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A

The aim of the project is first to present the concept of measure of noncompactness
(MNC for short). More precisely, Kuratowski and Hausdorff MNCs will be investigated
together with their main properties. Related nonlinear mappings, generalizing classic
Lipschitz type functions are then introduced. Some fixed point theorems extending
Schauder’s fixed point theorem are also presented together with some proofs. The
theory is finally used to investigate the solvability of some nonlinear integral equa-
tions of Hammerstein type. Existence results are established in appropriate classical
functional spaces.




Fostsoittvetsins

The measure of noncompactness (MNC for short) measures the degree of noncom-
pactness of a set in some metric space for it is zero for a relatively compact set. The
first MNC was introduced by the polish mathematician K. Kuratowski in 1930, where
he extended Cantor’s intersection theorem by using his MNC, denoted throughout a.

In 1955, G. Darbo” used Kuratowski MNC to prove a general fixed point theorem
which extends both Schauder’s Theorem (for compact mappings) and Banach’s Con-
traction Principle (1922) (for contractive mappings). Indeed Darbo introduced the no-
tion of k-set contractive mappings extending the class of Lipschitz mappings also con-
tractive mappings.

Later, in 1967, B.N. Sadovskii’ generalized Darbo’s fixed point theorem to a wider
class of mappings, the so-called condensing mappings. Roughly speaking, a condens-
ing mappingis a map such that the image of a set is, in a certain sense, "more compact"
than the set itself.

The Hausdorff measure, denoted y, was introduced by L.S. Goldestein et al. in
1957". In 1972, the romanian mathematician V.. Istratescu et al. "defined the § MNC.

Now, we can find in the literature several MNCs that are developed for special func-
tional setting. A MNC can even be defined in an axiomatic approach (see [1] for de-
tails).

As mentioned above, classes of mappings involving MNCs may be alternatives to
compact mappings and thus of great importance in fixed point theory. For example,
it will be checked in this work that the sum of a contractive mapping and a compact
one is a strict k-set contaction, which is the basic idea in Darbos’ fixed point theo-
rem. In addition, condensing mappings have nice properties similar to compact ones.
This may explain their usefulness in several applications in Topology and Functional
Analysis.

Detailed Plan of the Project:

1. Review of the completeness and compactness theories in topological spaces with
focus on the main properties in metric spaces and especially in Banach spaces.
This is the main of preliminary chapter 1.

2. The concept of measure of noncompactness (MNC) in metric spaces through
Kuratowski and Hausdorff MNCs is introduced in Section 2. Their main prop-
erties are presented in detail, including some special case in the framework of
normed spaces..

1Surles espaces complets, Fund. Math., 15 (1930) 301-309 (French)

2Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955)
58-92 (Italian)

30n a fixed point principle, Funcktsional. Anal. i Prilozhen, 2 (1967) 74-76 (Russian)

“Investigation of some properties of bounded linear operators and of the connection with their g-
norm, Uchen. Zap. Kishinev. Gos. Univ., 29 (1957) 29-36 (Russian)

5A generalization of collectively compact sets of operators. I, Rev. Roumaine de Math. Pures et Appli.,
17 (1972) 33-37




3. Darbo and Sadovskii’s fixed point theorems for k-set contractions and condens-
ing mappings are discussed and proved in Section 3. They extend the classical
Brouwer and Schauder fixed point theorems.

4. Final chapter 4 is devoted to applying the MNC to Hammerstien type nonlinear
integral equation.




1.1 Completeness

Definition 1.1.1. Let (X,dx) be a metric space. A sequence (x,)5., in X is called a

Cauchy sequence if
Ve>03an.eN: Vn,meN, n,m=n,=>dx(x,, Xxm) <E.

Proposition 1.1.2. Let (X,dx) be a metric space and let (x,)., be a convergent se-

quencein X. Then (x,)5, is a Cauchy sequence.
Proof. Let x:= nlglgo X, and let € > 0. Then

dn. €N, suchthatVn=n.d(x,, x) < g
For all n, m € N such that n, m = n., we have
+

A(Xp, Xm) < d(xp,x)+d(x,x,) = =E€.

N M
[\CR )

Therefore (x,), is a Cauchy sequence. O



1.1 Completeness 2

Remark 1.1.3. In case of general metric spaces, the converse does not hold. For example,
(%)‘;0:1 is a Cauchy sequence in the metric space ((0,1),|-1). However, this sequence has

no limit in this metric space.
Proposition 1.1.4. Every Cauchy sequence in a metric space is bounded.

Proof. Let € = 1. Then there exists N; € N such that for all n = m = Ny,d(x,, x,) < 1.

Let p € X and let k = maxd(p, x;). Then d(p, x,) < d(p, xm) + d(xm, x,) < k+ 1, which
I=m

implies that (x,), is bounded. O

Definition 1.1.5. A metric space (X, d) is said to be complete if every Cauchy sequence

in X converges.

Example 1.1.6.

(a) In adiscrete metric space, every Cauchy sequence is eventually constant. So it is con-

vergent. Hence discrete metric spaces are complete.

(b) Let S # ¢ and Y be a metric space. A function f :S — Y is said to be bounded if

sup d(f(x), f(y)) <oo.
(x,y)€S?

Let B(S,Y)={f:S— Y bounded} c %#(S,Y). Then
Claim 1: B(S,Y) is a metric space with the distance D(f, g) = supd(f(x), g(x)).

X€S
Firstly, since f and g are bounded, this makes a sense. We have

1. D(f,g) =supd(f(x),g(x))=0for (Y,d) is a metric and

xeS

D(f,g)=0 < supd(f(x),g(x)=0

xeS

< d(f(x),g8(x)=0VxeS

o f(x)=gx)VxeS$
o f=g.
2. D(f,g) = s;l;gd(f(x),g(x)) = ilégd(g(x),f(x)) =D(g, f).
3.
d(f(x),g(x)) = d(f(x),hx)+d(h(x),g(x))
<

sup d(f(x), h(x)) +supd(h(x), g(x))

xeS xeS

= supd(f(x),g(x)) <supd(f(x), h(x))+supd(h(x),g(x))

X€eS x€S x€S

= D(f,8) <D(f,h)+D(h,g).

—
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1.1 Completeness 3

Claim 2: B(S,Y) is a complete space if Y is complete. Let (f;;);,, be a Cauchy sequence
in B(S,Y). We have

Ve>0,3In.eN:VnmeN: n>m=n, = D(f, fm) <€

oVe>0,AneN:VnmeN: n>m=n, = supd(fn(x), fmx)<e
xeS
=>¢e>0,In.eN:VnmeN: n>m=zn, = d(fp(x),fmx)<eVxeSs.

Hence (f;,(x)), is a Cauchy sequencein Y, V x € S. Since Y is complete, then nlim fn(x) =
—00
f(x), Vx€S. We have to check that

1. f€B(S,Y)

2. lim D(f, /) =0

1. Let x,y € S, we have

A

d(f), f) = d(fx), fn(x)+d(frn(x), () +d(fn(), f()
d(f(x), fu(x)+ sug d(fn(x), ) +d(fn(y), f).

IA

Since (f;,), < B(S,Y). Then sup d(f,(x), fn(y)) <M.Soas n— oo
X,y€S

A(fx), f) <M, Vx,yeS=supd(f(x), f(y) <M= feB(S,Y).
X, y€S

2. Let us show that r}im D(fyn, f) = 0. Since (f,), is a Cauchy sequence in B(S,Y),
—00
then
Ve=0,dn.eN: Vn,meN, m>n=n,= D(fy, fm) <€.

We have
d(fn(x);fm(x)) = D(fn»fm) VxeS§,

which implies
=>d(fn(x), fnx) <e, Yxe§, Vm>n=n,.
Therefore
VxeS, d(fn(x), f(X) < d(fu(x), fm(2) +d(fm(x), f(X)) <&+ d(fin(x), f(x)).
Letting n fixed and m — oo, we get
d(fu(x), f(x)) <e, Vn=ng

= supd(fp(x),f(x) <eVn=n,

x€S
> f, — finB(S,Y).
n—oo
Proposition 1.1.7. Let (X,d) be a metric space and let Y < X. Then
(i) If X iscompleteandY is closed in X, then Y is complete.

(ii) IfY iscomplete thenY is closed.

—
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A
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1.1 Completeness 4

Proof.

(i) Suppose that X is complete and Y is a closed subset of X. Let (x,), < Y be a Cauchy
sequence. Then (x,), is a Cauchy sequence in X, hence converges in X for X is com-
plete. However, Y being closed, the sequence (x,), converges in Y. Hence Y is com-

plete.

(ii) Suppose that Y is complete and let (x,), < Y be a convergent sequence to some
limit x. Since a convergent sequence is a Cauchy sequence and Y is complete, then

x €Y. Hence Y is closed. O

Example 1.1.8. Let (X,dx) and (Y,dy) be two metric space and let C(X,Y) ={f : X —
Y continuous}. Then Cp(X,Y) = C(X,Y)NB(X,Y) is closed in B(X,Y) and therefore
complete if (Y, dy) is.

Clearly, Cp(X,Y) is a subspace of (B(X, Y), D). Let (f,,) , be a sequence in C(X, Y)
that converges to f € B(X, Y), thatis r}im D(fn, f) =0.We have to prove that f: X = Y
—00

is continuous, that is for all sequence (x,), < X such that lim x, = x, lim f(x;,) =
n—oo n—oo
f(x). Let (x,), < X be a sequence such that nlim X, = x. By assumption, we have that
—00

Ve=03n.eN,VneN,n=n,, D(fy f)<e.

Hence
D(fn, f)<e= sup d(fn(0), f(x)) <e.

