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1. Preliminaries 

 

In this preliminaries section, we will give some essential concepts that 

we will need in following sections of this project. We start with 

summary about topological space. 

 

1.1 Topological Space  

 

Definition 1.1.1: 

Let X be a non empty set. A collection   of subsets of X is called a 

topology on X if it satisfies the following  : 

i. X and   belong to τ   . 

ii. The intersection of finite collection of sets in   belong to τ . 

iii. The union of any collection of sets in   belong to    . 

A pair (X, ) , X is non-empty set and   is topology on x is called a 

topological space. 

 

Example 1.1.1 : 

Let X = {a,b,c,d,e} and let  

   = {X, ,{a},{a,c,d},{c,d},{b,c,d,e}} 

   = {X, ,{a},{c,d},{a,c,d},{b,c,d}} 

   = {X, ,{a},{c,d},{a,c,d},{a,b,d,e}} 

Then    is a topology on X, while    is not a topology on X since 

{a,c,d}U{b,c,d}={a,b,c,d)     . 

Also    is not a topology on X since {a,c,d}   {a,b,d,e} = {a,d}      . 
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Example 2.1.1 : 

Let X be any non-empty set , then : 

i. The collection of all subsets of   is a topology on   called the 

discrete topology and it is denoted by    =  ( ) is the power set 

of  . 

ii. The collection    = { ,  } is a topology on   called the indiscrete 

topology or the trivial topology. 

Note that if   is any topology on  , then     ⊆   ⊆    

 

2.1 Open Set and Closed Set 

 

Definition 1.2.1 : 

Let (X, ) be a topological space : 

i.  A subset U ⊆ X is said to be open iff  U   . 

ii. A subset E of X is called closed set if its complement        . 

 

Example 1.2.1 : 

Let X = { a,b,c,d,e } and   = { X, ,{a},{c,d},{a,c,d},{b,c,d,e}} , then (X, ) 

is a topological space . Note that : 

i.  X,  ,{a},{c,d},{a,c,d},{b,c,d,e} are open sets . 

ii. X, ,{b,c,d,e},{a,b,e},{b,e},{a} are closed sets . 

iii. There are subsets which are both open and closed sets as {b,c,d,e}.  

iv. There are subsets which are neither open nor closed sets as {a,b} . 
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Remark 1.2.1 : 

Let (X, ) be a topological space . Then : 

i. X and   are open sets. 

ii. Intersection of any two open sets is also open . 

iii. Union of the collection of open sets is also open. 

Therefore to give topology to X means to define open sets in X 

 

Remark 2.1.1 : 

Let (X, ) be a topological space then the collection of closed sets G has 

the following properties : 

i. X and   are closed sets. 

ii. The intersection of the collection of closed sets is closed . 

iii. The union of any tow closed sets is closed . 

 

 

1.1 Basis for a Topology 

 

Definition 1.3.1 : 

Let X be a non-empty set. A collection     P(X) is called a basis for a 

topology   on X if it satisfies: 

i. For each     X, there is B     such that     B. 

ii. If             and   ,       , then there is        such that      

   and             . 
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Definition 2.3.1 : 

If   is a basis for a topology on X , the topology   generated by   

described as follows: 

U       For each x   U, there is B     such that x   B and B   U. 

That is : 

U is open set   For each     U,there is B    ,     B and B   U. 

 

Example 1.3.1 : 

Consider the set of all real number R. The collection                                 

  = { (a,b) : a,b   R a < b } where (a,b) = {     R : a <   < b } is a basis 

for a topology on R because : 

i. For each     R,     (  - 1,   - 1),(   – 1 ,   + 1)    . 

ii. If     (a,b)   (c,d),then it is easy to find   > 0 such that.                 

    (  -  ,   +  ),(   -  ,   +   )   (a,b)   (c,d). 

So   is a basis for a topology on R . The topology   generated by 

the basis   = { (a,b) : a , b   R, a < b } is called the standard 

topology on R and denoted by R = (R ,  ). 

