
 المملكة العربية السعودية

 جامعة الإمام محمد بن سعود الإسلامية

 علومالكلية

Kingdom of Saudi Arabia

Al-Imam Mohammad Ibn Saud Islamic

University

Faculty of Science

Department of Mathematics and Statistics

Master of Science in Mathematics

Research Project (MAT 699)

Project Title

The Minimum k-cut Problem

Presented by

May Abdullah Al-Askar

Supervised by

Dr. Brahim Chaourar

IMSIU – Riyadh – KSA

May 2017

I

I dedicate this project to my parents and my family.

II

Acknowledgments

I would like to express the deepest appreciation to my super devisor Dr. Brahim

Chaourar whose support, stimulating suggestions and encouragement helped

me all the time of the research and during writing of this project.

III

Contents

Dedication i

Acknowledgments ii

Table of Contents iii

List of Figures vi

Chapter 1: Introduction ……………………………………………………..……. 1

Chapter 2: Preliminaries ………………………………………………….….…… 3

2.1 Graph Theory …………………………………………………..…….….…... 3

2.1.1. Fundamental definitions ………………………………….……….….… 3

2.1.2. Cuts ………………………………………………………………….…. 5

2.1.3. Minimum st-cut problem ………………………………………………. 5

2.1.3.1. Cuts in directed graph ………..……….……………………… 6

2.1.3.2. Flows………………………………………………………...... 6

2.1.3.3. Maximum flow problem ………………………………………. 8

2.1.3.4. The max-flow min-cut theorem ……………………………… 9

2.1.4. Minimum Cut Problem ……………………………………………….... 11

2.2. Complexity of Algorithms ……………………………………………..….….. 12

2.2.1. The Class P …………………………………………………….…….…. 12

2.2.2. The Class NP …………………………………………........................... 13

2.2.3. The Class Co-NP ……………………………………………………….. 13

2.2.4. NP-complete problems ………………………………………………… 14

2.2.5. NP-hard problems …………………………………...…………………. 15

2.2.6. Approximation algorithms ……………………………………………… 16

Chapter 3: The Min k-cut problem and some of its variants 17

3.1. Minimum k-Cut Problem ………………………………………….……….… 17

3.1.1. Definition …………………………………………………………..….. 17

3.1.2. Complexity ………………………………………………………….…. 17

3.2. Variants of the min k-cut problem …………………………………….…….. 20

3.2.1. Change in the objective function …………………….……….……….... 20

3.2.1.1. Ratio Cut Problem …………………………………………….. 20

3.2.1.2. Strength Cut Problem ……………………………………..…. 20

3.2.1.3. Barahona Multi Cut Problem …………………………….…… 21

3.2.1.4. The Max k-Cut Problem ……………………………………… 21

3.2.1.5. The Max k-Un Cut Problem………………………………….. 22

IV

3.2.2. Additional conditions to the k-cut…………………………………….... 23

3.2.2.1. Capacity Min k-Cut Problem…………………………….….. 23

3.2.2.2. Minimum Multiway Cut Problem………………………….… 23

3.2.2.3. The Minimum Steiner k-Cut Problem……………………….. 23

3.2.2.4. Cardinality Min Cut Problems…………………………….….. 24

3.2.3. Other variants…………………………………………………………..... 24

3.2.3.1. Capacitated Max k-Cut Problem…………………………...…. 24

3.2.3.2. Capacitated Max k-Un Cut Problem…………………………... 25

3.2.3.3. Multiway Un Cut Problem…………………………………….. 25

3.2.3.4. k-route cut problem……………………………………………. 25

3.2.3.5. Directed multiway cut problem………………………………... 25

Chapter 4: Some Applications 28

4.1. Spin glass model ……………………………………….………………... 29

4.2. Unconstrained 0-1 Quadratic Programming …………..……………….…….. 31

4.3. Image Segmentation problem ………………………….……………….……. 32

Chapter 5: Special Instances of the min k-cut problem 35

5.1. Minimum k-cut for fixed k ………………………………………….…............. 35

5.1.1. A greedy algorithm ……………………………………………….…... 35

5.1.2. A polynomial algorithm………………………………………..……... 37

5.1.3. The min k-cut algorithm for fixed k with k=3 ……………………….. 43

5.1.4. The min k-cut algorithm for fixed k with k > 3 ………….….……….. 44

5.1.5. The development of polynomial algorithms …………….……..…….. 46

5.2. Minimum k-cut problem in forests ……………………………………….……. 47

5.2.1. The min k-cut algorithm for a tree ……………….……………….….. 47

5.2.2. The min k-cut algorithm for forests …………………………….….… 48

5.3. Special Instances of Multiway cut problem ………………………..………….. 49

5.3.1. Lower bound of the multiway cut problem …………………………... 50

5.3.2. Multi way cuts in trees ……….………………………………………. 51

5.3.3. Particular cases of multiway cut in trees ……………………………... 54

V

Chapter 6: Approximation Algorithms

6.1. Approximation algorithms for the min k-cut problem …………………... 57

6.1.1. Greedy algorithm ……………………………………….…………... 57

6.1.2. Algorithm EFFICIENT ……………………………………….…….... 57

6.1.3. Algorithm EFFICIENT with Gomory-Hu trees ………………….…. 58

6.1.4. Approximation factor for the k-cut problem ………………………… 58

6.1.5. Algorithm SPLIT …………………………………………...……...... 60

6.1.6. Lower bound …………………………………………….…..………... 61

6.2. Approximation Algorithms for the variants of the min k-cut ……………...... 62

6.2.1. Multiway Cut Problem ………………………………………….……. 62

6.2.2. The Minimum Steiner k-Cut Problem …………………………...…… 62

6.2.3. Capacitated Max k-Cut Problem …………………...………..…….… 63

6.2.4. Multiway Un Cut Problem ……………………………………..……. 63

6.2.5. k-route cut problem ………………………………………...........…… 63

6.2.6. Directed multiway cut problem ………………………………………. 63

Chapter 7: Conclusion 64

References 65

Terminology index 69

VI

Table of figures:

Figure (2-1) Example of min st-cut. 6

Figure (2-2) Example of flows in a network. 7

Figure (2-3) Example of application of max-flow min-cut theorem. 10

Figure (2-4) Example of a Gomory-Hu-tree. 11

Figure (2-5)

The classes P, NP, NP-complete, and NP-hard (the figure is valid

under the assumption that P≠NP). (Wikipedia 2007).

16

Figure (3-1) Example of min 3-cut in a graph. 20

Figure (4-1) Graphic representation of the random spin structure of a spin glass

(Wikipedia 2011) a.

30

Figure (4-2) Spin glass problem. 31

Figure (4-3) Input Image, optimal segment (Boykov and Jolly 2011). 33

Figure (4-4) Application of the min-cut to image segmentation. (Boykov and

Jolly 2011) a.

35

Figure (5-2) Reduction of min (S-T) cut to min (s-t) cut. 38

Figure (5-3) Example of a maximal min(S-T) cut. 38

Figure (5-9) An example of a weighted tree and optimal coloration. 54

Figure (5-10) Multiway cut on a tree, first case. 55

Figure (5-11) Multiway cut on a tree, second case. 56

Figure (6-1) A tight example of EFFICIENT and SPLIT algorithms. 63

1

Chapter 1: Introduction

Combinatorial optimization is a subset of mathematical optimization that is related to

operations research, algorithm theory, and computational complexity theory. It is a topic

that consists of finding an optimal object from a finite set of objects. In many such

problems, an exhaustive search is not feasible. It operates on the domain of those

optimization problems, in which the set of feasible solutions is discrete or can be reduced

to discrete, and in which the goal is to find the best solution.

Combinatorial optimization has important applications in several fields, including artificial

intelligence, machine learning, mathematics, auction theory, and software engineering.

One of the famous combinatorial optimization problems is the minimum cut problem

which has been solved in polynomial time for the first time by using the max-flow min-cut

theorem. An important and natural generalization of the minimum cut problem is the

minimum k-cut problem (MKCP). In the contrast of the minimum cut problem, MKCP is

NP-hard. MKCP has applications in very-large-scale integration (VLSI) design, data-

mining, finite elements and communication in parallel computing.

In this thesis, we give a survey of MKCP.

Our contribution is to survey most known results for MKCP in one essay. For the best of

our knowledge, this is done for the first time.

A minor contribution is the solvability of MKCP in polynomial time for forests in general.

Organization of the thesis

In chapter 2, we introduce some preliminaries on graph theory and complexity of

algorithms.

In chapter 3, we define MKCP, determine its complexity, and present some of its variants.

In chapter 4, we present some applications of MKCP and some of its variants.

In chapter 5, we describe some solved special instances of MKCP and some of its variants.

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Exhaustive_search
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Discrete_set
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Auction_theory
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Data-mining
https://en.wikipedia.org/wiki/Data-mining
https://en.wikipedia.org/wiki/Finite_elements
https://en.wikipedia.org/wiki/Parallel_computing

2

In chapter 6, we describe known approximation algorithms for MKCP and some of its

variants.

Finally, we conclude in chapter 7.

3

Chapter 2: Preliminaries

2.1 Graph theory

We will introduce some definitions on graph theory, and present the important theorem

linking between max-flow and min-cut.

2.1.1 Fundamental definitions

Definition 1:

A graph G is a pair of sets (V(G), E(G)) where V(G) is the set of vertices and

E(G)V(G)×V(G) is the set of edges.

G is undirected if (u, v) and (v, u) represent the same edge e denoted {u, v} or uv or vu.

In this case, u and v are called the end points of the edge e. u and v are adjacent vertices.

All considered graphs are undirected except particular mentioned cases.

The ends of an edge are said to be incident with the edge. If two or more edges of a

undirected graph have a common vertex, then the edges are called adjacent.

A loop is an edge with identical ends. A link is an edge with distinct ends. A multiple

edge or a parallel edge is set of edges sharing the same end points.

The degree of a vertex v in graph G is the number of edges incident with v, and it is denoted

by deg(v). The order of G is the number of vertices of G, denoted by n = |V(G)|, and the

size of G is the number of edges of G, denoted by 𝑚 = |E(G)|. A graph is finite if its order

and size are finite.

A graph is simple if it has neither loops or multiple edges.

A directed graph or (digraph) is a graph where the edges (u, v) and (v, u) do not represent

the same edge.

A graph that has a weight function w: E → R+ from the set of edges into the set of

nonnegative real number is called a weighted graph. Weighted graphs may be either

directed or undirected.

4

Graphs come in many several types; we will present some of them.

Definition 2

A complete graph, Kn, is a simple undirected graph in which every pair of distinct

vertices is connected by a unique edge.

Definition 3

A subgraph F = (V(F), E(F)) of a graph G = (V(G), E(G)) is a graph such that V(F) ⊆ V(G)

and E(F) ⊆ E(G).

Let G = (V, E) be an undirected graph. A clique C is a complete subgraph of G. The size

of clique is the number of vertices in clique.

A maximum clique of a graph is a clique, such that there is no clique with more vertices.