Also f, being continuous V n € N, we have
VnelN, n%im frn(xm) = fn(x) VY (xm) m < X converges to x.
— 00
Then

dY(f(xm);f(x)) = dY(f(xm),fn(xm)) +dY(fn(xm),fn(x)) + dY(fn(x)yf(x)),
< &+ dY(fn(xm);fn(x)) +E.

As m — oo, we find

n%i_I)IgOdY(f(xm),f(x)) =2, Ve>0= nlqi_l}clmdy(f(xm),f(x)) =0.
Definition 1.1.9. Let (X, d) be a metric space and A c X with A # ¢. The diameter of A
is defined by diam(A) = sup d(x,y).
X,yEA
Clearly, if Ac B then diam(A) < diam(B).

Proposition 1.1.10. Let (X, d) be a metric space and A < X with A# ¢. Then

1. diam(A) = diam(A).

—
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1.1 Completeness 5

2. If A= B,(xo) then diam(A) < 2r.
3. A is bounded < diam(A) < oo.

Proof. 1. Since A c A then diam(A) < diam(A). Let x, Y€ ‘A. Then there exist se-

quences (X,)n, (¥n)n < A such that %Lm X, = x and %Lm ¥n = ). We have

A

d(x,J/) —_ d(x;xn)+d(xn»J/n)+d(J/n;J/),

IA

d(x, x,) +diam(A) + d(yn, y).

Letting n — oo, we find

d(x,y) < diam(A), Vx,yeA.

= sup d(x,y) < diam(A).
x,yeA

= diam(A) < diam(A).

Hence diam(A) = diam(A).
2. Letx,y€ A= B;(xp). Then d(x, x9) < r and d(y, xp) <. So

d(x,y) <d(x,x9) +d(xp,y) <2r = sup d(x,y) <2r = diam(A) < 2r.
x,yEA

3. Suppose that A is bounded. Then there exists a ball B, (xy) such that A c B, (xo).
Hence diam(A) < 2r < co. Conversely, diam(A) < oo, then xy € A?, which implies

that A < By, (xo), where ry = diam(A). Hence A is bounded.

Proposition 1.1.11. Let (E,||.||[g) be a normed space and let A= B,(xo) < X. Then
diam(A) = diam(dA) = 2r.

Proof. First let us show that diam(0A) = 2r. Let x,y € S;[xo] = 0A for (E,||.llg) is
normed space. Then
lxo —xl| =7 and |lxo—yll=r.
= lx=yll = llx=xoll+Ilx0—=yll,
= r+r=2r.
= |lx-=yll = 2r, Vx,y€S;[x0l.
Hence

diam(GA) = sup |[[x—yl|<2r.
X,ye0(A)

—
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1.1 Completeness 6

Conversely, let x € dA and choose y =2xy—x.Then y€0A since

llxo =yl = llxo —2x0 + x|| = || = X0 + x|| = [|x — xol| = T
Therefor
[lx =yl =1lx—=2x0 + x|l = 2||x — xol| = 2r.
Hence
diam(0A) = sup ||x—yl| = 2r.
X,yEOA
Finally

diam(0A)) = 2r.

Secondly let us show that diam(A) = diam(AA). We have A = AJAA that means A c
A. Then
2r = diam(AA) < diamA < 2r.

Hence

diam(A) = diam(A) = diam(dA) = 2r.

Definition 1.1.12. Let (X, d) be a metric space, ¢ # Ac X, and x€ X. Then
dx,A)=infld(x,a): ac A}.
Proposition 1.1.13. Let (X, d) be a metric space, ¢ # Ac X and x € X. Then
X€EA o d(x, A =0.

Proof. Let x€ ‘A. Then there exists (x5)5 < A such that nlim X, =x(.e, nlim d(x,,x) =
—00 —00
0. Hence

0<d(x,A)=infd(x,a) <d(x,x,), VYn.

acA

As n— oo, weget d(x,A)=0. Conversely, let d(x, A) =0. Then
1
VneN, Ix,€A: Osd(x,xn)<;.
Hence there exists (x;); < A such that r}im d(x,x,) = 0. As a consequence x € A O
— 00

Theorem 1.1.14. (Cantor’s Intersection Theorem) Let (X, d) be a complete metric space
and (Fp)5"., a sequence of nonempty closed subsets of X such that Fp41 < F, V' n and

[e,0]
nlim diam(Fy) = 0. Then (1 F, is nonempty and reduces to a singleton.
—00 n=1

—
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1.2 Compactness 7

Proof. Let (x,), < X be a sequence such that x, € F,, V n. Firstly, we show that (x,),
is a Cauchy sequence. Let € > 0. Since ,}1_{130 diam(F,) = 0, there exists n. € N such
that diam(F,) < ¢, Vn = n,. Let m, n > n.. Then x,,, x,, € F;,,_ for F,.; < F,, V n. Hence
d(xm,x,) < diam(F,,) < €. So (x,), is a Cauchy sequence. Secondly, we show that

o0
N Fp # ¢. Since (X, d) is complete, there exists x € X such that x = lim x,. Moreover

n=1 n—oo
o0 oo

F,, closed V n, then (N F, closed. We show that x € [ Fj. Let n € N be arbitrary. We
n=1 n=1

have

VYm>n,x,€cF,= x= lim x,, € F,=F,.
m-—oo

Then
o0
VneN,xeF, < xe ) Fy.

n=1

We show that Oﬁ F,, = {x}. We have

n=1
o0 o0
Fp < F, = 0 < diam ( N Fn) < diam(Fy).
n=1 n=1
o0 (0,0
Hence lim diam(F,) =0 = diam(N F,) =0=> N F, = {x}. O
n—oo n=1 n=1

1.2 Compactness

Definition 1.2.1. Let (X, d) be a metric space and S c X.

(a) An open cover for S is a collection of open subsets of X (Uy)pen such thatSc U U,.
AeA

(b) S is called compact if, every open cover (Uy) yep Of S, thereare Uy, Uy, -+, Uy € (Uy) pen
n
such that S < U Uj;.
i=1

1

(c) S is called precompact or totally bounded if
N
Ve>03{xy, X, ,xn,} € X such that S < | Be(xy).
k=1
(d) S is called sequentially compact if every sequence in S has a convergent subsequence

inS.
Proposition 1.2.2. Let (X, d) be a compact metric space. Then (X, d) is totally bounded.

Proof. Let e >0. Then X = U B(x) which is an open cover. Since X is compact, there
xeX

N
exits N e Nsuch hat X = U B(xy), thatis X is totally bounded. O
k=1

—
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1.2 Compactness 8

Example 1.2.3.

(a) Let (X,d) be a metric space and S c X be finite: S = {x1,Xx2,-+,Xn}. Let (Uy)pren be
an open cover of S. Then, for each i = 1,2,---,n there is U; € (Uy) repn Such that x; € U;.

n
HenceSc U U;.
i=1

1

(b) Let X = (0,1) be equipped with the usual metric. Let U, = (%, 1). Then EJO (%, 1) isan
i=1
open cover for (0,1) which has no finite subcover.

Proposition 1.2.4. Let (X, d) be a metric such that (X, d) is totally bounded. Then (X, d)

is bounded.

N
Proof. Let € > 0. Then there exists N; € N such that x;, xp,--+, xn, with X = U B (xg).
k=1

Letxp€ Xand R > g+1mka>§] {d(x, x0)}. Then Bg(x;) € Br(xg) V1< k < N..Ford(x, x;) <

£, we have

d(x,xg) <d(x,x;)+d(xy,xp) <e+R—€e=R.
Then X < B(xp, R), i.e., X is bounded. O
Remark 1.2.5. By Proposition , every compact metric space is bounded.

Proposition 1.2.6. Let (X, d) be a metric space, and let Y be a subspace of X.
(i) IfX iscompactandY closed in X, then Y is compact.

(ii) IfY is compact, then it is closed in X.
Proof.

(i) Let (Uj)ren be an open cover of Y; then Y < AUA U,. Since Y is closed then X \ Y is

€
open. Hence X c (X \Y) U(AUA U,). Since X is compact, we have X c (X \Y) U(kL]\JI1 Up).
€ -

Hence Y c k@l Uy, which is a finite open subcover. Then Y is compact.

(ii) To show that Y is closed, we show that X \ Y is open. Let x € X\ Y then

VyeY3ey>036,>0: B, (x)NBs,(y) =,

Since x is a metric space, hence it is a Hausdorff space. We have Y < U Bs, (y) which
yeyY
is an open covering. Since Y is compact, then

N
YU Bs, (v
k=1

—
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1.2 Compactness 9
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Now, let e = min (¢),) >0. Then
1<sk<N

Be(x)NY € Be(x0)[ )

N
U Bs,, (yk)) =¢.
k=1
Hence B;(x) c X\ Y and thus X \ Y is open. O

Proposition 1.2.7. Let (X,9) and (X',9) be two topological spaces and f : X — X' be

a continuous function. Then, if X is compact then f(X) is compact.

Proof. Let (Uy))en be an open cover of f(X), i.e., f(X) c U U,. Since f is continuous,
AEA

then f~1( U U,) is an open set. Moreover, X c f~ (U Uy) = U f1(Uy). Since X is
AEA AEA AEA

N
compact, then X c f‘l(Ui). Hence
i=1

N N N
foefUJrton=rrtJuncUu.
i=1 i=1 i=1
Then f(X) is compact. O
Definition 1.2.8. Let (X,9") be a topological space, Ac X, and x € X. We say that

1. x is an adherent point of A, if

YUEN,, UnA#d(i.e,x€ A).

2. x isacluster point of A, if

YUEN, U\(xinA#¢(i.e,xe A).

3. x is an accumulation point or limit point of A, if

Y U € Ny, Un A contains infinitely many points (i.e., x € &).

Remark 1.2.9. From above, we have
1. o c A cA.
2. A=A UA.
3. L= A\ A’ is the set of isolated points.