 

Example 2.3.1: 

Consider X = R. Then, the collection   = { [a , b) : a , b   R , a < b } 

where [ a , b) = a     < b } is a basis for a topology on R because: 

i. For each     R,     [  ,   + 1),[   ,   + 1)    . 

ii. If     [ a , b)   [c , d), Then it easy find    > 0 such that                  

    [  ,   + ) and [  ,   + )   [a , b)   [c , d). 

So   is a basis for a topology on R. the topology    generted by the 

basis   = { [a,b) : a , b   R and a < b } is called the lower limit 

topology on R and denoted by    = ( R ,   ). 
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4.1  Topological Subspaces 

 

Definition 1.4.1 :  

Let (X, ) be a topological space. Let Y be a non empty subset of X. A 

relative topology on Y is defined to be the class of all intersections of Y 

with open subsets of X. i.e    = { V = Y   U : U     }. 

Then    is a topology on Y , (Y,   ) is called a topological subspace of      

( X ,  ). 

 

Example 1.4.1 : 

Let X = { a,b,c,d,e } , and Y = { a,d,e } and   = {X, ,{a} , {c,d} , {a,c,d} ,     

{ b,c,d,e}}. Then (Y,   ) is a topological subspace  of ( X ,  ) where          

  = { Y, ,{a},{d},{a,d},{d,e}}. 

 

Remark 1.4.1 : 

i. Every topological subspace of discrete topological space is 

discrete. 

ii. Every topological subspace of indiscrete topological space is 

indiscrete. 

 

Theorem 1.4.1 : 

If   is a basis for the topology of X and Y is a subspace of X, then the 

collection    = { Y   Y: B     } is a basis for the topology on Y. 

Theorem 2.4.1 : 

Let Y be a subspace of X. If U is open set in Y and Y is open set in X, 

then U is open set in X . 
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5.1 Product of Topology Space 

 

Definition 1.5.1 : 

Let X and Y be any two sets. The Cartesian product, or simply product 

of X by Y is denoted by X × Y and defined as: 

                               X × Y = { ( ,y) ;     X and y   Y }. 

 

Definition 2.5.1 : 

Let ( X, ) and (Y,    ) be two topological spaces. We say that the 

topology which has the base   = { U × V ; U     and V      } is the 

product Topology on the set X × Y and denoted by       and                   

( X × Y ,     ) is called the Product Space of X by Y. 

 

6.1 Hausdorff Space 

  

Definition 1.6.1 : 

A topological space   is called a Hausdorff space if for each pair        

of distinct points of  , there exist neighborhoods   and    of   and     
respectively such that         

 

Theorem 1.6.1 : 

Any subspace of a Hausdorff space is a Hausdorff space 

 

Theorem 2.6.1 : 

The product of two Hausdorff spaces is a Hausdorff space.  
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7.1 Continuity in Topological Space 

 

Definition 1.7.1 : 

Let (X,   ) and (Y,   ) be topological spaces . A function f : X   Y is 

continuous relative to    and    , or    −    continuous,or simply 

continuous, iff the inverse image of every open set of Y is a    −open set 

of X. i.e., 

                                              V             (V)      . 

 

Example 1.7.1: 

Consider the following topologies   ,    on X = {a,b,c,d} and Y = 

{x,y,z,w} respectively: 

                                = {X,  , {a}, {a, b}, {a, b, c}}, 

                                = {Y,  , {   }, {y}, {  , y}, {y, z, w}} 

Define   : X → Y, g : X→Y                                                                                    

   (   ) = {   (Y),   ( ),   {   },   {y},   {  ,y},   {y,z,w}} 

= {X, ,{a}}. Then the inverse image of every open set in    is open in X 

relative to          is a continuous function . 

   (  ) = {X,  , {a,b}, {c,d}}. But {c,d} is not open in         is not a 

continuous function. 