Given a subset U of vertices of G = (V, E), an induced subgraph G(U) is a subgraph of

G, such that we keep all edges of G linking vertices of U in G(U).

Definition 4

A bipartite graph G (V, E) is a graph whose vertices set V can be separated into two subsets

V1. and V2 such that every edge has an endpoint in V1 and another one in V2.

Definition 5

A path (or a linear graph) is a simple graph whose nodes can be ordered in a linear

sequence 𝑣1, … , 𝑣𝑛 , such that for every i, (1 ≤ 𝑖 ≤ 𝑛 − 1), 𝑣𝑖𝑣𝑖+1 are the edges of the

graph. In this case, we called it a 𝑣1𝑣𝑛 − 𝑝𝑎𝑡ℎ.

A connected graph is a graph for which for any pair of vertices u and v, there exists a uv-

path. Otherwise, it is called a disconnected graph.

A connected component U of a graph G is a maximal set of vertices such that the

corresponding induced subgraph G(U) is connected. The number of connected components

of G is denoted by comb(G).

A cycle, Cn (n ≥ 3), is a simple graph of n vertices 𝑣1, … , 𝑣𝑛 and n edges (𝑣1𝑣2,

𝑣2𝑣3, … , 𝑣𝑛−1𝑣𝑛, 𝑣𝑛𝑣1). A Hamilton cycle of a graph G is a cycle that pass through every

vertex of G exactly once.

Definition 6

http://www.edmath.org/MATtours/discrete/concepts/cgraph.html

5

A planar graph is a graph which can be drawn in the plane such that its edges intersect

only at their end points.

Definition 7

A forest is an undirected graph in which any two vertices are connected by at most one

path. A tree is a connected forest.

2.1.2 Cuts

Let G = (V, E) be an undirected graph. A cut related with a set of vertices A, C(A, A̅) or

C(A), is the set of edges with one endpoint in A and the other in A̅.

Given a partition {𝑉1, 𝑉2, … , 𝑉𝑘} of V, a k-cut C (𝑉1, 𝑉2, … , 𝑉𝑘) is the set of edges with one

end point in one of the 𝑉𝑖, i = 1, 2, …, k, and the other one is in another distinct 𝑉𝑗, j = 1,

2, …, k, i.e., i ≠ j. Each 𝑉𝑖, i = 1, 2, …, k, is called a component of the k-cut.

In this case, a self-edge is an edge which both endpoints in the same component, and a

cross-edge is an edge which endpoints in different components.

For any pair of vertices x and y in G, a xy-cut is any cut C (X,X̅) such that x ∈ X and y ∈ X̅.

The value of a cut (respectively a k-cut) in an unweighted graph is the number of edges

belonging to this cut (respectively k-cut). The value of a cut (respectively a k-cut) in a

weighted graph is the total sum of the weights of the edges belonging to this cut

(respectively k-cut).

2.1.3 Minimum st-cut problem

The minimum st-cut problem can be defined as follows:

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

and a pair of distinct vertices s and t.

Question: Find the st-cut with the minimum value.

Example

Consider the graph G = (V, E) in figure (2-1), the set of edges {xv, xt , xy} is an xy-cut,

6

with value 4, the min xy-cut is the set of edges {vu, ts , xy} with weight 4.

There are many approaches to solve the min st–cut problem, we will present the one

depending on the max-flow min-cut theorem.

t

v

x

s

u

2

1

y

1

7

1

1

(x, y)-cut

Min (x, y)-cut

We will define some basic concepts on directed graph necessary for the max-flow min-cut

theorem.

2.1.3.1 Cuts in directed graph

In a directed graph G = (V, E), an out cut C+(A) or C⃗ (A, A̅) related to a set of vertices A,

is the set of edges starting from A and ending in A̅.

An in cut C−(A) or C⃗ (A̅, A) related with a set of vertices A is the out cut C+(A̅).

A cut C(A) in a directed graph G related with a set of vertices A, is the union of the

corresponding out cut and in cut, i.e., C(A) = C+(A) ∪ C−(A).

2.1.3.2 Flows

A network N = N (s, t)) is a directed graph with two distinct vertices, a source s and a sink

t, together with a nonnegative real function (capacity function) defined on its edge set E,

and the remaining vertices, I, are called intermediate vertices.

7

The capacity of an edge is a mapping cap: E → R+. It represents an upper bound of flow

that can pass through an edge.

A flow f in a network N(s, t) is mapping f: E → R+, that satisfies the following conditions:

• Capacity constraint condition: for every intermediate vertex v,

f−(v) = ∑ f({u: uv∈E} uv) = ∑ f({u: vu∈E} vu) = f+(v)

• Conservation condition: for every edge uv,

f (uv) ≤ cap(uv).

The value of the flow f is defined by val(f) = ∑ f(sv)v∈V , where s is the source of the

network N(s, t). It represents the amount of flow passing from the source to the sink.

If A is a set of vertices in the network, the net flow out of A is f+(A) − f−(A), the net flow

into A is f−(A) − f+(A).

For example, network in figure (2-2) the value of flow is 6.

6,2

2,2

x y

6
,0

Proposition (2-1)

Let N(s, t) be a network, and A be any subset of vertices in N. For any flow f, we have:

∑ (f+(v) − f−(v)) = f+(A) − f−

v∈A

 (A)

8

Proof

f+(A/{v}) = f+(A) − f+(v) + f+(v, A/{v}),

f−(A/{v}) = f−(A) − f−(v) + f−(A/{v}, v),

∑ (f+(v) − f−(v)) = f+(A/{v}) − f−(A/{v})v∈A/{v}

∑ (f+(v) − f−(v))v∈A/{v} = f+(A) − f+(v) + f+(v, A/{v}) − f−(A) + f−(v) + f−(A/{v}, v)

∑ (f+(v) − f−(v))v∈A/{v} = f+(A) − f−(A). □

Lemma (2-1)

Let N(s, t) be a network, and A be any set of vertices in N such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐴̅. For

any flow f, we have: val(f) = f+(A) − f−(A).

Proof:

For every v ∈ A − {s},  f+(v) = f−(v) , then f+(v) − f−(v) = 0, hence

∑ (f+(v) − f−(v))𝑣∈𝐴−{𝑠} = 0 and since f+(s) − f−(s) = val(f), then

f+(A) − f−(A) = ∑ (f+(v) − f−(v)) = f+(s) − f−(s) + ∑ (f+(v) − f−(v))𝑣∈𝐴−{𝑠}𝑣∈𝐴 .

Hence: f+(A) − f−(A) = val(f). □

The following theorem proves that the capacity of any st-cut in a network N(s, t) is bounded

below by the value of any flow from s to t, or an st-flow.

Theorem (2-1)

Let N(s, t) be a network. For any cut C+(A), such that 𝑠 ∈ 𝐴, and for any flow f in N, we

have:

val(f) ≤ cap(C+(A))

Proof

By lemma (2-1), and since f−(A)≥ 0, then val(f) = f+(A) − f−(A) ≤ cap(C+(A)). □

2.1.3.3 Maximum flow problem

Input: Given a network N(s, t), of order n and size m, a nonnegative capacity function

cap: 𝐸 ⟶ 𝑁.

Question: Find an st-flow f with a maximum value.

9

The first algorithm solving maximum flow problem is due to Ford and Fulkerson (1955).

2.1.3.4 The max-flow min-cut theorem

Theorem (2-2)

The maximum value of an st-flow is equal to the minimum capacity over all st-cuts.

This theorem was proved by Elias et al. in 1956, and independently also by Ford and

Fulkerson in 1956.

By theorem (2-2) we conclude that the maximum st-flow problem is equivalent to the min

st-cut problem, i.e., by maximizing the value of the flow from s to t we can get the minimum

st-cut.

Example:

Let G = (V, E) be the directed graph of figure (2-3). To find a min xy-cut by using the

maximum flow algorithm, we will use the final residual graph corresponding to graph G,

and find the set of vertices that are reachable from source in the residual graph, all edges

which start from a reachable vertex to a non-reachable vertex represent a min xy-cut. The

maximum value of an xy-flow is 20, then by max- flow min -cut theorem the total weight

of min xy-cut is 20.

https://en.wikipedia.org/wiki/Peter_Elias
https://en.wikipedia.org/wiki/L.R._Ford,_Jr.
https://en.wikipedia.org/wiki/D.R._Fulkerson
https://en.wikipedia.org/wiki/D.R._Fulkerson

10

11

2.1.4 Minimum Cut Problem

Input: Given an undirected graph G = (V, E), and a nonnegative weight function 𝑤: 𝐸 ⟶

𝑁.

Question: Find a cut in G with the minimum total weight.

For every pair of vertices x and y in the graph G = (V, E) of order n, if we compute all min

xy-cuts, and then pick the xy-cut having the smallest weight, we will get the minimum cut

on G. Gomory and Hu (1961) proved that the number of different xy-cuts in a graph is at

most n−1 cuts, and moreover that there is an effectual tree construction, representing the

minimum xy-cuts for all pairs x and y in the graph.

For example, consider the graph G= (V, E) in figure (2,4). The weight of min xy-cut

between any pair of vertices of G is equal to the weight of min xy-cut of the vertices of

corresponding Gomory-Hu tree.

12

2.2 Complexity of Algorithms

An algorithm is a well-defined computational producer which takes any instance of the

problem as input and return the solution as output. For any algorithm, the number of

elementary computational steps in demand for the algorithm and done by it is the

computational complexity of the algorithm. It depends on the size and the nature of the

input.

We will measure the complexity not in absolute terms but as a function of the data size

(sometimes it depends on more than one variable). It is usually expressed using big O

notation that we can estimate the growth of a function without worrying about constant

multipliers or smaller order terms.

Big O notation ,O(f(n)), is the set of functions that asymptotically grow in the same manner

as f, i.e. O(f(n)) = {h(n): there exist c and N > 0 such that ∀ n > N, 0≤ h(n) ≤ c f(n)}

If the complexity of algorithm is O(𝑛𝑏), with a fixed b > 0, then the algorithm is called a

polynomial time algorithm. If the complexity of an algorithm is O(𝑛), then the algorithm

is called a linear time algorithm.

Strong polynomial time algorithm is algorithm satisfies the following:

• With arbitrary input, the complexity of algorithm is O(𝑛𝑏), with a fixed b > 0.

• the space used by the algorithm is bounded by a polynomial in the size of the input.

For problems, most important classifications depend on the difficulty of the problem. We

will present some famous classes of problems.

2.2.1 The Class P

Definition

The class of problems solved by a polynomial time algorithm.

Example:

The maximum flow problem. This problem has been solved by a polynomial time

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation

13

algorithm. King et al. (1992) find a polynomial algorithm for maximum flow problem with

running time O(𝑚𝑛 + 𝑛2+𝜀). The best running time for max flow is O(𝑚𝑛), it is due to

Orlin (2013).

2.2.2 The Class NP

Definition

A decision problem belongs to the class NP, if given any instance of the problem whose

answer is yes, we can check it in polynomial time.

Example:

Input: Graph (V, E).

Question: Is G bipartite?