Definition 1.2.10. Let (x,), be a sequence in a topological space (X,J) and x € X.
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1. x is called an accumulation point of (x,)n, if

Y U € Ny, U contains an infinite number of elements of (xp) .

2. x is called a limit point of (x), if
YUE€ Ny, YneN, Iny > n such that x,, € U.

Then, an accumulation point is a limit point in a metric space, and conversely.

Remark 1.2.11. (a) The concepts adherent point and cluster point are still valid for se-

quences.

(b)

1. Let (x,), be a sequence in a metric space (X, d) and x € X. Denote by </ the set of

limit points of (x,), and ¥, = {Xp, Xn+1,"--}. Then we have

xed < Ve>0,VneN,Inyg>n: xy, € Be(xX)
© Ve>0,VneN,Ing>n:dx,x,) <€
© VneN,Ve>0,3Iny>n:d(x,x,) <€
< VneN,Ve>0, Be(x) Ny #¢
= Vnel\l,xedn

o xe () .

neN

Hencesf = ( <f,,.

neN

2. In a metric space, every limit of a sequence is a limit point of the sequence.

Indeed, let x := nlirn Xy. ThenVe>0,dAngeN,Vn=nyg=>d(x,, x)<ec. Lete>0
— 00
andn > 0. Then there exists ng satisfyingV n = ny, d(x,, x) < €. For n; > max(n, ny),

we have d(xy,,x) < €.

3. Clearly, in any metric space, every limit point of a subsequence is a limit point of

the sequence.

Proposition 1.2.12. Let (x,), be a sequence of a metric space (X,d) and x € X. Then x

is a limit point of (xp)n © 3(x, )k © X a subsequence such that klim Xp, = X.
—00

Proof.

—
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1.2 Compactness 11

(<) Suppose 3 (x,, ) © X subsequence of (x,), such that lim x,, = x. Then x is a limit

k—o0

point of (x,, ) implies that x is a limit point of (x;) .

(=) Let x be a limit point of (x,),. By definition, we have that for all ¢ > 0, n € N, there

exists ng > n: d(xy,, x) <Ee.

Fore=1, VneN3In>n :d(x,,x)<l1
Fore =1, In, > m td(Xpy, X) < 3
Fore=1, 3dme>nmeoy 1d(X,x) <z

Then we construct (x,, ) a subsequence of (x,), and d(xy,, x) < %, Vk=1,2,.... This

implies that lim x,, = x. O
k—oo
Corollary 1.2.13. Let (X, d) be a metric space and (x,), < X. Then

lim x, =x=> o ={x}.
n—oo

Proof. Since (x,), converges to x, then any subsequence also converges to x. By Propo-

sition , X is the only limit point of this sequence, then « = {x}. O
Proposition 1.2.14. Let (x,), be a sequence of a metric space (X,d). Then
(x,)» Cauchy sequence nh_r)glo diam(e#,) = 0.
Proof. Let (x,), be a Cauchy sequence. Then
Ve>0,3ngeN such that Yk, k' > ng: d(xg, xpr) <€.
Note that since k, k' > ng = xy, xp € «,,. Hence

Ve>0,3IngeN: sup d(xg, xp)<é€
k,k'>ng
< Ve>0,3IngeN:diam(aefy) <€
© Ve>0,InpeN, Vn=ng:diam(e,) < diam(ey,) <€

(forn>ng = o, S oty,)

< lim diam(«#,) = 0.
n—oo
L]

Corollary 1.2.15. Ifa Cauchy sequence in a metric space (X, d) has a limit point x, then

x is the limit of the sequence.
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1.2 Compactness 12

Proof. Let (x);, be a Cauchy sequence, then nlim diam(e#,) =0,i.e.,, Ve>03ny e N:
— 00

diam(¢#,) < €. But diam (<) = diam(<#,). Then
Ve>03ngeN, Vn=ng, (dx x,) <diam(s,) <e),

for

(xeof =>x€ () y) = lim d(x,x,) =0= lim x, = x.

O

Proposition 1.2.16. (Cantor’s Intersection Theorem for Compact Spaces) Let (X, ) bea
compact topological space and (F,),, a decreasing sequence of nonempty closed subsets.

Then
() Fn # ¢

n=1

Proof. By contradiction. Assume that [ F, = ¢. Since X is compact, then there exits

n=1

p
p € N'such that (| F, = ¢. But (Fy), is decreasing, then F), = ¢, a contradiction. O
n=1
Corollary 1.2.17. If X is compact, then of # ¢.

Proof. Let (x,), be a sequence and F, = . Then (F,), is a decreasing sequence of
closed nonempty sets. By Cantor’s intersection theorem for compact spaces, (| Fy, # ¢.
n

ThenNF,=NA, =< #¢. O
n n

Remark 1.2.18. By Corollary and Proposition , if X is compact, then ev-
ery sequence has a convergent subsequence. So if X is compact, then X is sequentially

compact.

Corollary 1.2.19. Let (X, d) be a metric space. Then

X compact = X complete.

Proof. Let (x,), be a Cauchy sequence. Then «f # ¢. By Corollary , (xn)n has a
limit point, then by Corollary nlim X, = x. Hence X is complete. O
—00

Corollary 1.2.20. Let (x,), be a sequence in a compact metric space (X,d). Then

lim x, = x o o ={x}.
n—oo

Proof.
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(=) nll_I)Il X, = x = & = {x}. This is proved By Corollary

(<) Let us show that of = {x} = nlim X, =x.LetUe€ AN,and F,=A,NnC,U. Then F,
— 00
closed V n. Hence NF, = o/ N CyU = ¢ for o« = {x}. We have
n

no
Xiscompact = 3IngeN: [ F,=¢
n=1
= Fy, = ¢, for (Fy)n is decreasing

=> Ap,cU
=> ApcAp,cAp,cU,¥Yn=ng
= xp,€eU,Vn=ng

= lim x, = x.
n—oo

Example 1.2.21. Let (X,d) = (R,|-|) and the sequence

n, nodd;
xn =
%, n even.

Then 0 is a limit point. Indeed x»,, = ﬁ — 0, then 0 is a limit point and the other subse-
quence diverges. So 0 is the unique limit point. However, lim x, # 0, and the reason is
n—oo

that (R, |-1) is not compact.

Proposition 1.2.22. [5, 8] Let (X, d) be a metric space. If X is totally bounded, then it

separable.

Proposition 1.2.23. Let (X, d) be a metric space. If X is sequentially compact, then X is

compact.

Proof. Let U be an open cover of X. Since X is sequentially compact, then from Lebesgue
Number lemma, there exists 6 > 0 such that for every x € X, there is an open set O € U
for which B(x,8) < O. Also we have X is totally bounded (for X is sequentially com-

pact) , then there exist x1, x, ..., X, € X such that

X= B(x;,0).

n
=1

1=

We Know from above for x; € X there is O; € U such that

B(x;,6)c 0;,i=1,2,..., 1.
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Hence
n
X= U 0;,0;eU.
i=1
Therefore X is compact. O

Proposition 1.2.24. Let (X, d) be a metric space. If X is sequentially compact, then X is

totally bounded and complete.

Proof. Suppose by contradiction that X is not totally bounded. Then there exists € > 0

such that for every finite subset S < X, X # U B(s). Let xp € X, x; € X\ B¢(xp),**, X €
seS
n-1
X\ U Be(x;). Then the sequence (x;), has no subsequence which is convergent, for
i=0

d(xj,xx) > €,V j # k. So it has no Cauchy subsequence, then it has no convergent

subsequence which is contradiction, then X is totally bounded. O

Finally X sequentially compact = X compact = X complete. We can even prove
that X totally bounded and complete implies that X is sequentially compact.
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2.1 Measures of Noncompactness in Metric Spaces

(1,2,3,4]

Definition 2.1.1. Let (X, d) be a metric space and A c X a bounded subset. We introduce

the following sets:

N
1. K(A)={D>0:AN€eN, H(Ai)ﬁl < X such that, Ac U A; withdiam(A;)) =D, V1 <
i=1
i<N}L

N
2. HA) ={r>0:3NeN, 3{x1,x,---,xn} < X such that, A< U B, (x)}.
i=1
Remark 2.1.2. 2H(A) € K(A) c H(A). Indeed

(i) let D€ K(A). Then

N
AN €N, 3(A)N, < X such that A < | JA; with diam(A;) <D, V1 <i<N.
i=1
Since A; is bounded forall1 < i < N, then
A; € B(x;,D), \/VithXiEAl?, V1<isN.

Hence

nC =

N N
Aic|JB(xi,D)= Ac | B(x;, D).
i=1 i=1

~
I
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As a consequence D € H(A) and K(A) c H(A).

N
(ii) Letr € H(A). Then there exit N € N and {x1, %2, -+ ,xn} < X such that A< | B (x;)
i=1

with diam(B;(x;)) <2r, V1 <i<N. Then
2re K(A) = 2H(A) c K(A).

Definition 2.1.3. We say that A has an €-net (€ > 0) if there exists N € N such that A c

N
U Be(xi) and {x1,x2,-++, xn} < X.
i=1

Remark 2.1.4. (a) A is totally bounded if and only if A has an €-net for all € > 0.
(b) HLA) ={r >0: A hasanr-net.

Definition 2.1.5. 1. The Kuratowski measure of noncompactness is defined by

a(A) :=inf(K(A)).

2. The Hausdorff measure of noncompactness is defined by
x(A) :=inf(H(A)).
Proposition 2.1.6. y(A) < a(A) <2y(A).
Proof. From Remark , we have
2H(A) < K(A) < H(A).

Then
inf(H(A)) <inf(K(A)) < 2inf(H(A))
and so

x(A) < a(A) <2y (A).

