —1n 2
1 dxd 0
x g
(cosh(n) —cos(@)2 ¥
Let us denote
M—2.M
M= > ane(p)w;(9) (3.4.21)
4,7=0

Taking v = ¢;(p)w;(8) in (3.4.20) for ¢,5 = 0,1,2--- | M — 2, M, since the integrand in
(3.4.20) cannot be integrated analytically, hence, we used in the last integration Gauss

quadrature method obtain the integration numerically (the results analysed carefully until
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we get the difference two consecutive numerical integration less than 1071 and we stop)
and the integrals evaluated exactly, in this manner, we obtain system of equations which
we solved numerically. Note that we increase the number of the base elements until we
get the difference two consecutive approximation for Eq.(3.4.21) less than 1077, In figure
(2) and (3), we show the effect of Debye length on the electric potential, we note here
that this has not been before.

3.4.4 Velocity Field

The momentum conservation equation in bipolar cylindrical coordinates reads

0% w* O%w* 2 dp* . azw* 821/1*
a < on? * 02 ) B (cosh(n) — cos(yp))? dz* +eky ( on? + o2 |7 (3.4.22)

introducing the following dimensionless parameters

w*p Cp* z
w=—-——P=——/7=—andR=w+ 3.4.23
Eteyg Eiety C ¥ ( )
then (3.4.22) can be written as a new operator

PR PR 1 apP
—+t = = - — 3.4.24
on? * 0p? (cosh(n) — cos(y))? dZ ( )
g—i}; = O0atp=0and 7 (3.4.25)
R=Z atn = m and R = Z at n = 1ns. (3.4.26)

— cosh(n) 42

A particular solution of Eq.(3.4.24) is the 5 .Then the general solution

(cosh(n) — cos(¢))
of equation (3.4.24) given by

dP
cosh(n)%
R(n, ) = - +a+by
2(cosh(n) — cos(p)) (3.4.27)
+ Z [A4,, sinh(n(n — m)) + By, sinh(n(n — m))] cos(nyp),
n=1
where a = %, b= % which make boundary conditions to be homogeneous. The

other coefficient easily obtained if someone use the orthogonality of cos(n¢g). Therefore

solution of momentum equation is given by

Cosh(n)£
w =— dz — a
(77;:0) 2(cosh(n) — cos(y)) wtatin (3.4.28)
+ Z [A,, sinh(n(n — m)) + By sinh(n(n — m1))] cos(nyp).
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3.4.5 Results and Discussion

In the limiting case, if % = 0 ,we note that our solution reduce to the electroosmatic
flow and if v = 0 our solution reduce flow generated by constant pressure gradient case.
However, In the case of high zeta function Debye-Hiickel approximation is not valid and
we need to solve the semi-linear Poisson-Boltzmann equation, in this case we cannot use
the Galerkin spectral method, we mean approximate analytical solution may not possible,
but, we can use the finite difference method as follows: First, due to strong gradients
of the electrical potential near the wall, it is necessary to have smaller grid sizes in this
region. Therefore, a transformation is used to cluster the grid points near the wall where
more information about EDL and velocity field is required [25]. The n and ¢ coordinates

are transformed into n* and ¢* in bipolar coordinates:

n(3) (%)
B—1 B—1

where (3 is the stretching parameter that controls the degree of clustering. With this

transformation, Eq.(3.4.7) in bipolar coordinates can be rewritten in terms of n* and ¢*

as
Co(") 5 + CY (") 55 + Cal9) 53— + CL9") 2
on on Oy Oy
1% (3.4.30)
(cosh * — cos ¢*)? sinh(1),
where
. X + e~ =N’ +9 . e2En” + 2N _ 925" _ =250
01(77 ) - ) 02(77 ) =
20% 26%
Zp* —Zp* 25p* So* 6, —25p* 9%yt (3.4.31)
C’(*)—e +e + 2 C<*>_e + 2e 2e e

and ¥ is defined as ¥ = In ((8 + 1)/(3 — 1)).Then, Eq.(3.4.30) is numerically solved by
means of implicit finite difference method. Applying the central difference scheme, the

difference equations for the inner points are obtained as

A j, ", @ Wi j = Avhioaj + Agthir; + Asthi jo1 + Asts ja (3.4.32)
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where

prev
. *A* *A* sinhz/;iy'
Aty 0%) = 20201 ) E 4 9025 21 +< ( ”)

An* Ap* Vi
}%72
An*Ap*
(coshnj — cos ¢5)? (i
An* 1 An?