This problem belongs to the NP class since we can check in polynomial time, for given a

bipartition [X, Y] of G if each edge in G has one endpoint in X and another end in Y.

2.2.3 The Class Co-NP

Definition

A decision problem belongs to the class co-NP, if given any instance of the problem whose

answer is No, we can check it in polynomial time.

Example:

Input: Graph (V, E).

Question: Is G bipartite?

This problem belongs to the co-NP class since we can check in polynomial time by using

the proposition (every non-bipartite graph contains an odd cycle).

From both definitions of NP and Co-NP classes, we can conclude a relation between the

previous classes:

 P ⊆ NP and P ⊆ co − NP, then P ⊆ NP ∩ co − NP. (See figure (2-5)) (Wikipedia 2007).

A clearly but still open question is whether the classes NP and co-NP are different. It is

14

generally believed that NP ≠ co-NP, but nobody knows how to prove it.

Example:

Input: A nonnegative integer x.

Question: Is x prime?

This problem belongs to the co-NP class since we can check in polynomial time, if there

exists integer number 𝑦1 , 𝑦2 such that 𝑥 = 𝑦1 × 𝑦2 , then x not prime. But this problem

not belongs to NP class, until now there is no polynomial algorithm to check whether an

integer number is prime.

2.2.4 NP-complete problems

Definition

A polynomial-time reduction, Π, of a problem F to a problem Q is a polynomial time

algorithm, which transforms each input S in F to an input T in Q, and which transforms an

output for the input T to an output for input S in polynomial time, and we can say that

problem F is polynomial reducible to problem Q by Π, denoted by F ≼Π Q. This relation

is reflexive i.e. for any problem F, F ≼Π F. It is also transitive, i.e. let F, Q and R be

problems, if F ≼Π1 Q and Q ≼Π2 R then F ≼Π3 R.

Definition

A problem F is called NP-complete, if F belongs to class NP, and for each problem Q in

NP there exists a polynomial time reduction of Q to F, i.e.,

if F ∈ NP, and ∀Q ∈ NP, Q ≼ F, then F ∈ Np-complete.

It implies that if one NP-complete problem can be solved in polynomial time, then each

problem in NP can be solved in polynomial time. Moreover, if F belongs to NP, Q is NP-

complete and there exists a polynomial-time reduction of Q to F, then also F is NP-

complete, i.e.,

If F ∈ NP, Q ∈NP-complete and Q ≼Π F then F ∈ NP-complete.

Theorem (2-3)

The satisfiability problem for Boolean formula is NP-complete.

15

This theorem was proved independently by Cook (1971) and Levin (1973).

Example

The maximum clique problem:

Input: Given an undirected graph G = (V, E) and M ∈ Z+.

Question: Is there a clique in G of size greater than or equal to M?

By applying Theorem (2-3), Karp (1972) proved that maximum clique problem is NP-

complete. (He finds a polynomial time reduction from satisfiability to maximum clique

problem (

2.2.5 NP-hard problems

Definition

A decision problem F is NP-hard if, for every problem Q in NP, there is a polynomial-time

reduction from Q to F.

There is no polynomial-time algorithm (right now) that solves an NP-hard problem

optimally unless P = NP.

In other words: F is NP-hard ⇐⇒ If F can be solved in polynomial time, then P = NP.

Note that some NP-hard optimization problems can be polynomial time approximated up

to some constant approximation ratio.

Example

The traveling salesman problem:

Input: A weighted graph.

Question: Find a Hamilton cycle with minimum total weight.

https://en.wikipedia.org/wiki/Polynomial-time_reduction
https://en.wikipedia.org/wiki/Polynomial-time_reduction
https://en.wikipedia.org/wiki/Approximation_algorithm

16

P, NP, NP-complete, and NP-hard set of problems. The

figure is valid under the assumption that P NP. (Wikipedia 2007)

P, NP, NP-complete, and NP-hard set of problems. The

figure is valid under the assumption that P NP. (Wikipedia 2007)

NP-Complete
NP-Co

NP

PNP- hard

2.2.6 Approximation algorithm

We will define the ratio between the result obtained by the algorithm and the optimal

solution. It helps us to know how much the approximation is close to the optimal solution,

and to compare between different algorithms.

Let cost(opt(I)) be the value of an optimal solution to a problem for input I, and cost(sol(I))

be the value of an algorithm solution to the same problem for the same input I.

Definition

For some 𝛼 > 1, the 𝛼-approximation algorithm for a minimization problem is an algorithm

which produces the value of an optimal solution to the problem for any input I with at most

𝛼×cost(opt(I)). 𝛼 is called the approximation factor, i.e.

cos(opt(I)) ≤ cost(sol(I)) ≤ 𝛼×cost(opt(I)).

For some 𝛽 < 1, the 𝛽-approximation algorithm for a maximization problem is an algorithm

which produces the value of an optimal solution to the problem for any input I with at least

𝛽×cost(opt(I)), i.e., 𝛽×cost(opt(I)). ≤ cost(sol(I)) ≤ cost(opt(I)).

17

Chapter 3: The Min k-cut problem and some of its variants

In this chapter, we introduce the Min k-Cut Problem: definition, complexity and then

discuss some of its variants.

3.1 Minimum k-Cut Problem

3.1.1 Definition

The minimum k-cut problem optimization version:

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

and a positive integer k.

Question: Find a k-cut with the minimum total weight.

The minimum k-cut problem decision version:

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

and a positive integer k and 𝑀 ∈ 𝑁.

Question: Is there a k-cut with total weight less than or equal to M.

This problem is a generalization of the Minimum Cut Problem which can be solvable in

polynomial time, based on the fundamental Max-Flow Min-Cut Theorem.

3.1.2 Complexity

For any graph and if k is a part of the input (k is variable) Goldschmidt and Hochbaum

(1994) proved this theorem:

Theorem 3.1:

The Minimum k-cut decision problem is NP-complete (if k is a part of the input).

Proof:

To prove this theorem, they have reduced Maximum Clique decision problem to

Minimum k-cut decision problem in polynomial time.

18

By using the fact that the Maximum Clique decision problem is NP-complete (this

problem was one of the 21 NP-complete problems that Karp (1972) enumerated)

We can present the Maximum Clique decision problem as follows:

Input: Given an undirected graph G = (V, E) and M ∈ Z+.

Question: Is there a clique in G of size greater than or equal to M?

Consider an undirected graph with {0, 1} weights on the edges. The minimum k-cut is

equivalent to separate the given graph into at least (nonempty) k connected components

such that the number of self-edges on components is maximum.

Suppose that the graph G has a clique H of size M = |𝑉| − (k − 1); then the number of

edges between any vertex v ∉ H and u ∈ H is less than the edges between vertices inside

H since in a clique there is an edge between every pair of vertices:

∑ w(euv) <
u∈H
v∉H

∑ w(euv)

u∈H
v∈H

Then when we cut the graph G into k partitions with minimum cross-edges between

components, the clique H must be one of these components.

Then the Maximum Clique decision problem can be reduced with polynomial time to the

Min k-cut decision problem. Since Maximum clique problem is NP-complete, then The

Min k-cut decision problem is NP-complete. □

For example: if we consider the graph G in (Figure 3.1), it has a clique of size 6 and

when we find a minimum 3-cut, the clique must be one of the components.

The following proposition is due to Dahlhaus et al. (1992).

19

V1

V2

V3

Proposition 3.1:

The Minimum k-cut optimization version problem (if k is a part of the input) is NP-hard.

Proof:

We know if the decision problem is NP-complete then the Optimization Problem is NP-

hard.

And by theorem (3.1), the Min k-cut decision problem is NP-complete then the Min k-cut

optimization problem is NP-hard. □

For planar graphs, Dahlhaus et al. (1992) showed that the optimization min k-cut problem,

for a fixed k, can be solved in polynomial time.

For any graph and a fixed k, Goldschmidt and Hochbaum (1994) gave a polynomial

algorithm with running time 𝑂(𝑛𝑘2
) for the Min k-cut optimization problem.

 Problem K variable K fixed

Complexity Min k-cut optimization NP-hard P

Min k-cut decision NP-complete P

Table (3-1). Complexity of minimum k- cut problem

20

3.2 Variants of the k cut problem

There are a lot of variants of the min k-cut problem; we give here the most important. We

classify them into three main classes according to the change in the objective function

(question) or the input.

3.2.1 Change in the Objective function

3.2.1.1 Ratio Cut Problem

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

and positive integer k.

Question: Find a k-cut C that minimizes ∑ 𝑤(𝑒)𝑒∈𝐶 𝑘⁄ .

This problem was considered by Chvátal (1973). He proved following proposition:

Proposition (3.2):

The solution to the ratio problem is attained for k=2.

Proof:

Suppose Ω2 is a min cut of the graph G = (V, E) and suppose that Ωk is a min k-cut.

w(Ω2) ≤ w(Vi - ⋃ 𝑉𝑗)𝑖≠𝑗 , 1 ≤ i ≠ j, ≤ k.

k w(Ω2) ≤ w(V1 - ⋃ 𝑉𝑗)1≠𝑗 + w(V2 - ⋃ 𝑉𝑗)2≠𝑗 + … + w(Vk - ⋃ 𝑉𝑗)𝑘≠𝑗

k w (Ω2) ≤ 2 w (Ωk)

w (Ω2)

2
≤

w (Ωk)

k
 □

3.2.1.2 Strength Cut Problem

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

and a positive integer k.

Question: Find a k-cut C that minimizes ∑ 𝑤(𝑒)𝑒∈𝐶 (𝑘 − 1)⁄ .

A strong polynomial algorithm was given by Cunningham (1985) with running time

21

O(𝑛4) to solve this problem.

3.2.1.3 Barahona Multi Cut Problem

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

and positive integer k.

Question: Find a k-cut C that minimizes ∑ 𝑤(𝑒)𝑒∈𝐶 − 𝑘 .

Barahona (2000) has reduced this problem to minimizing a symmetric submodular

function. He gives a polynomial algorithm to compute a convex hull of functions 𝑓(𝑘) (the

intersection of all convex set containing 𝑓(𝑘))of an optimal solution of the problem with

running time 𝑂(𝑛4).

3.2.1.4 The Max k-Cut Problem

In put: Given an undirected graph G = (V, E), a nonnegative weight function w: E⟶R,

and a positive integer k.

Question: Find a k-cut C that maximizes ∑ 𝑤(𝑒)𝑒∈𝐶 .

This problem is a generalization of the famous Max Cut problem.

The maximum cut problem is closely linked to the Max Bipartite Subgraph Problem: if the

weights are positive, the Max Bipartite Subgraph Problem and the maximum cut problem

are equivalent.

The Max Cut problem in general is NP-hard (Garey and Johnson 1979). But there are

special cases for which the Max-Cut can be solved in polynomial time:

• In planar graphs: Orlova and Dorfman (1972) and Hadlock (1975) showed that the

Max-Cut can be solved in polynomial time independently.

• If the graph is not contractible to 𝐾5(𝐾5 can’t be formed from the graph by deleting

edges and vertices and by contracting edges), Barahona (1983) showed that the Max

Cut problem can be solved in polynomial time.