As a consequence a(A) =0« y(A) =0.
Proposition 2.1.7. y(A) =0 < A is totally bounded.
Proof.
1(A) =0 < inf{r>0:Ahasanr—net}=0

< Ahasanr-—net, Vr>0

< Atotally bounded.
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2.1 Measures of Noncompactness in Metric Spaces 17

Definition 2.1.8. A is relatively compact if A compact.
Proposition 2.1.9. 0 < y(A) < a(A) <diam(A).
Proof. A< Awith N =1and D =diam(A). Then

diam(A) e K(A) = inf(K(A)) <diam(A),

= a(A) <diam(A),

= y(A) < a(A) <diam(A).

O

Proposition 2.1.10. Let A and B be bounded subsets of a metric space X such that A c B.
Then

1. a(A) < a(B).
2. y(A) < x(B).
Proof. 1. Let D€ K(B). Then

N
ANeN, 3(4)Y | c X suchthat BS U A
i=1

with diam(A;) <D, V1<i<N.

N
Since Ac Bc U A;. Then
i=1

DeK(A) = K(B)cK((A),
= inf K(A) <inf K(B),

= a(A) = a(B).

2. We show that y(A) < y(B), by the same way as in part 1.

Proposition 2.1.11. a(A) = a(A) and y(A) = y(A).
Proof. Since A < A, then by Proposition , a(A) < a(A). Let D € K(A). Then there

N
exist NeN, (4;)Y | c X such that A< J A; with diam(A;) <D, V1 <i<N. Hence
=1

i=

- N N_
AclJAi=l A
i=1 i=1

N
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2.1 Measures of Noncompactness in Metric Spaces 18

with diam(A;) = diam(A;) <D, V1 <i < N. As a consequence D € K(A) and so K(A) €
K(A),a(A) < a(A). We conclude that a(A) = a(A). Let us show that y(A) = y(A). We

have

Ac A= y(A) < x(A). @.1)

N
Letr € H(A). Then A< U B,(x;), where {x1,x, -+, xn} < X. Then
i=1

1

N N N N
Ac|Br(x) = UBr(xi) = Brlxil € U Brse(xi), , VE>O.
i=1 i=1 i=1 i=1

Hence

r+e€H(A),Ve>0=>y(A) <r+eg, ,Ve>0,

which implies that y(A) < r. As a consequence y(A) < y(A). We conclude that y(A) =
x(A). O

Corollary 2.1.12. Let (X, d) be a complete metric space and A be a bounded subset of X.

Then
a(A) =0« y(A) =0« Aisrelatively compact.
Proof.
(=) We have a(A) = a(A) = 0, then by Proposition A is totally bounded and since

A'is closed in a complete metric space, then A is compact.

(<) Since A s relatively compact then A is compact. Hence A is totally compact and so
¥(A) =0= y(A) =0.
O

Remark 2.1.13. Let A and B be bounded subsets of a metric space X such that A c B.
Then

1. B isrelatively compact = A is relatively compact.
2. Let A be a relatively compact subset of X. Then
0=a(A) <a(B).
For that, a and y are called measures of noncompactness.

Proposition 2.1.14. Let A and B be bounded subsets of a metric space (X, d). Then

N
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2.1 Measures of Noncompactness in Metric Spaces 19

1. a(AUB) =max(a(A),a(B)).
2. x(AuB) =max(y(A), x(B)).
3. a(ANB) =min(a(A),a(B)).
4. y(AnB) <min (y(A), x(B)).

Proof. 1. Wehave Ac AuB and Bc Au B. Then
a(A) <a(AuUB)and a(B) < a(AU B). Hence
max (a(A),a(B)) < a(AUB). 2.2)

By the characteristic property of the infimum, we have

N
Ve>0,3D,, ANeN, 3(A)N | such that Ac | 4;

i=1

with

diam(A;) < Dg, Vi€ [1,N] and D, < a(A) + € < max(a(A),a(B)) + €.

M
Also there exist D}, M € N, (Bj)?’il such that B < J B; with diam(Bj) <D}, Vj €
i=1

J
[1,M] and D}, < a(B) + € < max(a(A), a(B)) + €. Then

N M N+M
AUBC UA,' u UB]' = U Cr,
i=1 =1 K=1

where

{ Ai, Ykel[l,N;
Cp =

Bj, Vke[N+1,M]
and diam(Cy) < max(a(A),x(B)) +¢&, Ve > 0. So max(a(A),a(B)) +€ € K(AU B),

Y e > 0. Hence

a(AUB) <max(a(A),ax(B))+¢e, Ve>0.

Then

a(AUB) =max(a(A), a(B)). (2.3)

From and 2.3, we get @(AU B) = max (a(A), a(B)).

2. Clearly

max (y(A), y(B)) < Y(AUB). 2.4)
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2.1 Measures of Noncompactness in Metric Spaces 20

Let d = max(y(A), y(B)). Then by the characteristic property of the infimum, we

have
N
Ve>0,3r,>0, I{xy, X2, , Xy} < X such that Ac | By, (x)),
i=1
M
3r;, 3x1, X2, , xp} < X such that B< | B, (x;)
j=1
with

re<y(A)+e<d+eandr.<y(B)+e<d+e.

N M
So Ac U Bgye(xi) and B< U By (xj). Hence
i=1 Jj=1

N xi, Ykel[l,NI;
AUBc | Bgie(zr), where z; =
k=1 xj, Vke[N+1,M].

Then y(AuB)<d+¢,Ve>0,and

Y(AUB) < d =max(y(A), x(B)). (2.5)

From and , we get Y(AU B) = max(y(A), x(B)).

3. Wehave AnB< Aand An B < B. Then
a(ANB)<a(A) and a(An B) < a(B).

a(ANB) <=min(a(A), a(B)).

4. We have AnB< Aand AnB < B. Then

Y(ANB) < x(A) and y(ANB) < x(B) = y(An B) <min(y(A), y(B)).

Lemma 2.1.15. Let N (A)={xe X:d(x,A) <r}. Then
diam(.A;(A)) < diam(A) + 2r.

Proof. Letxand y € A4;(A). Thend(x, A) < randd(y, A) < r. By the characteristic prop-

erty of the infimum, we have

Ve>0,3x.€ A Ay, € Ard(x,x.) <1r+¢€,d(y,y,) <r+E€.
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So for all x, y € A} (A), we have

N
0~
[8a]
dx,y) = dx,x)+d(xe,y.)+d(s, ), e
, =
< r+e+diam(A)+r+e¢ &)
= diam(A) + 2r + 2¢.
Hence
diam(A:(A)) = sup d(xy) <diam(A)+2r+2¢, Ve>0.
X,yEN;(A)
Then diam(.A4;(A)) < diam(A) + 2r. O

Lemma 2.1.16. Let A= B, (x,). Then
N (A) € By, 4r(Xo).
Proof. Let x € A;(A). Then
dx,A)<reinfd(x,y)<r.
yeA
So for all y € A, we have since ye A
d(x,x.) =d(x,y) +d(y,x.) <d(x,y) + Io.

Hence
d(x,x,) < infd(x,y)+r,,
yeA
= d(x,x,) < d(x,A) +r,,
= d(x,x,) < r+r,,

= X€EB, ir(Xxo).

Lemma 2.1.17. Let A< U A; = N (A) € U N (A}).

iel iel
Proof. Let x € A;(A). Then d(x, A) < r and thus A< B = d(x,B) <d(x, A). Hence
d:=dx,|JA)<r,

iel

= di,el:d(x,A;)<r,

= xeM(A;) = xe[J AN (A.

iel
Otherwise, assume by contradiction that Vi € I, d(x, A;) = r. By the characteristic
property of the infimum we have

Ve>0,y.e|JAird=d(x,y,) <d+e.

iel
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Then

Ve>0,3i.el:y. €A,

N
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withr <d(x,A;) <d(x,y:) <d+¢e.Hencer <d+¢,Ve>0=r <d,whichis a contra-

diction. O

Proposition 2.1.18. 1. y(N(A) = x(A)+r.
2. a(N(A) <a(A)+2r.

Proof. 1. Lete>0.Then

N
3ro>0: Ac | By, (x;) with {x1,x2,++, xy} < X.
i=1

By the characteristic property of the infimum,
Y(A) =1, < y(A) +e.
By Lemma , we have

N
N (A) < | A (Br, (1)),
i=1

And by Lemma , we have
N (Br, (X)) € By, 1r(Xo), Vi€ [1,N].
N
Hence A;(A) € U By, +r(x,), and so
i=1

ro+1€ HAN(A) > x(N(A) 1o +1r<)y(A)+e+1, VeE>O.

Then

XA (A) = x(A) +r.

N
2. Let € > 0. Then there exist D, > 0, N € N, (Ai)f.\il c X such that Ac U A; with
i=1

diam(A;) <= D,, Vie [1,N]. Hence
a(A) <D, < a(A) +e.
By Lemma , we have

N
VAN G AvHE

i=1




2.2 Measures of Noncompactness in Normed Spaces 23

And by Lemma , we have

diam(A;(A) < diam(A;) +2r<D.+2r< a(A)+£+2r, Ve>0.

CHAPTER 2

We conclude that

Ve>0, a(A)+2r+¢e€ K(AN-(A)).

Then
a(N(A) <=a(A)+2r+e Ve>0.

Asa consequence

a(N:-(A) < a(A) +2r.
O

Proposition 2.1.19. (Cantor’s Generalized Intersection Theorem) Let (X,d) be a com-

plete metric space and (F,),, a decreasing sequence of closed nonempty subsets of X such

n—oo

that lim a(F,) =0. Then Fy, :=(F, is nonempty and compact.
n

Proof. Letus show that Fy, # ¢. Let (x,), < X be asequence such that x,, € F,;, Vn and

Ay ={Xpn, Xns1,- -} Since o, € F;,, V n, then of; < {x1,..., x,}UF;,. Hence
a(eh) < a(F,), Vn.