 

Example 2.7.1 : 

Let (X,   ) be discrete topological space, and (Y,  )be any topological 

space.Then any function f : X → Y is continuous , since if V     , then  

   (V) is an open subset of X ,because all subsets of X is open set in the 

discrete topology . 
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Example 3.7.1 : 

Let (X,  )be any topological space and (Y,    ) be an indiscrete 

topological space, Then any function f : X → Y is continuous ,since 

   (Y) = X and    ( ) =   which are open . 

 

Remark 1.7.1 : 

Let   : X → Y where X and Y are topological space, and let   be a base 

for the topology on Y .Suppose for each member B   ,    (B) is an 

open subset of X . Then   is a continuous function . 

 

Definition 2.7.1 : 

i. A function f : X → Y is called open function if the image of every 

open set in X is open set in Y. 

ii. A function f : X → Y is called closed function if the image of every 

closed set in X is closed set in Y . 

 

 

8.1 Homeomorphic Spaces 

 

Definition 1.8.1 : 

Two topological spaces X and Y are called homeomorphic or 

topologically equivalent if there exists a bijective function  : X → Y such 

that   and     are continuous. The function f is called a 

homeomorphism function . 

 

Theorem 1.8.1 : 

For a 1-1 mapping   of a topological space X onto a topological space Y, 

the following conditions are equivalent : 
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1. The mapping   is a homeomorphism . 

2. The mapping   is closed and continuous . 

3. The mapping   is open and continuous . 

4. The set  (A) is closed in Y                A is closed in X . 

5. The set  (A) is open in Y                A is open in X. 

 

Example 1.8.1 : 

Let X = {1,2,3,4},   = { X , ,{1,2},{3,4}} and Y = {a,b,c,d},    = {Y,  , 

{a,d} ,{b,c}}. Then  f : X → Y , which is defined as follows : 

 (1) = a, (4) = b,  (3) = c,  (2) = d , is homeomorphism because : 

i. Clearly f is one to one and onto . 

ii.   is continuous since 

   (Y) = X ,    ( ) =    ,    {a,b}={1,2} ,    {b,c} = {3,4}. 

iii.     : Y → X is defined by 

   (a)=1 ,    (b) = 4 ,    (c) = 3 ,    (d) = 2 

Then     is continuous , since 

       (X) = Y ,        ( ) =  ,         {1,2} = {a,b}, 

       {3,4} ={b,c} . 

So   is a homeomorphism . 

 

Remark 1.8.1: 

Let    : R → R be a function defined by  (X) =   ,      R where (R,  ) 

is a standard topology. Then   is homeomorphism, Let (a,b) be an open 

interval of R . Then     (a,b) = (a,b) which is open set so    is 

continuous. 

Moreover ,   is 1-1 ,onto and   =     , thus   is a homeomorphism. 

    Every identity map of (X,   ) is a homeomorphism . 
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2. Connected Spaces and Path Connected Space  

 

1.2  Connected Space 

The definition of connectedness for a topological space is a quite natural 

one. One says that a space can be a (separated) if it can be broken up 

into two (globs) disjoint open sets . Otherwise , one says that it is 

connected . From this simple idea we get the following definition: 

 

Definition 1.1.2 : 

Let (X,  ) be a topological space. Two subsets U, V of X are said to be 

separated if U, V are disjoint non-empty open subsets of X whose union 

is X. i.e., 

i. U and V are open sets in X 

ii. U     and V     . 

iii. U ∩ V =    , U , V     

iv.  X = U   V . 

 

Remark 1.1.2 : 

i. If U,V is a separation of a topological space X, then U = X \ V and 

V = X \ U . So U and V are both open and closed sets in X. 

ii.  If U   X is both open and closed set in X and U     , U   X then 

U,V = X \ U is a separation of X. 

iii. If X is connected and U   X is both open and closed set, then 

either U =   or U = X. 