• If the graph can be embedded in tours and the weights are equal to +1 or -1,

Barahona (1981) showed that the Max Cut problem can be solved in polynomial

22

time.

• If the graph has only negative weights, McCormick and Rinaldi (2003) showed that

the Max Cut can be solved in polynomial time by reducing the Max Cut problem to

the Min-Cut problem with positive weights, then it can be solved, using flows, in

polynomial time.

3.2.1.5 The max k-Un Cut Problem

In put: Given an undirected graph G = (V, E) and a nonnegative weight function w: E⟶R.

Question: Find a k-cut C that maximizes ∑ 𝑤(𝑒)𝑒∉𝐶 .

This problem is equivalent to min k-cut problem, because maximizing the total self-edges

weight is equivalent to minimizing the total cross-edges weight.

Since min k-cut is NP-hard then max k-uncut is NP-hard.

Proposition (3.4):

If approximation algorithm for min k-cut is α then the factor for max k-uncut is
𝛼

𝛼−1
.

Proof:

Consider graph G= (V, E) with |E| = m. Suppose OPTΩ is an optimum solution for min k-

cut, OPTF is an optimum solution for max k-uncut.

∑ 𝑤(𝑒)𝑒∉𝐶 + ∑ 𝑤(𝑒)𝑒∈𝐶 = 𝑚, (self-edge: ∑ 𝑤(𝑒)𝑒∉𝐶 , cross-edge: ∑ 𝑤(𝑒)𝑒∈𝐶) then:

OPTF + OPTΩ = m

OPTF = m - OPTΩ

OPTΩ ≤ OPT1 ≤ α OPTΩ

m – OPTF ≤ m - OPT2 ≤ α OPTΩ

m – OPTF ≤ α (m – OPTF)

-α m ≤ m – α m ≤ (1-α) OPTF

-α m ≤ (1-α) OPTF

𝛼

𝛼−1
 m ≥ OPTF □

23

3.2.2 Additional condition to the k-cut

3.2.2.1 Capacity Min k-cut problem

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

a positive integer k, and a set of capacities {𝑠1, 𝑠2, … , 𝑠𝑘} where ∑ 𝑠𝑖
𝑘
𝑖=1 = |𝑉|.

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each

component 𝑉𝑖 contain at most 𝑠𝑖 vertices.

This problem is NP-complete even for k = 2 (Gary and Johnson (1976)), and there is no

known approximation algorithm to solve this problem.

3.2.2.2 Minimum Multiway Cut Problem

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

a positive integer k, and a subset of vertices T = {𝑡1, 𝑡2, … , 𝑡𝑘} ⊆ 𝑉 called terminals.

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each

component 𝑉𝑖 contains exactly one terminal 𝑡𝑖 .

When 𝑘 = 2 (we have only two terminals: one source and one sink), then the multiway

cut problem is equivalent to the st-cut problem which is solvable in polynomial time. The

multiway cut problem is NP-hard for 𝑘 ≥ 3; due to Dahlhaus (1992).

3.2.2.3 The Minimum Steiner k-Cut Problem

The Minimum Steiner k-cut problem is a generalization of both the minimum k-cut

problem and the minimum multiway cut problem. It is defined as follows:

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

a positive integer r, a subset of vertices T = {𝑡1, 𝑡2, … , 𝑡𝑟} ⊆ 𝑉 called terminals, and a

positive integer 𝑘 ≤ 𝑟.

24

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each

component 𝑉𝑖 contains exactly one terminal 𝑡𝑖 .

If 𝑘 = 𝑟, we have the minimum multiway cut problem. If T = 𝑉, we have the minimum

k-cut.

3.2.2.4 Cardinality Min Cut Problems

• k-card cut:

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

and a positive integer k.

Question: Find the set of edges, having cardinally k, with minimum total weight, when

deleted, partitions the graph into 2 components.

• ≥ k-card cut:

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

and a positive integer k.

Question: Find the set of edges, has cardinally greater than or equal k, with minimum

total weight, when deleted, partitions the graph into 2 components.

In general, for any graph, k-card cut and ≥k-card cut are NP-hard even for unweighted

graph due to Bruglieri et al. (2003).

3.2.3 Other Variants

3.2.3.1 Capacitated Max k-Cut Problem

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

a positive integer k, and a set of capacities {𝑠1, 𝑠2, … , 𝑠𝑘} where ∑ 𝑠𝑖
𝑘
𝑖=1 = |𝑉|.

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with maximum total weight, such that each

component 𝑉𝑖 contains at most 𝑠𝑖 vertices.

25

3.2.3.2 Capacitated Max k-Un Cut Problem

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

a positive integer k, and a set of capacities {𝑠1, 𝑠2, … , 𝑠𝑘} where ∑ 𝑠𝑖
𝑘
𝑖=1 = |𝑉|.

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with maximum total weight of self-edges, such that

each component 𝑉𝑖 contains at most 𝑠𝑖 vertices.

Choudhury (2008) consider two integer linear programs and show that the integrality gap

(ratio between the optimal solution to the linear programming relaxation and the optimal

solution to the integer linear program) is not bounded.

3.2.3.3 Multiway Un Cut Problem

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

a positive integer k, and a subset of vertices T = {𝑡1, 𝑡2, … , 𝑡𝑘} ⊆ 𝑉 called terminals.

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with maximum total weight of self-edges, such

that each component 𝑉𝑖 contains exactly one terminals 𝑡𝑖 .

3.2.3.4 The k-route cut problem

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,

an integer connectivity requirement k, and a collection {(𝑠1, 𝑡1), … , (𝑠𝑟 , 𝑡𝑟)} of source-

sink pairs.

Question: Find k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each (𝑠𝑖 , 𝑡𝑖) is

disconnected, i.e., does not belong to the same component.

3.2.3.5 Directed multiway cut problem

Input: Given a directed graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, and

a set 𝐾 ⊆ 𝑉×𝑉 of order pair of vertices of G.

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each

component 𝑉𝑖 contains exactly one terminal 𝑡𝑖 .

26

problem Special graph
Special

k
Complexity Reference

Min k-cut General graph NP-hard Dahlhaus et al. (1992).

Min k-cut General graph K=2 P King et al. (1992).

Min k-cut General graph Fixed k P
Goldschmidt and

Hochbaum (1994)

Min k-cut tree p

Ratio cut General graph P Chvátal (1973)

Strength cut General graph P Cunningham (1985).

Barahona

multi cut
General graph P Barahona (2000).

Max k-cut General graph NP-hard
Garey and Johnson

(1979).

Max k-cut planar p

Orlova and Dorfman

(1972) and Hadlock

(1975).

Max k-cut
not contractible to

𝐾5
 P Barahona (1983).

Max k-cut

graph can be

embedded in tours

and the weights are

equal to +1 or -1

 P Barahona (1981).

Max k-cut
graph has only

negative weights
 P

McCormick and

Rinaldi (2003)

Max k-un cut General graph NP -hard Choudhury (2004)

Table (3-2). The complexity of minimum k- cut problem and some of its variants.

27

Capacity Min

k-cut

NP-

complete

Gary and Johnson

(1976)

Multiway cut General graph K > 2 NP -hard Dahlhaus (1992).

Multiway cut K=2 P King et al. (1992).

Multiway cut tree P Erdős et al. (1994)

Cardinality

k-cut
General graph NP -hard Bruglieri et al. (2003).

Cardinality

k-cut
Tree P Bruglieri et al. (2003).

28

Chapter 4: Some Applications

The minimum cut problem has several applications. Picard and Queyranne (1982) survey

applications including graph partitioning problems, the study of project networks, and

partitioning items in a database.

An important application of graph partitioning is data clustering using a graph model - the

pairwise similarities between all data objects form a weighted graph adjacency matrix that

contains all necessary information for clustering.

The problem of determining the connectivity of a network arises frequently in issues of

network design and network reliability, and exploits an extremely tight connection between

minimum cuts and network reliability.

Minimum cut computations are used to find the subtour elimination constraints that are

needed in the implementation of cutting plane algorithms for solving the traveling salesman

problem. Padberg and Rinaldi (1990) and Applegate (1992) have reported that solving min-

cut problems was the computational bottleneck in their state-of-the-art cutting plane based

TSP algorithm, as well as other cutting-plane based algorithms for combinatorial problems

whose solutions induce connected graphs.

Minimum cut problems also play an important role in large-scale combinatorial

optimization, finite elements and, VLSI circuit partitioning, which is a key step in VLSI

CAD.

Minimum cut problems arise in the design of compilers for parallel languages (Chaterjee

et al. 1996). Consider a parallel program that we are trying to execute on a distributed

memory machine. In the alignment distribution graph for this program, vertices correspond

to program operations and edges correspond to flows of data between program operations.

More detailed applications are presented here below: spin glass models, unconstrained 0-1

quadratic programming and image segmentation problem.

29

4.1. Spin glass model

It is a very interesting problem in numerical physics ground state problem. This problem

is NP-hard in general. A spin-glass is a disordered magnet, where the magnetic spin of

the component atoms is not ranged in a regular pattern. In normal magnets, magnetic

moments of interacting atoms align in one particular fashion. The interactions are either

ferromagnetic (the spins align in the same direction) or anti-ferromagnetic (the spins

align in the opposite directions). In disordered magnet, we may have several types and

strengths of interactions at the same time. Figure 4.1

FIGURE (4-1): Graphic representation of the random spin structure of a spin glass (top) and the

ordered one of a ferromagnet (bottom). (Wikipedia 2011)

Between every atom there is an interaction energy given by: Hij = - J(R) Si Sj, where Si: is

the magnetic spin of the atom i, and J(R) =𝐴
cos (𝐷𝑟𝑖𝑗)

𝐵3(𝑟𝑖𝑗)
3

 such that A, B and C depending on

the material, rij is the range between the atom i and j.

Physics Model:

Sherrington and Kirkpatrick (1975) proposed a simple spin-glass model to construe the

physical properties of the systems, consisting of interacting spins. This famous model can

be defined as follows:

Assume that the spins are existing at the nodes of net (usually square or cubic) and each

30

spin atom is represented by Vector, take the values: Si = 1, -1 (i=0,1, 2, …, n).

Assume the interactions between the spins happen for the neighbors.

The energy function of the system is given by:

H = - ∑ Jij Si Sj(i,j)∈L … (4.1) (Hamilton function)

The ground state problem is to find minimum energy system

i.e. min {H(S) =∑ Jij Si Sj(i,j)∈L , where S is spin configuration}.

Graphic Model:

Spin-glass can be reduced to the MAX-CUT problem. (Barahona 1987)

We can be modeled the problem on graph G= (V, E) where the vertices correspond to the

spins, and if there is an interaction between the spins Si, Sj the corresponding vertices are

connected by an edge Si Sj. We can associate the weight: wij = - Jij, then the ground state

problem is equivalent to the problem:

 min {H(S) = ∑ wij Si Sj(i,j)∈E : Si ∈ {+1,−1} , i ∈ V }.