Passing to the limit as n — oo, we get a(«/) = 0, which implies that « is relatively
compact. Hence the sequence (x,,), has a limit point x €  A,,. Since N A,, =N Fy, then
n n n
x€NF, = Fx.
n

Let us show that F, is compact. Since F, € F,, V n, then
0< a(Fy) < a(F,), VYn.

Hence a(Fy) =0, as n — oo, that is F, is relatively compact, hence compact. O

2.2 Measures of Noncompactness in Normed Spaces
Lemma 2.2.1. Let (X, |- ) be a normed space, A, B two bounded subsets of X, and A € R.
Then,

(a) diam(A + B) < diam(A) + diam(B).

(b) diam(AA) =|A|diam(A).
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Proof.

(a) Let x,y € A+ B. Then there exist aj,as € A, by, b, € B such that x = a; + b; and

y=ax+ b,. Thus

Ix=yll = llai+b1—az— b
< llai —azll + |1by = b2 ||
< diam(A) + diam(B).

Then

diam(A + B) < diam(A) + diam(B).

(b) Letx,ye A Awith A #0. Then
daj,ape A:x=Aa; and y=Aap.
So

Ix—yll=lAa - Aazll =1Al a1 — az|l < |A| diam(A).

Then

diam(AA) < |A|diam(A).

Conversely, let a;,a, € A. Then 1 a;,Aay € 1 A. So

A A 1 1
lar — azll = ||Zal —1612” = i Aar —Aayl < mdiam(/lA).

Then

diam(A) < % diam(AA)
Hence diam(AA) = |A|diam(A). O
Proposition 2.2.2. Lety be a or y a measure of noncompactness in a normed space
(X, I-1N. Then for all A,C c X and bounded and for all A € R*, we have
(a) Y(A+C) <y(A) +vy(C) (subaddivity)
(b) y(A+{x}) =y(A) (invariance under shift)

(c) Y(AA) =|Aly(A) (homogeneity)

Proof.
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(a) Let us show that a(A+C) < a(A) + a(C). Let (4)Y, and (Cj)?’il cover A and C re-

N
spectively. Then (4;)Y, + (Cj)}L, cover A+ C. Let & > 0. Then there exist é
’ 2
N M N M 3
Dy, D2 >0, (AL, (CHIL :AcJ A, cclJCy,
i=1 j=1

with diam(A;) <Dy, Vie [1,N], diam(C;) <Dy, Vje€ [1,N], and
€ €
a(A)<D;<a(A)+ 3 and a(C) = D, < a(C) + 7

By Lemma , we have

IA

diam(A; + Gy) diam(A;) + diam(C;), Vi€ [1,N], j€ [1,M]

IA

D1+D2,
£ £
< a(A)+§+a:(C)+§, Ve>0

= a(A)+a(C)+¢e Ve>0.

Hence a(A+C) < a(A)+a(C)+¢, Ve >0, thatis a(A+C) < a(A)+a(C). Let us show that
X(A+C) = x(A)+x(C). Lete > 0. Then there exist r1, 12 > 0, {a1, a2 -+ ,an} < X {cy, 2+, ¢j} ©
X such that

N M
Ac|JB(a) and Cc | By, (c)),
i=1 j=1

such that

x(A) =r <y(A) +§ and y(C) = <yx(C)+ g

Since (B, (ai))ﬁ.\il cover A and (B, (cj))?/i1 cover C, then

N M
A+Cc By (a)+ U By, (c)).
i=1 j=1

Let us show that

N M N+M
UBrl(az)+ LJ-BI'Z(C])g U Br1+r2(ak+ck);
i=1 j:1 k=1

N M
where a;y =0, Vk>Nand cj =0, Vk< N. Let xo € U By, (a;) + U By,(c;j). Then there
i=1 j=1
exist
io € [I)N]) jO € [I)M] :x() € Brl (aio) +Br2(cjo)-

Hence

14 € Br1 (ai,) and3n € Brg (Cjo) Xo =11+ by,
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which implies

Ity —aill<riand ||t —cjll <T2.

Then
X0 —(ai, +cj )l = lt1+t—ai,—cjl,
< ln—-aill+lt2—cjl,
< Ip+rn.
So
N+M
Xo € Briir, (@i, +€j.) = X0 € | Briar(ai+cp).
k=1

N+M
Hence A+ Cc U By 4+p,(ax+ci) and then
k=1

)((A+C)sr1+r2<x(A)+§+)((C)+g, Ye>0,

which implies y(A+ C) < x(A) + x(O).
(b) From (a) we have y(A+ {x}) < y(A) + y({x}) = y(A). Note that y({x}) < diam({x}) =
0= vy({x}) =0. Then
A=A+{x}+{-x}=>yA) = yA+{x}+{-x}
= y(A+{xh)+y({—xh)
= v(A)=yA+{x}).
Hence y(A + {x}) = y(A).

(c) Let (A)Y, cover A. Then (A A;), cover A A. Indeed

N N
AAc A UAi: U AA;.
[ i=1

i=1

N
Let € >0, then 3D > 0, H(Ai)f.\il, such that A ¢ J A; with diam(A;) = D, Vi€ [1,N],
i=1
such that ¢(A) = D< a(A) +&. Then, foralle >0

diam(AA;) = |A|diam(A;) < |AID < |A| (a(A) +€) = [A| a(A) +|A]€.

Then, foralle >0
a(lA) <A a(A) +|Ale.
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Hence
a(LA) < || a(A). (2.6)
M
Let € > 0, then there exists D’ > 0, and (1 Ai)ﬁ.v:[l suchthat L Ac U A1 A; withdiam(AA;) <
i=1
D/, Vie[l,M]and

alA) <D <a(lA)+e.

Then
diam(ap = JAMAR) DL _ah) € [
' AL AL AL A '
So
ay< XM L€ <A e
A [A] oAl '
Hence
M a(A) < a(dA). 2.7)

From (2.6) and (2.7), we deduce that
alA) =1 a(A), VAeR.

Let us show that y (A A) = |A] x(A). Firstly, we will show that

N N N

(@) U AB;(ai) = U By r(Aa;), where (a,')é\il c X.Letx€e J ABy(a;). Then there exists
i=1 i=1 i=1

io € [1,N] : x € AB,(a;). Hence there exists y € B;(a;) : x=Ayand |[y—a; | <r. Asa

consequence

Ix=Aa; l=IAy=Aa;l=I1Aly—ail <IAlT.

N N
Hence x € By (A a;) = x€ U Bjy (A a;). Conversely, let x € U By (A a;). Then there
i=1 i=1

exists i, € [1, N] : x € Bjy (A a;,). Hence

X
[x—Aa;ll<rlAl=|A] IIZ—aiOII <rlAl

X
= |=-al<r

A

x
=> 1 € B:(a;,) > x€ AB,(a;,).

(b) re HA)=|A|lre HAA).

N
re HLA = 3INeN, Hay,ap,-,an}c X: Ac | B, (ai)
i=1

N N

= AAc|JAB,(a) < JByrAa), (by (a)
i=1 i=1

= r|Ale HAA).
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(c) If re H(A A), then
N
ANeN, I{Aaj, Aaz,--, Aantc X:AAc | Br(Aay)
i=1

N 1 N
= AclJ B U B.x (@, (by (@)
i=1 i=1
.
> T EHA.

Secondly, let € > 0. Then there exist r1,> 0 and {a;, a,---,an} < X such that A c
N
U By, (ai) and
1=

YA =r <yx(A+e.

By using (b), we get

rneHA) = |AneHANA
=> YA <|Ar <|Ax(A)+|Alg, Ve>O0.

= YAA)=<|AyA.

Conversely, let € > 0. Then there exist r, > 0, {1aj,Aay,---,Aan} < X such that LA c
N
U By, (Aa;) and
i=1
YAA) <r<y(lA+e.

By using (c), we get

reHAA) = %(—:H(A)

rn yYAA)+e y(AA €
> yA)s—< < +—, Ve>0.
A= ] Al Al

= |Alxy(A) <y A).
Hence y (A A) = |A] x(A). O
Definition 2.2.3. Aset AisconvexifAx+(1-A)ye A Vx,ye AandA€|0,1].

Definition 2.2.4. The convex hull of A, denoted conv(A), is the smallest convex set that

contains A) (i.e. conv A is the intersection of all convex sets containing A.

Proposition 2.2.5. [1, 2, 3] (Invariance under the convex hull). Let A be a subset of a

normed space andy = a or y. Then

Y(A) =y(conv A).
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Proof. Acconv A= y(A) <y(conv A). The converse is based on the following fact
n n
1. convA={Y A;a;,a;€A A;>0, > A; =1}
i=1 i=1

2. diam(A) = diam(conv A).

Lemma 2.2.6. Let (X, | -||) be a normed space and x, € X. Then
B(x.,R) = {x.} + RB(0,1).

Proof. y € B(xo,R) © |y — %ol < R. Let u = £, Then u € B(0,1) and y = xo + Ru €
{x.} + RB(0,1). O

Lemma 2.2.7. (Riesz Theorem) [7] A normed linear space is finite-dimensional if and

only if the closed unit ball is compact.
Proposition 2.2.8. Let B = B(0,1) be the unit ball in a normed space (X, || - |I). Then

0, ifdim(X)<oo;
x(B) =
1, if dim(X)=oo.

Proof. By Riesz Lemma, we have

dim(X)<oo < B(0,1)relatively compact,

<  y(B) =0 (for X is complete).
Assume that diam(X) = co. Then
B(0,1)cB(0,1)> 1€ HB)=x(B)=1.