 

Definition 2.1.2 : 

i. A topological space X is said to be connected if there is no 

separation of X. 

ii. A topological space X is said to be disconnected if there is 

separation of X. 
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Example 1.1.2 : 

 ( R ,   ) is disconnected space where     is the lower limit topology 

because      U = (    , 0 )  , V = [ 0 ,   ) is separation of  ( R ,   ). 

 

Example 2.1.2 : 

i.    = ( R ,   )  is disconnected space because for example                

U = [0,1)        is both open and closed set in     and U ≠         

U ≠ R . 

ii. ( X ,   ) is disconnected space for any nonempty set with the 

number of elements of X is bigger than 1 where    is the 

discrete topology. 

iii. ( X ,   ) is connected space for any nonempty set X where     
is the trivial topology. 

 

Examples 3.1.2 : 

Let X = {1,2,3,4,5} ,    = {X, ,{1},{1,2}},    = {X, ,{1,2},{3,4,5}. Then 

       is connected and      ) is disconnected. 

 

Theorem 1.1.2 : 

The Euclidean space R is connected space . 

Proof : Assume R is disconnected space and U , V is a separation of R, 

then   R = U   V where U and V are both open and closed subsets of R . 

Take a   U and b   V then a ≠ b. Suppose a < b and let W = [ a , b ] ∩ U. 

Note that W is closed and bounded subset of R , so Sub W exist say c 

and c   W . Clearly c < b and c   W   U. Note that ( c , b ]  ∩ U =  ,              

so ( c , d ]    V thus ( c,d]      V = V   and hence [c,b]   V , so c   V,        

so c    U ∩ V which is a contradiction. So R is connected space                                
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Corollary 1.1.2 : 

A subspace   of the Euclidean space   is connected if and only if   is an 

interval. 

 

Theorem 2.1.2  : 

The image of a connected space under a continuous map is connected 

space.                                                                                                       

Proof:                                                                                                            

Let X be a connected space. We need prove that f(X) is connected space. 

Assume by contradiction f(X) is disconnected. Then, there is a 

separation of f(X). Let U,V be a separation f(X), then note that : 

i.    (U) ,    ( V ) are open sets since f is continuous map and U , V 

are open sets.  

ii.    (U)      ,    ( V )      since V       U      

iii.    (U)      ( V ) =   then U    V =  .  

iv.     (U)       ( V ) = X since U   V = f(X) 

So    (U) ,    ( V ) is a separation of X and thus X is disconnected 

which is contradiction with the given that X is connected space and 

therefor f(X) is connected space. 

 

Theorem 3.1.2 : 

Let U, V be a separation of the topological space X. If Y   X is  

connected space, then either Y   U or Y   V. 

Proof:                                                                                                             

Take  U1 = U ∩ Y , V1 = V ∩ Y, then U1 and V1 are open subsets of Y,  

U1 ∩ V1 =   and Y = U1   V1. As Y is connected , either U1 =   or V1 = . 

If U1 =  , Then Y   V and if V1 =  , then Y   U. 
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Theorem 4.1.2 :    

If   is a connected subspace of a topological space   and   ⊆   ⊆   , 

then B is connected.   

Proof:                                                                                                         

Suppose B is not connected and C, D be a separation of B. 

Then by theorem 1.1.2, either A            

                                              

                                                         

 

Theorem 5.1.2 : 

   and   are connected space if and only if the product space      is 

connected space. 

 

Remark 2.1.2 : 

i)    is connected space. 

Proof: Not that                        
       

  So by we see it is connected 

space. 

ii)      is disconnected space. 

Proof: Not that                                                 So, 

by theorem 5.1.2 we see                             

iii) The general linear group                           

as a subspace of            is disconnected. 

Proof: Define the following function: 

                                         

                                        

Not that                                                        
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2.2 Path Connected 

 

Definition 1.2.2  : 

Let X be a topological space and p, q  X. A path in X from p to q is a 

continuous map  :[a, b] → X such that  (a) = p and  (b) = q. 

 

Definition 2.2.2 : 

A topological space X is said to be path connected if for any p , q   X, 

there is a path in X from p to q. 