This problem is to be established an assignment of +1 and -1 to the vertices of the graph

such that ∑ wij Si Sj(i,j)∈E is minimum. Figure (4-2).

???

?

?

?

?

?

?

+1 +1

-1

+1
-1

-1

+1+1

-1 +1

In Put

-++

-

+

-

-

-

+

+1 +1

-1

+1
-1

-1

+1+1

-1 +1

Out Put

Minimizing

Energy

+1

+1

Figure (4-2): Spin glass problem

Every assignment induces a partition of the nodes in graph into node sets 𝑉+ and

𝑉−,where : 𝑉+ = {i ∈ V: Si = +1}, V− = {i ∈ V: Si = −1}.

31

min∑ wij Si Sj(i,j)∈E = min [∑ Wiji,j∈V+ + ∑ Wiji,j∈V− + ∑ −Wiji∈V+

j∈V−
] ,

min∑ wij Si Sj(i,j)∈E = min [(∑ Wiji,j∈V+ + ∑ Wiji,j∈V− + ∑ −Wij) + (∑ Wij + ∑ −Wij)i∈V+

j∈V−
i∈V+

j∈V−
i∈V+

j∈V−
],

min∑ wij Si Sj(i,j)∈E = min [(∑ Wiji,j∈V+ + ∑ Wiji,j∈V− + ∑ Wij) + (∑ −Wij + ∑ −Wij)i∈V+

j∈V−
i∈V+

j∈V−
i∈V+

j∈V−
],

min∑ wij Si Sj(i,j)∈E = min [∑ Wiji,j∈𝐸 − 2∑ Wiji∈V+

j∈V−
],

min∑ wij Si Sj(i,j)∈E = min [C − 2∑ Wiji∈V+

j∈V−
], where C = ∑ Wiji,j∈𝐸 is a constant.

To find min [C − 2∑ Wiji∈V+

j∈V−
] is equivalent to find maximum[∑ Wiji∈V+

j∈V−
].

4.2 Unconstrained 0-1 Quadratic Programming

Consider the Quadratic 0-1 program as follows:

Minimum {𝑓(𝑥) = ∑ ∑ 𝑞𝑖𝑗𝑥𝑖𝑥𝑗
𝑛
𝑗=𝑖+1 + ∑ 𝑐𝑖𝑥𝑖: 𝑥 ∈ {0,1}𝑛𝑛

𝑖=1
𝑛−1
𝑖=1 }. ----- (4.2)

This problem in general is NP- hard. It can be reduced to Max Cut problem (Ameur et al

2001).

Let 𝑠𝑖 = 2𝑥𝑖 − 1 then 𝑥𝑖 =
𝑠𝑖+1

2
, if 𝑥𝑖 = 0 then 𝑠𝑖 = −1, and if 𝑥𝑖 = 1 then 𝑠𝑖 = 1,

hence if 𝑥𝑖 = {0,1} then 𝑠𝑖 = {+1, −1}.

𝑓(𝑥) = ∑ ∑ 𝑞𝑖𝑗(
𝑠𝑖+1

2
)(

𝑠𝑗+1

2
)𝑛

𝑗=𝑖+1 + ∑ 𝑐𝑖 (
𝑠𝑖+1

2
) : 𝑠𝑖 ∈ {1,−1}𝑛,𝑛

𝑖=1
𝑛−1
𝑖=1

𝑓(𝑥) =
1

4
 ∑ ∑ 𝑞𝑖𝑗(𝑠𝑖𝑠𝑗 + 𝑠𝑖 + 𝑠𝑗 + 1)𝑛

𝑗=𝑖+1 +
1

2
∑ 𝑐𝑖𝑠𝑖 +

1

2
∑ 𝑐𝑖: 𝑠𝑖 ∈ {1, −1}𝑛,𝑛

𝑖=1
𝑛
𝑖=1

𝑛−1
𝑖=1

𝑓(𝑥) = ∑ ∑ (
1

4
𝑞𝑖𝑗)𝑠𝑖𝑠𝑗 + ∑ [

1

4
{∑ 𝑞𝑖𝑗 +𝑖−1

𝑗=1 ∑ 𝑞𝑖𝑗
𝑛
𝑗=𝑖+1 } +

1

2
𝑐𝑖] 𝑠𝑖

𝑛
𝑖=1

𝑛
𝑗=𝑖+1 +𝑛−1

𝑖=1

 ∑ ∑
1

4
𝑞𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 +

1

2
∑ 𝑐𝑖

𝑛
𝑖=1 : 𝑠𝑖 ∈ {1, −1}𝑛,

And by setting: 𝑤𝑖𝑗 =
1

4
𝑞𝑖𝑗 , 𝑤0𝑗 =

1

4
{∑ 𝑞𝑖𝑗 +𝑖−1

𝑗=1 ∑ 𝑞𝑖𝑗
𝑛
𝑗=𝑖+1 } +

1

2
𝑐𝑖 , 𝑐1 =

 ∑ ∑
1

4
𝑞𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 +

1

2
∑ 𝑐𝑖

𝑛
𝑖=1 , 𝑠0 = 1 .

32

We obtain the following equivalent problems:

Minimum {𝑔(𝑠) = ∑ ∑ 𝑤𝑖𝑗𝑠𝑖𝑠𝑗
𝑛
𝑗=𝑖+1 : 𝑠𝑖 ∈ {1,−1}𝑛+1𝑛−1

𝑖=0 }. ---- (4-3)

And we can reduce (4-3) to the Max Cut problem by using the spin glass model.

4.3 Image Segmentation problem

A fundamental problem in computer vision is that of segmenting an image into coherent

regions. A basic segmentation problem is that of partitioning an image into a foreground

and a background: assign each pixel in the image as belonging to the foreground or the

background. Figure (4-3).

Figure (4-3): In the right input Image, in the left optimal segment. (Boykov and Jolly (2011)

The main contribution to the problem with graphs was proposed by Boykov et al. (2001),

inspired by a previous work by Greig et al. (1989).

Let V be the set of pixels in an image, and E be the set of pairs of adjacent pixels. V and

E produce an undirected graph G (V, E).

Each pixel i has a likelihood 𝑎 𝑖 > 0 that it belongs to the foreground and a likelihood

𝑏𝑖 > 0 that it belongs to the background. These likelihoods are specified in the input to

the problem.

We want the foreground/background boundary to be smooth: for each pixels i and j ,

there is a separation penalty 𝑝𝑖𝑗≥ 0 for placing one of them in the foreground and the

other in the background.

Image Segmentation problem

Given: Pixel graphs G (V, E), likelihood functions a, b: V →𝑅+, and a penalty function

p: E →𝑅+.

33

Question: (Find the optimum labelling) Partition the pixels into two sets A be the set of

pixels assigned to foreground and B be the set of pixels assigned to background such that:

Maximize q(A, B) = ∑ aii∈A + ∑ bi − ∑ pijij∈E
|A∩{i,j}|=1

i∈B .

Rewrite q(A, B) as follows:

q(A, B) = ∑ (ai+bi)i∈V − ∑ bi −i∈A ∑ ai − ∑ pijij∈E
|A∩{i,j}|=1

i∈B .

Since C = ∑ (ai+bi)i∈V is constant then:

 q(A, B) = C −

[

∑bi +

i∈A

∑ai + ∑ pij

ij∈E
|A∩{i,j}|=1

i∈B
]

.

Maximizing q(A, B) is equivalent to minimizing:

q̃(A, B) = ∑ai +

i∈A

∑bi + ∑ pij

ij∈E
|A∩{i,j}|=1

i∈B

To minimize 𝑞̃(𝐴, 𝐵), we can formulate it as a Min-Cut problem by constructing a

network where the source (dummy vertex s) is connected to all the pixels with likelihood

function 𝑎𝑖 , and the sink (dummy vertex t) is connected to all the pixels with likelihood

function 𝑏𝑖; two edges (i,j) , and (j,i) with 𝑝𝑖𝑗 penalty function are added between two

adjacent pixels.

An st-cut then represents pixels assigned to the foreground in A and pixels assigned to

the background in B. Figure (4-4).

34

Figure (4-4): Using the min-cut approach for image segmentation. Boykov and Jolly (2011)

a.

35

Chapter 5: Special Instances of MKCP

In this chapter, we introduce some special instances of the minimum k-cut problem and

some of its variants.

5.1. Minimum k-cut for fixed k

A natural approach for solving MKCP with a fixed k is the greedy approach.

5.1.1. Greedy Algorithm

A greedy algorithm is an algorithmic method that builds up a solution step by step, and at

every step, we can make a choice that looks best at the moment, it makes a locally-optimal

choice in the hope that this choice will lead to a globally-optimal solution. We get the

optimal solution of the complete problem at the end of the algorithm.

Greedy algorithms are used for optimization problems.

If a greedy algorithm can solve a problem, then it generally becomes the best method to

solve that problem as the greedy algorithms are in general more efficient than other

techniques. But greedy algorithms cannot always be applied.

Greedy approach for k-cut:

The base of this algorithm is to apply the minimum st- cut using the max-flow min-cut

theorem repeatedly.

Consider a graph G of size n, we will have (𝑛
𝑘
) subsets of size k.

For each subset 𝑉𝑗 = {𝑣1, 𝑣2, … , 𝑣𝑘}; (1 ≤ 𝑗 ≤ (𝑛
𝑘
)) , choose one vertex vi (1 ≤ i ≤ k)

and partition it from V using (vi-V) min cut and again choose another vertex vi (1 ≤ i ≤ k-

1) and partition it from V using minimum (vi-V) min cut, repeat this process to get k

components in each one there exactly one vertex 𝑣𝑖 from Vj.

From {𝑣1, 𝑣2, … , 𝑣𝑘} we pick vi and apply (vi-V) min cut it cost (k) k-cut

36

and from {𝑣1, 𝑣2, … , 𝑣𝑘−1} we pick vi and apply (vi-V) min cut it cost (k-1) k-cut

and from {𝑣1, 𝑣2, … , 𝑣𝑘−2} we pick vi and apply (vi-V) min cut it cost (k-2) k-cut

we produce 𝑘. (𝑘 − 1). (𝑘 − 2)… (2)(1) = 𝑘! k-cut, the running time of this algorithm

will be 𝑂(𝑛𝑘).

This algorithm fails even in a planar graph. We can develop this algorithm by exchange

min (s-t) cut by min (S-T) cut such that S and T have more than one vertex, S is called

core set, and T is called terminal set.

A min (S- T) cut is the set of edges of minimum total weight which partition graph into

two connected components 𝑉𝑠 (source set) and 𝑉𝑡 (sink set), such that 𝑉𝑠 ∩ 𝑉𝑡 = 𝜙, 𝑉𝑠 ∪

𝑉𝑡 = 𝑉, and the core set is sub set of source set and the terminal set is sub set of sink set.

Figure (5-1).

The min (S-T) cut can be found in polynomial time by reducing it to min (s-t) cut which

finds by Max flow – Min cut theorem, we joined every vertex in the core set S to pretend

point s by infinite weight arcs, and joined every vertex in the terminal set T to pretend

point t by infinite weight arcs, and then we can find min (s-t) cut. Figure (5-2).