We need to prove that y(B) = 1. By contradiction, assume that y(B) <1 andlet0 < ¢ <

N
1 —x(B). Then there exits r >0, N € N, {x}, xp,--+, xn} € X such that B< U B(x;) and
et

l

YB)sr<xyB)+e<l.

N
Since B < U B;(x;), then
o1

x(B) = lrsnigv xX(Br(x1))

= lma)}v)(({xo} +rB(0,1)) (by Lemma )
si=s

x(rB(0,1)) = rx(B(0,1)).

By Riesz Theorem, y(B) # 0, which is a contradiction with 1 > r, and so y(B) = 1. O
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Corollary 2.2.9. Let (X, |- 1I) be a normed space and B = B(x.,r) € X. Then

0, ifdim(X)<oo;
x(B) =
r, if dim(X) =oo.

Proof. By Lemma , we know that B(x,,7) = {x.} + rB(0,1). Then
X(B(x.,1)) = x{xo.}+rB(0,1)),
= x(rB(0,1)),
= rx(B(0,1)),

0, if dim(X)<oo,
r, if dim(X)=oo.

O

Lemma2.2.10. Let (X, |-l) be a normed space and S be the sphere of the unit ball B(0, 1).
Then

conv (S) = B(0,1)

Proof. Clearly S c B,[0] = B(0,1). So B;[0] convex implies that, by definition, conv (S)
B1[0] = B(0,1). Indeed, let x, y € B;[0] and A € [0,1]. Then

IAy+A-Axl = IAyI+11-2A)x]

Ay +11 = Al x|

IA

A+1-A=1.

SoAy+ (1 —-A)x e B;[0] = B;[0] is convex.
Let us show B1[0] < conv (S). Let x € B1[0] and A = % Then A € (0,1] and x =
ﬂtﬁ +(1 —A)ﬁ, where ”J—’TJE € S. Hence x € conv (S) = B;[0] = B(0,1) < conv (S). We

conclude that conv (S) = B(0,1). O

Remark 2.2.11. By Lemma and Proposition , we concludethaty(S) =y(conv (S)) =
y(B(0,1)) = y(B(0,1)).

Lemma 2.2.12. (Ljusternik-Schrinelman-Borsuk Theorem)[9] Let S be the sphere in a
normed space X with dim(X) = n. Then, for every covering (Ai);l:1 by closed sets, there

exists at least one set A;, that contains two antipodal points of the sphere S.
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Proposition 2.2.13. Let (X, || - |l) be a normed space and B = B(0,1) be the unit ball in
X. Then
0, ifdim(X)<oo;
a(B) =
2, if dim(X)=oo.

Proof. By Riesz Lemma, we have

dim(X)<oo = B(0,1) is relatively compact,

= a(B)=0.
Assume that dim(X) = co. Then by Proposition
y(B) < a(B) <2y(B) = a(B) <2.

Suppose by contradiction, that a(S) = a(B) < 2.(by Remark ) Then Ve € (0,2 —

a(S)), 3D >0, 3(Ai)f-\i1 (chosen closed): S c LAJ] A; with diam(A) < a(S) +e <2, Vie
[1,N]. Let L = {x1, x2,---, xn} be a linearly ind(le;endent subset of X and E = [L]. Then
diam(E)=N.LetSy={x€ E:||x]| =1}. Then SNSy =Sy C G (Sy N A;) with diam(Syn
Aj)) = diam(A;) < 2, Vi€ [1,N]. This is a contradiction Wit};:ﬁemma . So a(B) =

2. O
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3.1 Related Mappings

Definition 3.1.1. Let (X,d), (X', d’) be two metricspacesand f : (X,d) — (X',d') a map-
ping.
(a) Wesay that f is Lipschitz if

3k=0:d'(f(x), fy) <kd(x,¥), Vx,y€X.

(b) We say that f is contraction if f is Lipschitzian with 0 <k < 1.
Hereafter 225 (X) will denote the family of all bounded subsets of X.

Remark 3.1.2.

(a) Every Lipschitzian function is uniformly continuous. Recall that f is uniformly con-

tinuous, if
Ve>0,36.>0,Vx,ye X:d(x,y) <6:>d’(f(x),f(y)) <E.

By taking 6 = ¢, where k is the constant of Lipschitzian, we find that f is uniformly

continuous.
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(b) fk-Lipschitz oV AePg(X),diam(f(A)) < kdiam(A). Indeed

fk—Lipschitz = 3k=0:d'(f(x),f(y) <kd(x,y),Vx,y€A.

= d'(f(x), f(y) <k sup d(x,y) = kdiam(A).
X, yEA

= diam(f(A)) < kdiam(A).
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Conversely, let A = {x, y} € 25(X). Then

diam(f(A)) <kdiam(A) = d'(f(x), f(y) <kd(x,y)
= fisk-Lipschitz.

Definition 3.1.3. Let A, B c X be bounded subsets. The Hausdorf{f distance between A
and B is defined by

H;(A, B) = max{sup d(a, B),sup d(b, A)},
acA beB

whered(a,B) = inf d(a, b) and d(b, A) = inf d(b, a).
beB acA
Proposition 3.1.4. H;(A,B) =inf{r >0: Ac A} (B) and B c A, (A)}.

Proof. Let D= H;(A,B) and F ={r >0: Ac A;(B) and A c A;(A)}. By definition of

the Hausdorff distance, for all a € A, we have

d(a,B)<supd(a,B)<sD<D+¢,Ve>0.

acA
Then

A€ Npie(B),Vae A=> Ac Npi(B).

Likewise B € Ap.-(A). Hence D+ € F, Ve > 0. Then, inf(F) < D+¢, Ve > 0and so
inf(F) < D. (3.1)
Let r € F. Then

YaeA => ae N (B),
= d(a,B)<r VaceA.

= supd(a,B)<r,VreF

acA

= sup d(a, B) <inf(F). (3.2)

acA
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Likewise
sup d(b, A) <inf(F). (3.3)
beB
From (3.2) and (3.3) we get
o
[a's]
D = max{sup d(a, B),sup d(b, A)} <inf(F). (3.4) =
acA beB %
o
Then by (3.1) and (3.4) we conclude that D = inf(F). O ©

Proposition 3.1.5. Hy is a distance over 2;;(X) the family of all closed subsets of X.

Proof. 1. (i) Hy(AB)=0, VA, BeP,X).

(ii) A=B=> H;(A,B)=0

H;(A,B)=0 = d(a,B)=0,VacAandd(b,A)=0,VbeB.

2. Hy(A,B) = Hy(B, A).

= ae€BVaeAandbe A, VbeB.
= AcBandBc A
= A=B

= A=B, if Aand B are closed.

3. Letae A, be B,and ce C. Then

IA

d(a,B)<d(a,b)<d(a,c)+d(cb), VbeB.
d(a,B)<d(a,c)+d(c,B), VceC,
(by passing to the infimum over b € B).

d(a,B)<d(a,c)+supd(c,B), VceC.
ceC
d(a,B)<d(a,C)+supd(c,B), Vace A.
ceC
d(a,B) <sup d(a,C) +sup d(c, B).
acA ceC
sup d(a,B) <sup d(a,C) +sup d(c, B).

acA acA ceC

H,(A,C) + Hy(C, B).

Inverting the roles of A and B, we get

sup d(b, A) < Hy (B, C) + Hy(C, A).
beB
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Finally
Hq(A,B) = Hq(A,C)+ Hq(C,B), VA, B,C € Z(X).

Hence H, is a distance over Z2,;(X).

Proposition 3.1.6. Let A, B c X be such that A and B are bounded. Then
(@) |la(A)—a(B)l=2H4(A, B).
(D) 1x(A) - x(B) < Ha(A B).

Proof.

(a) By Proposition , we have
H;(A,B) =inf{r >0: Ac A,(B) and B c 4, (A)}.

letre F:={r>0:Ac ./ (B)and B c .4 (A)}. Then A c .A,(B)and B c A#,(A),
which implies that

a(A) < a(A:(B)) and a(B) < a(AN;(A).

Using Proposition , we get

a(A) <a(B)+2r and a(B) < a(A) +2r.

Then
la(A) —a(B)|<2r,VreF
Hence

|a(A) —a(B)| <2inf(F) =2H4(A, B).
(b) From the proof of (a), we get y(A) < x(A;(B)) and y(B) < y(A4;(A)). Hence
=>x(A) =xyB)+randy(B)<y(A)+r,

that is

[x(A)—x(B)I=r,Vre F=|y(A) —yB)| <inf(F) = Hy(A, B).

Remark 3.1.7.

(a) a,y:2.(X)— R* are Lipschitz functions with constants 2 and 1 respectively.

CHAPTER 3
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(D) If(X,d) =X, |-I) andy = a orx, then
ly(A) —y(B)| <y (B(0,1)).Hy(A, B).

Definition 3.1.8. A function f: (X,d) — (X', d') is said to be compact if f (A) is compact,

YV Ae Pg(X). If f compact and continuous, then it is called completely continuous.

Lemma 3.1.9. Let f: (E,|l-llg) — (E - ) be a linear mapping. Then

f continuous < f bounded < f bounded over the unit ball.

Proposition 3.1.10. Let f: (E, |- lg) — (E |- | r) be a linear mapping. Then
(@) f compact= f continuous.

(b) f continuous with dim(E) <oo = f compact

Proof.

(a) Let B be the unit ball. Then

f compact = f(B) compact,
= f(B) bounded,
= f(B) bounded.

By Lemma , we conclude that f is continuous.

(b) Let Ae Z5(X). Then

f continuous = f(A) bounded (by Lemma )

= f(A) closed and bounded
= f(A) compact (dim(E) < 00).

= f(A) compact.

O

Definition 3.1.11. Let f: (X,d) — (X', d") be a bounded mapping and y (« or ) be a

measure of noncompactness. Then

(a) f iscalled a k-set contraction, if there exists k = 0, such that

Y(f(A) < ky(A), VAe Pp(X).