1 % x * * * *
As = — 565(3@ )An +C’12(g0 )— Ay = 502(90 )AU +012(‘:0 )

Ap

(3.4.33)
where superscripts prev refers to previous iteration results, the first iteration guess values
provided. Then, we used SOR method to solve the Eq.(3.4.33), we iterate the solution
until the required overall error. The procedure continues until the required overall relative

error of 1077 is achieved.

In this report, we first discuss the limitation of Debye-Hiickel approximation(DHA),this
is done in Figure 3.3-a-b,3.4-a-b and 3.5a-b where the first figures are represent the
semi analytical solution for Debye-Hiickel approximation and second figures represent
the finite difference solution of semi linear poisson-Boltzmann equation , we see
that relatively small for electrokinetic width and small zeta number, we can use the
Debye-Hiickel approximation,also, this approximation does not depend on eccentricity,
this is given 3.6-a-b, 3.7-a-b and 3.8-a-b.So we can use Debye-Hiickel approximation under
above restriction, then we have approximate analytical solution as shown in Equation
(3.4.21).We also note that higher value of electrokinetic radius for distribution of electric
potential is lower bigger side of eccentric region, the lowest value of electric potential
located in the canter of bigger side of eccentric region (Fig. 3.5 and 3.8). We also
observed distribution of electric potential more uniform for lower value of electrokinetic
radius. We now discuss the properties of the velocity field.Fig. 3.9-3.10-3.11-a-b show the
effect of pressure gradient and electrokinetic radius and eccentricity on the distribution of
velocity field. We first state that the value of velocity profiles in bigger side of eccentric
region always bigger than smaller side of eccentric region. In order to see the effect of
above parameters on the velocity distributions, same value of contour line are chosen. It
is interesting to see that there is like plateau on the graph and the size of plateau depend

on the parameters.
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we also observed that large enough electrokinetic radius or pressure gradient, there
is stagnation region where there is no flow ( See Fig. 3.11-a-b) also size of this region

depend on above parameters. This is also observed for other studies in this field.

The average value of velocity also important which can be calculated by following

formula

TT n ®)
W — 0 m (cosh(n) — cos(p))?

21 M2 1

/)

0771

(3.4.34)

dnd
(cosh(n) — cos(p))? ey

The effect of the eccentricity on the average value of distribution is given in Fig.3.12 for

fixed value of pressure gradient and electrokinetic radius, we see

3.4.6 Conclusions

In this study, consideration is given to the electroosmotic and pressure driven flow of
Newtonian fluids in an eccentric microannulus.We used Fourier Legendre pseudo spectral
method to obtain new higher accurate approximate analytical solution of linearized
Poisson-Boltzmann in bipolar coordinates, we also used finite difference method to
solve full semilinear Poisson-Boltzmann numerically and we show that our approximate
analytical solution is valid for small zeta number, then we solved the governing momentum
equation analytically and finally we obtain approximate analytical solution our flow
problem which has not been given before. In a follow up our report, we shall work
on the electroosmotic and pressure driven flow of non-Newtonian fluids in an eccentric

microannulus.
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Figure 3.2: Schematic of the physical problem along with the coordinate system
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(b) For FPBE

Figure 3.3: The electric potential distribution A = 1, e=1/2
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(b) For FPBE

Figure 3.4: The electric potential distribution A = /50 ,e=1/2
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(b) For FPBE

Figure 3.5: The electric potential distribution A = 10 ,e=1/2
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(a) For DHA

(b) For FPBE

Figure 3.6: The electric potential distribution A =1 ,e=3/4
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(b) For FPBE

Figure 3.7: The electric potential distribution A = /50 ,e=3/4
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(a) For DHA

(b) For FPBE

Figure 3.8: The electric potential distribution A = 10 ,e=3/4
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d
(b) For D—Z; =10

Figure 3.9: Velocity distribution A = 1, e=1/2
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(b) For D—pZ =10

Figure 3.10: Velocity distribution A = 10, e=1/2
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d
(b) For D—pZ =10

Figure 3.11: Velocity distribution A = 1, e=3/4
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Figure 3.12: Average dimensionless velocity versus eccentricity (a) —%

dp
DZ —

L\ =50
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