Sink set

Source set

S T
 tV

sV

Terminal

set

Core set

Sink set

Source set

S T
 tV

sV

Terminal

set

Core set

37

S T

s t

A maximal min (S-T) cut is a min (S-T) cut with maximal source, to find it we will find

all the min (S-T) cut and pick the one with maximal source, obviously, we reduce min (S-

T) cut to min (s-t) cut then apply Max flow algorithm, and in the final residual graph find

all nodes reachable from the terminal which is satisfies the min cut, the remaining nodes

is a maximal source. Figure (5-3).

6,5

2,2

Min(s-t)cut Maximal

min(s-t)cut

s

t

5.1.2. A polynomial algorithm

Goldschmidt and Hochbaum (1994) give a polynomial algorithm to find the minimum k-

cut for a fixed k with running time 𝑂(𝑛𝑘2
 𝑇(𝑛,𝑚)), where T(n, m) is the (best) running

38

time complexity for the minimum (s, t) cut algorithm. The idea for finding an optimal

solution is to find a maximal minimum (S-T) cut (which is unique), i.e., a minimum (S-T)

cut with a maximal source set, the core set S having at most k-2 vertices, and the terminal

set T having at most k-1 vertices.

The following result is an important proposition for the minimum k–cut problem. It is a

basic result for a lot of algorithms.

Proposition (5-1)

For any graph G, let C be a minimum k-cut in G = (V, E) separating V into k components

V1, …, Vk, and let Ci = Ci(Vi, V̅i) ⊆ C be the set of edges separating Vi from 𝑉̅i, then:

w(C) =
1

2
∑ w(Ci)

k
i=1 .

Proof:

w(Ci) = w[Ci(Vi, V̅i)] = ∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)],
𝑘
𝑗=1
𝑖≠𝑗

∑ 𝑤(𝐶𝑖)
𝑘
𝑖=1 = ∑ ∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)]

𝑘
𝑗=1
𝑖≠𝑗

= ∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)] +𝑘
𝑖=1,𝑗=1

𝑖<𝑗

∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)],
𝑘
𝑖=1,𝑗=1

𝑖>𝑗

 𝑘
𝑖=1

Since w(C) = ∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)] =𝑘
𝑖=1,𝑗=1

𝑖<𝑗

∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)],
𝑘
𝑖=1,𝑗=1

𝑖>𝑗

 then:

∑ 𝑤(𝐶𝑖)
𝑘
𝑖=1 = 2𝑤(𝐶).

w(C) =
1

2
∑ w(Ci)

k
i=1 . □

Let C be a minimum k-cut that partitions the graph into k components 𝑉1 … , 𝑉𝑘 , and 𝐶𝑖

be the subset of the cut C, denoted 𝐶𝑖(𝑉𝑖 , 𝑉𝑖̅), that have one endpoint in 𝑉𝑖 and the other

end in 𝑉𝑖̅ (1 ≤ 𝑖 ≤ 𝑘).

We sort these components: 𝑤(𝐶1) ≤ 𝑤(𝐶2) ≤ ⋯ ≤ 𝑤(𝐶𝑘) .

If we consider all min k-cuts, we will pick the one, that generates 𝑉1 as a maximal

component, i.e., there is no min k-cut 𝐶̌ , such that the cut 𝐶̌𝑖 is a subset of 𝐶,̌ and

partitions the graph into (𝑉𝑖̌, 𝑉̌𝑖
̅) and w(𝐶̌1) ≤ w(𝐶̌𝑖) for every i , and 𝑉1 ⊆ 𝑉1̌.

Theorem (5-1):

39

For any graph G, for k > 3, if 𝑉1 contains at least k-2 vertices then there exist a set S⊆ 𝑉1

with |𝑆|=k-2, and there exist a set T= {𝑡1, … , 𝑡𝑘−1} where 𝑡𝑖 ∈ 𝑉𝑖 (2 ≤ 𝑖 ≤ 𝑘) such that

𝐶1 is the maximal min (S-T) cut.

Proof:

Suppose that 𝐶1 is not a min (S-T) cut. We will prove that there is a contradiction with

the fact that C is a minimum k- cut. (See Figure (5-4)).

• First, we prove three statements:

Statement 1: for any min (S, T) cut, if S is contained in 𝑽𝟏 then the source set 𝑽𝒔 ⊆

𝑽𝟏.

Suppose that there exists a min (S, T) cut denoted Ć, S⊆ 𝑉1 and 𝑉𝑠 ⊊ 𝑉1,. (See Figure (5-

5)).

Let the set of edges C1x ⊆ C1 , the set of edges Ć𝑥 ⊆ Ć, such that for every edge uv in

C1x, u and v belong to 𝑉𝑠, for every edge uv in Ć𝑥, u and v belong to 𝑉 − 𝑉1 . (See Figure

(5-6)).

We reverse the two choices: 𝑤(C1x) < 𝑤(Ćx) and 𝑤(C1x) ≥ 𝑤(Ćx).

➢ If 𝑤(C1x) < 𝑤(Ćx) , in the cut Ć, if we replace the section of the cut Ćx by C1x , we

will get the cut [(Ć ∪ C1x) − (Ćx)] and it min (S, T) cut, hence it is a contradiction

with claim Ć is min (S-T) cut.

➢ If 𝑤(C1x) ≥ 𝑤(Ćx), assume that ℂ is a cut that partitions G in to k components

Ѷ1, Ѷ2, . . , Ѷ𝑘, such that: Ѷ1 = 𝑉1 ∪ 𝑉𝑠 , Ѷ2 = 𝑉2 − 𝑉𝑠 , …, Ѷ𝑘 = 𝑉𝑘 − 𝑉𝑠. Let ℂ𝑖 ⊆ ℂ

40

is the cut partitioning Ѷ𝑖 from Ѷ̅𝑖.

To get a feasible k- cut, every component should be not empty.

For every i (2 ≤ 𝑖 ≤ 𝑘) 𝑡𝑖 ∈ 𝑉𝑖 , and 𝑡𝑖 ∉ 𝑉𝑠 since 𝑇 ∩ 𝑉𝑠 = 𝜙, then 𝑉𝑖 − 𝑉𝑠 ≠ 𝜙.

Let Cx ⊆ C be the set of edges, such that for every edge uv in Cx, u and v belong to 𝑉𝑠.

We can replace the cut Cx by Ćx , hence: ℂ = (C ∪ Ćx) – Cx .

I. The set of edges partitioning the connected component 𝑽𝒊, 𝑽𝒋 is equivalent to the

set of edges partitioning the connected component Ѷ𝒊, Ѷ𝒋,

𝐶 (𝑉𝑖 , 𝑉𝑗) = 𝐶 (Ѷ𝑖 , Ѷ𝑗) for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ≥ 2.

Since C1x ⊆ 𝐶x and 𝑤(C1x) ≥ 𝑤(Ćx), then 𝑤(Cx) ≥ 𝑤(Ćx).

If 𝑤(Cx) > 𝑤(Ćx) and since ℂ = (C ∪ Ćx) – Cx, then 𝑤(ℂ) < 𝑤(C) and this is a

contradiction with that C is a min k-cut.

Hence 𝑤(Cx) = 𝑤(Ćx) then 𝐶𝑥 = 𝐶1𝑥, then:

𝐶 (𝑉𝑖 , 𝑉𝑗) ∩ 𝐶𝑥 = 𝜙 for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ≥ 2. [5-1]

If there exist an edge e ∈ 𝐶 (𝑉𝑖 , 𝑉𝑗) ∩ Ć𝑥 then:

𝑤(ℂ) = 𝑤((C ∪ Ćx) – Cx) ≤ 𝑤(C) + w(Ćx) – w(C1x) − 𝑤(𝑒)

Since: w(Ćx) = w(C1x) then 𝑤(ℂ) ≤ 𝑤(C) − 𝑤(𝑒)

Since 𝑤(𝑒) > 0 then 𝑤(ℂ) < 𝑤(C) and it is a contradiction with C is a min k-cut.

then 𝐶 (𝑉𝑖 , 𝑉𝑗) ∩ Ćx = 𝜙 for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ≥ 2. [5-2]

from [5-1] and [5-2]: 𝐶 (𝑉𝑖 , 𝑉𝑗) = 𝐶 (Ѷ𝑖 , Ѷ𝑗) for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ≥ 2.

II. The total weight of the set of edges partitioning the connected component 𝑉1, 𝑉𝑖 is

equivalent to the total weight of the set of edges partitioning the connected

component Ѷ𝟏, Ѷ𝒊 , 𝑤(𝐶 (𝑉1, 𝑉𝑖)) = 𝑤(𝐶 (Ѷ1, Ѷ𝑖)) for, 𝑖 ≥ 2.

It is enough to prove that 𝑤(𝐶 (𝑉1, 𝑉𝑖 ∩ 𝑉𝑠)) = 𝑤(𝐶 (𝑉𝑖 , 𝑉𝑖 ∩ 𝑉𝑠)), and we know that

𝑤(𝐶 (𝑉1, 𝑉𝑖 ∩ 𝑉𝑠) ≥ 𝑤(𝐶 (𝑉𝑖 , 𝑉𝑖 ∩ 𝑉𝑠)), or 𝑤(𝐶 (𝑉1, 𝑉𝑖 ∩ 𝑉𝑠) ≤ 𝑤(𝐶 (𝑉𝑖 , 𝑉𝑖 ∩ 𝑉𝑠)), since if

it is not, we have a contradiction with our claim C is a min k-cut.

By I and II: for every i: 𝑤(ℂ𝑖) = 𝑤(C𝑖) and then there exist a min k cut ℂ, 𝑤(ℂ1) ≤

𝑤(𝐶𝑖), 𝑖 ≥ 2 , and 𝑉1 ⊂ Ѷ1, which contradicts the maximality claim. It follows that, for

41

any min (S, T) cut, if S ⊂ 𝑉1, |𝑆| = 𝑘 − 2, then the source set 𝑉𝑠 ⊆ 𝑉1. □

If |𝑉1| = 𝑘 − 2 then 𝑆 = 𝑉1 ⊆ 𝑉𝑠 , hence 𝑉1 = 𝑉𝑠 and 𝐶1 = Ć.

Statement 2: 1f |𝑽𝟏| > 𝒌 − 𝟐 and there exist 𝑪𝟐 minimum (S, T) cut, such that 𝑪𝟐 ≠

𝑪𝟏 then 𝒘(𝑪𝟐) < 𝒘(𝑪𝟏).

We prove this statement by contradiction. Suppose that w (𝐶2) ≥ 𝑤(𝐶1). Let 𝑉𝑠2 be the

source set of the cut 𝐶2 then from statement 1, 𝑉𝑠2 ⊆ 𝑉1.

If 𝑉𝑠2 ⊂ 𝑉1 , and w (𝐶2) ≥ 𝑤(𝐶1), then 𝐶1 does not have a maximal source cut, and it is

a contradiction. □

Statement 3: If |𝑽𝟏| > 𝒌 − 𝟐 and every minimum (S, T) cut have weight strictly less

than 𝒘(𝑪𝟏), then it generates min k- cut have total weight less than the cut C.