 

Example 1.2.2 : 

Consider the Euclidean space      n 1 For any p, q       the 

function  :[0,1] 
 
                    is continuous map satisfies 

               

So,   is a path from p to q and therefore    is path connected space. 

 

Remark  1.2.2 : 

Let X be a topological space and      and      Let           
 
    

be two paths such that                                 

Now, define           by: 

                            ( ) = 
                             

 

 
  

                       
 

 
   

  

As                     
 
    is continuous map. So,   is a path 

from                  
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Remark 2.2.2 : 

Let X be a topology space and    [0,1] 
 
  X be a path from   to   that is 

  (0) = p and   (1) = q. Then, the function   [0,1] 
 
  X which is defined 

by             is path from                  therefore x is 

disconnected space. 

 

Theorem 1.2.2 : 

Any path connected space is connected space. 

Proof: 

Let X be a path connected space. Assume by contradiction, X is 

disconnected space. Then there is a separation U and V of X. Let p   U, 

q   V. As X is path connected space, there is a path (continuous map)     

f : [0,1] → X such that f(0)=p , f(1)=q. As [0,1] is connected and f is 

continuous map, so f( [0,1] )   U or f( [0,1] )   V ( since f is continuous 

and [0,1] is connected) but f(0)=p   U , f(1)=q   V which is a 

contradiction so X is connected space. 

 

Theorem 2.2.2 : 

Every continuous image of path connected space is path connected. 

Proof: 

Let X be path connected space and f : X → Y continues map. Let       

p,q  f( x ). Take x      (p) and y      ( q ) Then also we have                 

f : [0,1] → such that f(0) = x , f(1) = y. Now g o f (0) = f(x) = p,                  

g o f (1) = f(y) = q, so g o f : p → q is path connected. 

 

Theorem 3.2.2 : 

A continuous image of path connected space is path connected. 

 Proof: If X and Y are two topological spaces such that   is path 

connected space.  

Let        be a surjective continuous map. 

For any      , there exist         such that                  . 
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As   is path connected, there is a path           such that 

                  

Now, note that                is a path from 

                                 . So, Y is path connected 

space. 

 

Example 2.2.2 :  

Consider the unit disk   = {x       / ‖ ‖ ≤ 1}, as a subspace of the  

Euclidean space    where ‖ ‖ =    
    

      
      

 . 

For any          , the function                              

is well define since for any        , we have:  

                                                                

and   is continuous map satisfies                  .  

So,   is a path from   to   and therefore   is path connected space. 

 

Example  3.2.2 : 

Consider the space                as a subspace of the Euclidean 

space     Take         , then we have two cases:  

Case 1: If the straight line joining   and   does not pass through to the  

origin                    then the function: 

            

                                                                

a path in   from   to    

Case 2: If the straight line joining   and   pass through the origin  

0 = (0, 0, …, 0), then choose a point       not on the line joining  

p and q. Note that the functions                , given by:  
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are paths in X. So, the function     [0,1] →  , defined by:  

                            ( ) = 
                             

 

 
  

                       
 

 
   

  

is path in   from p, q. So, X =   \ {0},   >1 is path connected space.  

 

Example 4.2.2 : 

Consider the unit sphere      = {    /‖ ‖= 1} as subspace of  

the Euclidean space   ,   >1 where‖ ‖=    
    

      
  

Note that the function:                      
 

    
 is surjective 

continuous map. 

As    \ {0},   > 1 is path connected space,      ,   > 1 is path 

connected space (by theorem 1.2.2). 

 

Example 5.2.2 : 

Let K = {
 

 
       } and consider subspace C of the Euclidean space 

  which is defined by: 
                                                

 

The space C is called the comb space and it is clear that this space is 

path connected and therefore it is connected space.  
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Let D = C \ ({0}   (0,1)) as subspace of the Euclidean space   . This  

space is called the deleted comb space. 