CHAPTER 3
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(b) f iscalled al-set contraction, if k = 1.

(¢) f iscalled a strict k-set contraction if0 < k < 1.

(d) f iscalled a condensing, if VA€ 25(X) withy(A) >0, we havey(f(A)) <y(A).

Remark 3.1.12.

CHAPTER 3

(@) If f is a strict k-set contraction, then f is condensing, then f is a 1-set contraction
where [ is continuous and X is complete. Indeed let A € Pg(X) with y(A) > 0. Then,
since f is a strict k-set contraction, there exists 0 < k < 1 such that y(f(A)) < ky(A) <

Y(A), thatis f is condensing.
(b) Suppose that f is condensing, continuous, and X is complete. Then
e ify(A) >0, theny(f(A)) <y(A) = f 1-set contraction,
e ify(A) =0, then A is compact for X is complete. Hence f(A) is compact for f is

continuous. As a consequence y(f(A)) =0 < y(A) for f(A) < f(A) and y(f(A)) =
0).

(¢) f compact < f 0-set contraction, whenever (X', d') is complete. Indeed
f compact = f(A) compact, ¥ A€ P(X),
=> y(fA))=y(f(A)) =0,
= [ 0— set contraction.

Conversely

f 0—set contraction = y(f(A)=y(f(A)=0,VAePg(X),

= f(A)) compact, (since X' is complete),

= [ compact.

(¢c) Let f:(E,|Il-llgp) — (K- lIlr) be a k-set contraction, and g : (E, || - llg) — (E |l - llr) be a

compact function. Then f + g is a k-set contraction. Indeed let A € 25 (E). We have

y((f +8)(A) Y(f(A) +g(A),

IA

Y(f(A) +v(g(A)
= v(f(A)+0,

IA

ky(A).

Hence f + g is a k-set contraction.
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Proposition 3.1.13. f k-Lipschitz= f k-set contraction (with respect to the kuratowski

MNC).
Proof. Let Ae &25(X). Then
N
Ve>0,3D,>0,ANEN, 3{A), Ay,---, Antc X: Ac | 4;,

i=1

with diam(A;) < Dg, Vi€ [1,N] such that a(A) < D, < a(A) + €. We have

N N
fA<flUAi | <Ur@.
i=1 i=1
Then
N
a(f(A) < a(U f(A) ] = max a(f(A;)) < max diam(f(A;)).
i=1 1<i=N 1<i=sN
By Remark , (b) we have
a(f(A) < lma)lcv diam(f(a;) < lmaJZ(V kdiam(A;), (for f is Lipschitz).
<I< <i<
< kDg<k(a(A)+¢),Ve>0
Hence a(f(A)) < ka(A). O

Remark 3.1.14. In case of the Hausdorff MNC, we can find
f k— Lipschitz= f2k — set contraction.
Proposition 3.1.15.

Let f:(Xy,d1) — (Xo,d2) be a ki -set contraction and
g:(Xyo,dy) — (X3,d3) bea k,-set contraction. Then

gof:(Xy1,dy) — (X3,d3)isak.k;-set contraction.
Proof. Let Ae Zg(X;). Then

y(g(f(A)))

IA

ko y(f(A)) (for g is ky-set contraction).

IA

ko.kyy(A) (for f is k;-set contraction).

Proposition 3.1.16.

Let f: (X1,1-lx,) — (Xo,1-1x,) bea ki -set contraction and
g: Xy, 1x) — X2 l-lx,) bea k,-set contraction. Then

f+rg: (X, lx) — X, l-lx,) isa (ki + k) -set contraction.

CHAPTER 3



3.2 Fixed Point Theorems 40

Proof. Let Ae Pg(X1). Then

Y(f(A+gA) = y(f(A)+y(gA)

IA

ki1y(A) + ko y(A)

(k1 + ko) y(A).

3.2 Fixed Point Theorems

Definition 3.2.1. A fixed point of a function is an element of the function domain that

is mapped to itself by the function, i.e., x € D and x = f(x).

Theorem 3.2.2. (Brouwer’s Fixed Point Theorem)[6, 9] Let C c R" be a nonempty com-

pact convex subset and f : C — C a continuous function. Then f has a fixed point.

Example 3.2.3. Let f : [a, b] — [a, b] be a continuous function where [a, b] c R. Then f
has a fixed point. Indeed, [a, b] is compact convex subset of R and f is continuous, Then
by Brouwer’s Fixed point Theorem, we conclude that f has a fixed point. Recall that the
Intermediat Value Theorem states that if f : [a,b] — R continuous and f(a)f(b) <0,
then thereexistsc€ (a,b) : f(c) =0. Let g(x) = f(x)—x: [a, bl — R. Then g is continuous
and, if g(a) =0 or g(b) =0, then we are done. Otherwise g(a) = f(a) —a >0 and g(b) =
f(b)—b < 0. By the Intermediate Value Theorem, there existsc € (a,b) : g(c) =0« f(c) =

c. Hence f has a fixed point.

Remark 3.2.4. Brouwer’s Fixed Point Theorem is valid in any finite dimensional normed

space.

Theorem 3.2.5. (Schauder’s Fixed Point Theorem)[6, 9] Let X be a Banach space, C c X
a nonempty bounded closed convex subset, f : C — C be continuous and f(C) is com-

pact. Then f has a fixed point in C.

Corollary 3.2.6. (Schauder’s Theorem Second Version) Let X be a Banach space and
C c X a nonempty compact convex subset. Then every continuous f : C — C has at least

one fixed point.

Proof. Since C is compact, then C is closed and bounded. In addition f continuous

implies that f(C) compact. By Schauder’s Theorem, f has a fixed point. O
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Remark 3.2.7. Let X be a Banach space. If C # ¢ is a bounded closed convex subset of
X and f: C — C is continuous, then [ has not necessary a fixed point as shows the fol-

lowing counter-example. Let X = {x = (x,), real sequence : lim x, = 0} with the norm
n—oo

x|l = sup |x,|, and C = B(0,1) (C is bounded, closed and convex). X being complete,

n=1

define the mapping f : C — C by f(x) = (%,xl,m ,xn,---).
Claim1: f(C) c C. We have

CHAPTER 3

1+ x| 1+ x|l
> xll} =

Il f (%)l = max{ <1,VxeC.

Hence f(x)e C, VxeC.
Claim2: f is continuous. Let x,y € C and | f(x) — f(y)l = max{w, lx — yli}.

We have || x— yll = | llxll - Iyl | = ””Zﬂ] So llf(x) = Il = llx - yll. By taking 6 = &,

we can see that f is uniformly continuous.

Claim3: f is fixed point free. Assume by contradiction that f (x) = x. Then,

1+ |lx]
X1 =
2
X2 = X1
Xn = Xp-1
Hencex1:x2:~--:xn:%M.Since lim xn:%;éo,thenxer.
n—oo

Theorem 3.2.8. (Banach'’s Fixed Point Theorem)[9] Let (X, d) be a complete metric space
and f: X — X (or f:C— C with ¢ # C c X closed) a contractive mapping. Then f has

a unique fixed point.

Proof. To show the uniqueness, suppose that f has two fixed points x and y such that
x #y.Then
dx,y)=d(f(x),f(y) < kd(x,y),with0O<k<]l,
< d(x,y), ford(x,y) #0,

which is a contradiction. O

Theorem 3.2.9. (Darbo’s Fixed Point Theorem) Let X be a Banach space and C c X
be nonempty closed bounded convex and f : C — C be a continuous and strict k-set

contraction. Then f has at least one fixed point.
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Remark 3.2.10. This theorem encompasses Schauder and Banach fixed point theorems.

Also we can consider the sum of a compact and contractive mapping.

Proof. Define recurrently a sequence of sets by

C,=C,
Cn+1 =conv(f(Cp)).
We have

e C,is closed convex, V n = 0.

* (Cy)p is decreasing. Indeed

C, =conv(f(Co)) =conv(f(C)) cconv(C) =C,

for C is closed convex and f(C) c C. By induction, if C,, € C,,_1, then:

conv(f(Cy)) cconv(f(Cp-1)) = Cpy1 < Cy.

. nlim a(C,) = 0. Indeed, there exists 0 < k < 1 such that
—00

a(Cps1) = alconv(f(Cp))) = alconv(f(Cyp)))

= a(f(Cy),

IA

ka(cl’l))

k* a(Cy-1),

IA

K a(Cy).

IA

Since 0 < k<1, then lim a(C,.+1)=0.
n—oo

* Conclusion: by the generalized Cantor’s intersection theorem, C, = C;, is com-
n
pact and nonempty. Also we have C, is convex as intersection of convex sets. Let

us show that f(Cy) € C. For all x € Cy,, we have
= f(x)€Cps1, Vn,
= f(x)€ Co.

Hence f(Cy) © Cwo. Since f: C», — Co is continuous, then, by Schauder’s Theo-

rem (second version), there exists x € Cy, : f(x) = x.
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O

Theorem 3.2.11. (Sadovskii’s Fixed Point Theorem) Darbo’s Fixed point Theorem still

holds for condensing mapping.

Proof. Let x, € C and €6 denotes the class of all bounded closed convex subsets F of C

such that x, € Fand f(F)c FELet A= (| Fand B=rconv(f(A)U{x.}). Then
Fe¥
* X €C=>CEE =>F #.
* Xo €A A# .

e Ac C= Abounded.

Moreover

fA=f

ﬂF)c N fFc ) F=A

Fe€ Fe€ Fe€
Also we have

* X, € Aand f(A) c A, then (f(A) U {x.}) c A.
¢ Ais convex and closed.

Hence B c A. (3.5)

Then f(B) c f(A) c conv(f(A) U{x.}) = B. Also B is closed convex subset of C and

X, € B.