Consider every possible core set {s1, … , sk−2} in V1 pick the set {s1, … , sk−2} such that

min ({s1, … , sk−2} − T)cut is of maximum weight. From statement 1, the source set of

this cut is a proper subset of V1, then there exists at least s0 in V1 not belonging to the

source set. Now consider the cut Csi a min ({s0, s1, … si−1, si+1, . . , sk−2} − T) cut. The

size of the core set of this cut is k-2. Let the source set of the cut Csi is Vsi
, and from

statement 1, Vsi
⊂ 𝑉1. Let the cut 𝐶𝑆𝑖

⊂ Csi be the set of edges with both end points in

𝑉1.and V̅si
= V1 − Vsi

Claim 1: 𝑠𝑖 ∉ 𝑉𝑠𝑖
 , for every i = 0,1, ..., k-2.

By using the shrink producer on 𝑉1, we will get 𝐶1, and 𝑉1 satisfies claim 2.

Claim 2: 𝑤(𝐶𝑆𝑖
) < 𝑤(𝐶1(V̅si

))

Let 𝑆𝑖 be the component contain 𝑠𝑖, 𝐶1is the output of the shrink producer, and 𝐶∗ be the

cut partitioning the graph into 𝑆0, 𝑆1, …,𝑆𝑘−2, 𝑉 − (⋃ 𝑆𝑖
𝑘−2
𝑖=0).

Claim 3: 𝒘(𝑪∗) < 𝟐𝒘(𝑪𝟏).

By proposition (5-1): w(C) =
1

2
∑ w(Ci)

k
i=1 ≥

𝑘

2
 w(C1).

By claim 3: w(C) =
1

2
∑ w(Ci)

k
i=1 ≥

𝑘

2
 w(C1) =

𝑘

2

2

2
w(C1) >

𝑘

4
𝑤(𝐶∗),

hence w(C) >
𝑘

4
𝑤(𝐶∗), and at this moment the cut 𝐶∗separate graph in to k components

42

and has a weigh less than the optimal one, which is a contradiction. □

The theorem (5-1) consider the maximal minimum (S-T) cut for k > 3 in the following

theorem we will consider the maximal minimum (S-T) cut for 𝑘 = 3.

Let C be the minimum k-cut that partition graph into 3 connected components 𝑉1, 𝑉2, 𝑉3 ,

and let 𝐶𝑖 be the subset of the cut C that 𝐶𝑖(𝑉𝑖 , 𝑉𝑖̅) denoted the set of edges have one

endpoint in 𝑉𝑖 and the other end in 𝑉𝑖 complement (1 ≤ 𝑖 ≤ 3), we sort this component:

𝑤(𝐶1) ≤ 𝑤(𝐶2) ≤ 𝑤(𝐶3) .

If we consider all min 3-cuts, we will pick the one, that generates 𝑉1 maximal component.

Theorem (5-2):

For any graph G, for k= 3, if 𝑉1 have size at least 2 vertices, then there exist a set S⊆ 𝑉1

with |𝑆|=2, and there exist a set T= {𝑡1, 𝑡2} where 𝑡𝑖 ∈ 𝑉𝑖+1 (1 ≤ 𝑖 ≤ 2) such that 𝐶1is the

maximal min (S-T) cut.

Proof:

let 𝐶1 is not a min (S-T) cut and then we will have contradiction with C is minimum 3-

cut.

Suppose there exist min (S, T) cut denoted Ć, 𝑆 = {𝑠1, 𝑠2} contend in 𝑉1 and 𝑇 =

{𝑡1, 𝑡2}, 𝑡1 ∈ 𝑉2 𝑎𝑛𝑑 𝑡2 ∈ 𝑉3 , if we enumerate all min (S-T) cut, we pick the cut Ć such

that w (Ć) be maximum one.

By statement 1 of theorem (5-1), 𝑉𝑠 ⊂ 𝑉1, then there exist 𝑠0 ∈ (𝑉1 − 𝑉𝑠) ⊆ 𝑉𝑠̅. Let Cs1
be

min ({𝑠2, 𝑠0} − {t1, t2})cut, and let 𝑉𝑠1 be maximal source set of the cut Cs1
, by claim1:

𝑠1 ∉ 𝑉𝑠1, then the cut Ć ∪ Cs1
 generates a 4-cut, the cut Ć make two connected

components𝑉𝑠 and 𝑉𝑠̅ , and the cut Cs1
 make two connected components 𝑉𝑠1 and 𝑉̅𝑠1 , since

𝑠2 in the core set of Cs1
, then 𝑠2 ∈ 𝑉𝑠1 ,and since 𝑠1 ∉ 𝑉𝑠1th en 𝑠1 ∈ 𝑉̅𝑠1 then we will have

4 connected components: 𝑉𝑠1 ∩ 𝑉𝑠 , 𝑉̅𝑠1 ∩ 𝑉𝑠 , 𝑉𝑠1 ∩ 𝑉̅𝑠 , 𝑉̅𝑠1 ∩ 𝑉̅𝑠 and every components not

empty: 𝑠2 ∈ 𝑉𝑠1 ∩ 𝑉𝑠 , 𝑠1 ∈ 𝑉̅𝑠1 ∩ 𝑉𝑠 , 𝑠0 ∈ 𝑉𝑠1 ∩ 𝑉̅𝑠 , {𝑡1, 𝑡2} ⊆ 𝑉̅𝑠1 ∩ 𝑉̅𝑠.

Let the cut Cin
s1

 be part of the cut Cs1
with all end points in 𝑉𝑠, and the cut Cout

s1
 be

43

part of the cut Cs1
 with all end points in 𝑉̅𝑠

The cut C2 = Cin
s1

∪ Ć generates a 3-cut: 𝑉𝑠1 ∩ 𝑉𝑠 , 𝑉̅𝑠1 ∩ 𝑉𝑠 , 𝑉̅𝑠. Figure (5-7)

The cut C3 = Cout
s1

∪ Ć generates a 3-cut: 𝑉𝑠 ,𝑉𝑠1 ∩ 𝑉̅𝑠 , 𝑉̅𝑠1 ∩ 𝑉̅𝑠. Figure (5-8)

And from assumption (Ć be maximum min (S-T) cut and Cs1
be min (S-T)) w(Cs1

) ≤

𝑤(Ć) < 𝑤(𝐶1). If we assume w(Cin
s1

) ≤ w(Cout
s1

) then

2w(Cin
s1

) ≤ w(Cin

s1

∪ Cout
s1

) ≤ w(Cs1
) < w(C1). Hence w(Cin

s1
) <

1

2
w(C1), and

then 𝑤(C2) = 𝑤(Cin
s1

∪ Ć)) <
1

2
w(C1) + w(C1) =

3

2
 w(C1)

By proposition (5-1): w(C) =
1

2
∑ w(Ci)

3
i=1 ≥

3

2
 w(C1) > w(C2)

Then the cut C2 separates the graph into 3 connected components and have a weight less

than the optimal one, it’s a contradiction. □

The following algorithm is due to Goldschmidt and Hochbaum (1994).

5.1.3. The min k- cut Algorithm for fixed k (k=3)

Input: A graph G = (V, E), and k=3. Let 𝑊° = ∞.

Step 1:

For i (1 ≤ 𝑖 ≤ |𝑉|), let 𝑉1 = {𝑣𝑖}, such that 𝑣𝑖 ∈ 𝑉, i.e., we enumerate all subset of V

44

having one vertex. Let 𝑤1 be the total weight of the incident edges in 𝑣𝑖, and 𝑤2 be the

min 2–cut on 𝑉̅1. If 𝑤1+𝑤2 < 𝑊°, then put 𝑊° = 𝑤1+𝑤2 , (it makes 3 components

𝑉1, 𝑉2, 𝑉3 , and | 𝑉1| = 1)

else do step 2.

Step 2:

Let 𝑤3 be the weight of maximum min (S-T) cut such that |𝑆| = 2, and |𝑇| = 2, i.e. we

enumerate all subset of V have two vertices. Pick S= {𝑠1, 𝑠2} and T= {𝑡1, 𝑡2} such that

min(S-T) cut have a maximum source set 𝑉𝑠. Let 𝑤4 be the weight of a min (𝑡1−𝑡2)-cut

in the set 𝑉̅𝑠 = 𝑉𝑡. If 𝑤3+𝑤4 < 𝑊°, then put 𝑊° = 𝑤3+𝑤4 , (it makes 3 components

𝑉1, 𝑉2, 𝑉3).

Output: 𝑊° the total weight of min 3-cut, and the components 𝑉1, 𝑉2, 𝑉3.

Running time complexity:

Let G = (V, E) be an undirected graph. We know that the running time for min 2-

cut is T(n,m) such that |V| = n, and |E| = m. (The best running time for min 2-cut

is O(𝑚𝑛), it is due to Orlin (2013)).

In step 1, to pick 𝑣𝑖 from V we have n ways, then the complexity to find (𝑤1 + 𝑤2) is

O(n T(n,m)), and in step 2, to pick S and T from V we have (𝑛
2
)(𝑛−2

2
), i.e.,

(
𝑛(𝑛−1)

2

(𝑛−2)(𝑛−3)

2
) ways, then the complexity to find (𝑤3 + 𝑤4) is O(𝑛4 T(n,m)).

Then the whole complexity of the algorithm is : O((𝑛4 + n)T(n,m)) =O(𝑛4T(n,m)).

5.1.4. The min k- cut Algorithm for fixed k (k > 3)

Input: graph G = (V, E), and k > 3. Let 𝑊° = ∞.

Step 1:

For i (1 ≤ 𝑖 ≤ 𝑘 − 3), let 𝑉1 = {𝑣1, … , 𝑣𝑖} such that 𝑣𝑖 ∈ 𝑉, i.e. we enumerate all subset

S of V have i vertices, let 𝑤1 be the weight of the min (S-T) cut partition G in to 𝑉𝑠 and 𝑉𝑡

,let 𝑤2 be the min(k-1) – cut on 𝑉̅𝑠. If 𝑤1+𝑤2 < 𝑊°, then put 𝑊° = 𝑤1+𝑤2 , (it makes k

components 𝑉1, … , 𝑉𝑘 , and | 𝑉1| = 𝑖)

45

else do step 2.

Step 2:

Let 𝑤3 be the weight of maximal min (S-T) cut such that |𝑆| = 𝑘 − 2, and |𝑇| = 𝑘 − 1,

i.e. we enumerate all subset of V have [(k-1) + (k-2) =(2k-3)] vertices pick S=

{𝑠1, . . . , 𝑠𝑘−2} and T= {𝑡1, … , 𝑡𝑘−1} that the min(S-T) cut have maximum source set 𝑉𝑠.

Let 𝑤4 be the weight of min (𝑘 − 1)-cut in the set 𝑉̅𝑠 = 𝑉𝑡. If 𝑤3+𝑤4 < 𝑊°, then

put 𝑊° = 𝑤3+𝑤4 , (it makes k components 𝑉1, … , 𝑉𝑘).