Note that               is path connected space and therefore 

 \{ } is connected space. As   is limit point of     is connected space 

but it is clear that D is not path connected space. 

 

Example 6.2.2 : 

Let A={ ( , sin /  ):     (0, 1] } and B = {{p = (0, 0) } as a subspace of 

the Euclidean space R². 

Note that A is path connected space and so it is a connected space. 

It is clear that p = (0, 0) is a limit point of A and therefore T = A U B     

is connected space but it is not path connected space because there is no 

path in T from p to any point q in A. 

 

 

 

 

 

 

Conclusion 1.2.2 : 

Any path connected space is connected space (see theorem 1.2.2) but the 

converse is not true (see the previous example).  
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3. Locally Connected Space and Locally Path 

Connected Space 

 

1.3  Locally Connected Space 

 

Definition 1.1.3 : 

Let X be a topological space and    X we say that X is locally connected 

at   if every neighborhood of   contains a connected neighborhood of  . 

If X is locally connected at every point     X then we say that X is 

locally connected. 

Example 1.1.3 : 

R with standard topology is connected space by Theorem 2.1 and locally 

connected space because for any point     and any neighborhood U of 

 , we can choose                              . 

 

Example 2.1.3 : 

Each interval and each ray in the real line is both connected and locally 

connected. The subset [ -1,0) U ( 0,1] of   is not connected but it is 

locally connected. 

 

Example 3.1.3 : 

The space    of rational numbers is neither connected nor locally 

connected. 

 

 

 



22 
 

Example 4.1.3 : 

The discrete topological space for any non-empty set X is locally 

connected space because for every point     and any neighborhood U 

of x there is a connected neighborhood {   } of x and we note that 

{  } U. 

 

Example 5.1.3 : 

The comb space is connected space but it is not locally connected at           

p = ( 0 , 1 ) . 

 

 

Conclusion 1.1.3 : 

By the previous example, we conclude that local connectedness and 

connectedness of a space are not related to one another. 

 

 

 

 

 

 

 



23 
 

2.3  Locally Path Connected 

 

Definition 1.2.3: 

A space X is said to be locally path connected at   if for every 

neighborhood U of  , there is a path-connected neighborhood V of   

such that      If X is locally path connected at each its points, then it 

is said to be locally path connected space. 

 

Example 1.2.3 : 

R with standard topology is both path connected and locally path 

connected. 

 

Example 2.2.3 : 

Let               as subspace of the Euclidean space R. Then X is 

neither path connected nor connected but it is both locally connected  

and locally path connected. 

 

 

Example 3.2.3 : 

The set of rational numbers Q as subspace of the Euclidean space R is 

neither path connected nor locally path connected. 

 

 

Example 4.2.3 : 

The comp space is path connected space but it is not locally path 

connected space . 
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Conclusion 1.2.3 : 

By the previous examples, we conclude the local path connectedness and 

path connectedness of a space are not related to one another. 

 

Example 5.2.3 : 

Consider the space         
 

 
           as subspace of the 

Euclidean space   where D is the deleted comb space. Then, Y is locally 

connected at the origin but not locally path connected of the origin. 

 

 

Conclusion 2.2.3 : 

It is obvious that every locally path connected is locally connected but 

the converse is not true ( see example 5.2.3 ) . 

 

 

 

 

 

 

 

 

Y 
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Remark 1.2.3 :  

Note that the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P.C.S. C.S. 

L.P.C.S. L.C.S 

Th. 1.2.2 

Ex. 5.2.2 

or Ex. 6.2.2 

Def. 1.1.3 + Def 1.2.3 

+ Th. 1.2.2 

Ex. 5.2.3 

Ex. 2.2.3 Ex. 4.2.3 Ex. 2.1.3 

Ex. 5.1.3 

Or 

Ex. 2.2.3 

where : 

P.C.S. : Path Connected Space . 

C.S. : Connected Space . 

L.P.C.S : Locally Path Connected Space. 

L.C.S : Locally Connected Space. 
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