Hence A< B. (3.6)

From (3.5) and (3.6), we get A = B. Since f is condensing, then
a(A) =aB) =a(f(A) <a(4), ifa(A) >0,

a contradiction. Then, a(A) = 0= A compact. A is nonempty closed bounded convex
subset of X, and f: A — A continuous and f(A) is compact. By Schauder’s Theorem

Second Version, f has a fixed point. O
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4.1 Existence of Local Solutions

Let I cR be an interval, ¢, € I°, and
fg: IxR"—>R"

be two continuous functions such that g is contractive with respect to the second ar-
gument:
Jkel0,D:lgt,x)—gt,PI<klx—yl, Vtel, Vx,ycR".

Theorem 4.1.1. Then the nonlinear integral equation
t
x(t) = g(t,x(1) +ff(s,x(s))ds, to,tel 4.1)
to

has at least one local solution, i.e., there exists 6 > 0 and a solution x defined on Is =

[to_(s,to+5]CI.

Remark 4.1.2. If the interval I is left bounded and t, is the left end point, then take

Is = [to, t, +0].
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Corollary 4.1.3. (Peano’s Theorem) Let f : I x R" — R" be continuous and (t., x.) € I x

R”". Then, the initial value problem (Cauchy problem)

{ X =fx0), el

4.2)
x(t) = Xo
has at least one local solution.
Remark 4.1.4. If, in Corollary , [ is locally Lipschitz, then (4.2) has a unique local

solution. This is Cauchy-Lipschits local existence theorem. The proof of uniqueness is
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checked as follows. Given two possible solutions x and y, we have

() = y(Dl

)

t
f[f(&x(S)) — f(s,y(s)] ds
To

IA

k =k Z(1).

t
fllx(S) —y(s)llds
To

ThenV t = ty, Z'(t) = || x(t) — y(O) || and thus
2/ <kZH o (Z -kZ)()<0e (Z()e ¥ <o0.

Hence

0<Z(e ¥ <Z(tge ¥ =0=>x(t) =y(1), VE=1o.
A similar argument leads to x(t) = y(t), Vt < 1.

Proof. We will prove Theorem in two steps.

Step 1. Functional setting. Let a >0, g = sup |g(z,0)|, and b > %. Let C =
[to — a, ty + a] x B[O, b] be a cylinder. Since f iz_ctglrsl?inuous, there exists M > 0 such
that | f(,0)|l < M, Y(t,x) e CLet 0 < ¢ < min(a,%) and J = [tp— 0, tp + 0].
Consider the space X = €(J,R") equipped with the norm || x|/ x = sup || x(¢)]| and D =
% (J,BI[0, b]). Then X is a Banach space. Since € (J,R") = C€b(],|R2”t)€]and from Exam-
ple 1.1.8, we conclude that X is a Banach space. Moreover, D = Bx|[0, b]. Indeed,
Bx[0,b] c D and let x € D. Then x is a continuous function and V ¢ € J, x(¢) € B|0, b],

we have

sup [[x(0)] <b=|xllx < b= x€ Bx[0,b] = D c Bx[0, b].
te]

Hence D = Bx|[0, b]. So D is closed bounded and convex subset of X. Define the non-

linear mappings F,G: D — X by

t
Fx(t) = ff(s,x(s)) ds and Gx(t) = g(s, x(1)).
Ip
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F is called a Hammerstein operator and G the Nemytskii operator associated with f

and g respectively. Then Fx and Gx are continuous functions and we have

x is solution of equation (4.1) < x(t) = Fx(t)+Gx(¢t), Vtel.

o x=Fx+Gx,

< x fixed point of the sum (F + G).

Step 2 : The mapping F + G satisfies Darbo’s Fixed Point Theorem.
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(a) (F+@G)(D)c D.For all xe D, we have

IFx+Gxllx = supl(Fx+Gx)(@l,
te] t
= sup g(t,x(t))+ff(s,x(s))ds ,
te] i
< sup [llg(t, x(1) —g(,0) [ +11g(t,0|
te]t
+ fllf(s,x(S))Il ds
To
< stg) [k XD + | g(z,0)]| + M1z - 1]
< klxlx+Mé+g
< kb+Mbé+g<h.

(b) Gisa k-contraction because g is. Let x, y € D. We have

IGx—Gyllx = supllg(t,x(£)— g, y@)l
te]
< ksup [x(£) =yl
te]
= klx-ylx.

Hence G is continuous.

(c) F is continuous. We check that F is sequentially continuous. Let (x,), < X be a

sequence such that lim x, = x. (i.e. lim sup ||x,(#) — x(#)|| = 0). We have
n—oo —00 l'€]

1 Fx,(8) = Fx(2)|l

t
f[f(s, xn(8) = f(s,x(s)]ds
Iy

IA

t
f I £ (s, x,(8)) — f(s,x(s)ll ds].
To
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Since (x,), '— x in X for the sup-norm (i.e. uniformly convergent on J) and f is

continuous, then (f(:, x,(-))), converges uniformly to f(:, x(-)). So

’}ijgollf(s,xn(sn—f(s,x(S))II =0,Vse]J.

Hence

lim |Fx,(t)—Fx()lx=0,Vte].
n—oo

We shall make use of an important compactness criterion.
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Lemma 4.1.5 (Ascoli-Arzela Lemma). [7] Let E, F be two metric spaces such that E is

compact and F is complete, and H c 6 (E, F) be bounded. We have

) H equicontinuous.
H relatively compact <

Vte E, H(t) is relatively compact in F.

Definition 4.1.6. H is equicontinuous if Ye >0, da = a(e) >0, Vt,s€ E: dg(s, 1) <

a=>dp(f(s),f(t)<e, VfeH

Corollary 4.1.7. IfF is a Banach space with diam(F) < oo, then for every bounded subset

H, we have

H c € (E, F) relatively compact < H equicontinuous.

We will apply this Corollary with E = J and F = R". Hence
H=FD)c<¥(,R".

Forall y € F(D), there exists x€ D: y = Fx.Fore >0 and ¢, s € J, we have

ly(®) =yl = IFx(t)—Fx(s)ll
S
< fllf(u,x(u))lldu
t
< M|t-s|<M a<e.

Iflt—s|l<aandO0<a< ﬁ Hence F(D) is equicontinuous.

(e) Conclusion. Since G is contraction and F (D) relatively compact, then (F+G) is strict
k-set contraction. Since F+ G: D — D and D nonempty, closed, bounded, and convex
subset, then we conclude, by Darbo’s Fixed Point Theorem, that F + G has at least one

fixed point x € D a solution of Equation (4.1) defined on J and continuous. O
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4.2 Existence of Global Solutions

Let I = [a, b] be a compact interval of the real line and #; € I. Consider two continuous
functions f,g: I xR" — R", such that

(Hyg) g is a contraction in the second variable.

(Hy) There exist [ € L'(I) and o > 0 such that

If &0l <IOA+I1xI9), ¥ (¢,x) €I xR",

with either 0 <o <1l)or(c=1and k+ ||| <1).
We have

Theorem 4.2.1. Under Assumptions (Hg) and (Hy), the nonlinear integral equation:

t
x(t) = g(t,x(1) +ff(s,x(s)) ds, ttyel (4.3)
Tp

has at least one global solution defined on 1.
Corollary 4.2.2. (Cauchy-Lipschitz Theorem) Suppose that f : I xR — R" is a Lipschitz

function with respect to the second variable. Then the initial value problem

(4.4)

xX'(t)=f(t,x), t,tpe I, xo e R",
x(l'o) = X0.

has a unique solution defined on I provided that k+ | f(-,0)|| < 1.
Proof. We know that

t
(4.4) & x(t) = xo +ff(s,x(s)) ds.
Ip

We let g(¢,x) = xp. Then

< kllxll+1f01,
<

(k+ 11 £ 00 DIxll+ 1 f(,0 + k,
= (k+1f@OINA+NxD.

Since I is bounded, the function I(t) = k+ || f(¢,0)] € LY(I). The uniqueness follows as

in Corollary . O

Remark 4.2.3.
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(a) We can take 1(t) = max{k, || f(¢,0)]]}.

(b) We can also take x, instead of 0, with [(t) = max{k, 2kl xoll, 2l f (£, xo) lI}.

Proof. We prove Theorem in two steps.

Step 1 : Functional setting. Let X = € (I,R"") be the Banach space endowed with the

Sup-norm

xllx =sup llx(D].
tel

Define the mappings F,G: X — X, by
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t
Fx(t) :ff(s,x(s))ds, Gx(t)=g(t,x(1), tel.

lo

As in Theorem , we can prove that F and G are continuous and G is a contraction.
Let D = Bx|[0, R] c X be a closed ball with radius R > 0 (to be determined). As Theorem

, F(D) is relatively compact by Ascoli-Arzela Lemma. As a consequence, F + G is
a strict k-set contraction. Thus, if we can find some R > 0 such that (F+ G)(D) c D,
Darbo’s Fixed Point Theorem applies and provides a fixed point xe D: x = Fx+ Gx <
Vtel, x(t) = Fx(t) + Gx(t), which implies that x solution of (4.3).

Step2: (F+G)(D)c D. Let xe D = Bx[0,R]. Then

IFx+Gxllx = sup | Fx(£)+Gx(8)l,
tel

t
< sup fllf(s,x(S))Il ds +|g(t,x(t))||],
tel .
t
< sup fl(s)(1+||x(s)||”)ds
tel o

+sup k|lx(6)ll +sup gz, 0],
tel tel

@ +1x)I)+kR+g,

IA

IA

I1,(1+R°)+kR+ g <R,

whenever g = 1 and % <R, or, 0 <o <1 inwhich case, (||/|; + )R + 1|, <

(1-k)R'~7, which is valid for R large enough. O
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