Output: 𝑊° the total weight of min k-cut, and the components 𝑉1, … , 𝑉𝑘.

Running time complexity:

In step 1, to pick 𝑉1 from V, we have(𝑛
1
) + (𝑛

2
) + ⋯+ (𝑛

𝑘−3
) ways, then the complexity

to find (𝑤1 + 𝑤2) is O (n𝑘−3(T(n,m) + R(k − 1))). In step 2, to pick S and T from V,

we have (𝑛
𝑘−2

)(𝑛−(𝑘−2)

𝑘−1
) = (𝑛

2𝑘−3
) ways, then the complexity to find (𝑤3 + 𝑤4) is

O(n2𝑘−3(T(n,m) + R(k − 1))).

Then the whole complexity of the algorithm is:

R(k) = O((n2𝑘−3 + n𝑘−3)(T(n,m) + R(k − 1))) ≈ O(n2𝑘−3(T(n,m) + R(k − 1))).

Proposition (5-2):

The running time of the given algorithm is O(n𝑘2
).

Proof:

The whole running time is: R(k) = O(n2𝑘−3(T(n,m) + R(k − 1))).

R(k − 1) = O(n2(𝑘−1)−3(T(n,m) + R(k − 2))),

R(k − i) = O(n2(𝑘−𝑖)−3(T(n,m) + R(k − (i + 1))),

then R(k) = O(n2𝑘−3T(n,m) + n2𝑘−3n2(𝑘−1)−3(T(n,m) + R(k − 2))).

R(k) = O(n2𝑘−3T(n,m) + n2𝑘−3n2(𝑘−1)−3T(n,m) + n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3(T(n,m) + R(k − 3))).

R(k) = O((n2𝑘−3 + n2𝑘−3n2(𝑘−1)−3 + n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3)T(n,m) +

n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3R(k − 3))).

R(k) = O((n2𝑘−3 + n2𝑘−3n2(𝑘−1)−3 + ⋯+ n2𝑘−3 …n2(𝑘−(𝑘−4))−3)T(n,m) + R(3)),

since R(3) = O(𝑛4T(n,m)), then

46

R(k) = O ((n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3 … n5)T(n,m) + 𝑛4T(n,m)),

n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3 … n5 = n2𝑘−3+2(𝑘−1)−3+..+5 = n(2𝑘−3)(𝑘−3)−2(1+2+⋯+(𝑘−4))

Let 𝛽 = (2𝑘 − 3)(𝑘 − 3) − 2(1 + 2 + ⋯+ (𝑘 − 4))

𝛽 = (2𝑘 − 3)(𝑘 − 3) − 2(
(𝑘 − 4)(𝑘 − 3)

2
)) = (𝑘 − 3)(2𝑘 − 3 − 𝑘 + 4)

𝛽 = (𝑘 − 3)(𝑘 + 1) = 𝑘2 − 2𝑘 − 3

R(k) = O (𝑛𝑘2−2𝑘−3T(n,m) + 𝑛4T(n,m))

R(k) = O ((𝑛𝑘2−2𝑘−3 + 𝑛4)T(n,m)),

R(k) = O ((𝑛𝑘2−2𝑘+1)T(n,m)) = O(n𝑘2
) □

5.1.5. The development of polynomial algorithms

Goldschmidt and Hochbaum (1994) give the first polynomial algorithm to solve MKCP

for a fixed k by finding a minimum (S-T) cut with maximal source set, the core set S has

at most k-2 vertices; and the terminal set T has at most k-1 vertices such that 𝑉𝑠 ⊆ 𝑉1 and

𝑉𝑡 ⊆ 𝑉̅1, and by use the size of source and sink sets , denoted the min (S-T) cut by:

min(1, k-1) cut .The complexity of this algorithm is O(𝑛𝑘2
𝑇(𝑛,𝑚)). If we modified the

bound of sizes of core set S and the terminal set T we will get better polynomial

algorithm.

Kamidoi et al. find a minimum (S-T) cut with maximal source set, the core set S has at

most k-2 vertices; and S is sub set of 𝑉𝐷 = {𝑉1, … , 𝑉𝑑 }, 𝑑 = ⌈(𝑘 − √𝑘)/2⌉ − 1 ; and the

terminal set T has at most k-2 vertices, such that 𝑉𝑠 ⊆ 𝑉𝐷 and 𝑉𝑡 ⊆ 𝑉̅𝐷. By using the size

of source and sink sets , we denote min (S-T) cut by: min (d, k-d) cut . The complexity of

this algorithm is O (𝑛
4𝑘

(1−1.71/√𝑘)
−34

𝑇(𝑛,𝑚)).

Xiao et al. (2011), find a minimum (S-T) cut, the core set S has at most 2 ⌊
𝑘

2
⌋ vertices; and

S is sub set of 𝑉𝐷 = {𝑉1, … , 𝑉𝑑 }, 𝑑 = ⌊
𝑘

2
⌋ ;and the terminal set T has at most k-1 vertices,

47

such that 𝑉𝑠 ⊆ 𝑉𝐷 and 𝑉𝑡 ⊆ 𝑉̅𝐷, denoted the min (S-T) cut by: min(⌊
𝑘

2
⌋, k-⌊

𝑘

2
⌋) cut . The

complexity of this algorithm is O (𝑛4𝑘−𝑙𝑜𝑔𝑘𝑇(𝑛,𝑚)).

Goldschmidt and

Hochbaum
Kamidoi et al. Xiao et al.

Bounds on

|𝑺| and |𝑻|
k-2 and k-1 k-2 and k-2 2 ⌊

𝑘

2
⌋ and k-1

The min (S-

T) cut
(1, k-1) cut

(d, k-d) cut

𝑑 = ⌈(𝑘 − √𝑘)/2⌉ − 1
(⌊

𝑘

2
⌋, k-⌊

𝑘

2
⌋) cut

Complexity

of the min k-

cut problem

O (𝑛𝑘2
𝑇(𝑛,𝑚)) O (𝑛

4𝑘

(1−1.71/√𝑘)
−34

𝑇(𝑛,𝑚)). O (𝑛4𝑘−𝑙𝑜𝑔𝑘𝑇(𝑛,𝑚)).

5.2. Minimum k-cut in forests

The connectivity number is the minimum number of vertices, whose removal makes graph

disconnected or trivial. It is denoted 𝜆(𝐺). The connectivity number of a disconnected

graph is 0, and the connectivity number of a tree is 1.

5.2.1. The min k-cut for a tree

Lemma (5-1):

If we remove (n-1) edges from a tree, we will get n connected components, where n is the

number of vertices for the considered tree.

Proof:

Table (5-1). Development of polynomial algorithms for min k- cut problem for a

fixed k

48

We prove the lemma by induction on n.

1- When n = 2 (if we remove one edge e = uv from a tree), we will get two connected

components.

2- Suppose the lemma is true when n = k-1, then if we remove (k-2) edges from a tree we

will get k-1 connected component, each one is a subtree, and if we remove one extra

edge from one of them we will get k connected components.

Lemma (5.2):

Let T= (V, E) be a tree, with nonnegative edge weights. If we sort edges by weight

function (w (e1) ≤ w(e2) ≤ ⋯ ≤ w(en−1)) then a minimum k -cut is the set of edges

C= {𝑒1, 𝑒2, … , 𝑒𝑘−1}.

Proof:

Suppose C~ is a minimum k- cut with w(C~) < w(C). Thus C~ must have less than k-1

edges. It follows, by using Lemma 5.1, C~ forms less than k components, and this is a

contradiction.

Corollary (5-1)

The minimum k-cut problem in trees is solvable in polynomial time.

5.2.2. The min k- cut problem for forests

Proposition (5-3)

Let t be the number of the connected component on a forest.

For any n ≥ 𝑡, if we remove (n-t) edges from a forest we will get n connected

components.

Proof:

We will prove this proposition by induction on n.

Suppose that this is true when n=k-1, then if we remove (k-t-1) edges from a forest we will

get k-1 = n connected components, each one is a tree, and if we remove one extra edge

from one of them we will get k connected components, and the total edges we have

49

removed is (k-t-1) +1 = (k-t) edges □

Lemma (5.3)

Let F= (V, E) be a forest, with nonnegative edge weights. If we sort edges by weight

function (w (e1) ≤ w(e2) ≤ ⋯ ≤ w(ek−t) ≤ w(e|V|)) then a minimum k -cut is the set

of edges C= {𝑒1, 𝑒2, … , 𝑒𝑘−𝑡}, where t is the number of connected components of F.

Proof

Suppose C~ is minimum k- cut with w(C~) < w(C). Thus C~ must have less than k-t edges.

It follows then, by lemma 5.2, C~ forms less than k components, and this is a contradiction.

5.3. Special Instances of Multiway cut problem

We will present some basic definitions necessary for the proof of the main result of this

section.

Coloration:

Let G = (V, E) be a simple graph, and a set of colors N={1,2, … , 𝑟}. A map χ̃ : V→ N is a

vertex coloration on G.

Partial Coloration:

Let G = (V, E) be a simple graph, a set of colors N={1,2, … , 𝑟}, and let T⊆ V. A map χ:

T→ N is a partial coloration.

A partial coloration defines a partition of T by Ti = {u∈T: χ(u)=i}.

Color dependent weight function:

Color dependent weight function W: E→N∪ {0} determine for every edge uv and colors i

, j the positive integer number w(uv; i, j) meaning the weight of edge uv, in which the

color of u is i and the color of v is j.

We suppose the following in color dependent weight function:

• If u and v have the same color i then the color weight of edge uv is zero.

i.e. w (uv; i,i) = 0

• In undirected graphs, the weight of edge uv is equal to the weight of edge vu.

50

i.e. w(uv;i,j) = w(vu;j,i)

In color independent weight function: for any edge uv ∈ E there is no effect of color on

the edge weight, w(uv; i,j) = w(uv; a,b) such that i ≠ a, j ≠ b.

Color-Changing edge:

In the colouration χ̃, an edge uv is color-changing if χ̃(u) ≠ χ̃(v).

Cut in graph coloring:

The set of color-changing edge form cut.

Color-Changing path:

In the colouration χ̃, a path P is color-changing if χ̃(s(P)) ≠ χ̃(t(P))

(s(P) is starting point of path and t(P) is the end) and P has no internal vertex.

Changing of coloration:

Let graph G= (V, E) and define color dependent weight function on G, the changing

number of the coloration χ is the sum of weights of color-changing edge

change (G, χ̃) = ∑ 𝑤(𝑢𝑣;𝑢𝑣∈𝐸 𝑖, 𝑗) ; χ̃(u) = i, χ̃(v) = j.

Multiway cut problem:

The multi way cut problem for the color weight independent function is the length of the

pair (G, χ) and defined by:

L (G, χ) = minimum change (G,χ̃).

An optimal coloration is a coloration χ̃ such that change (G, χ̃)= L (G, χ).

Since the multiway cut is NP-hard problem, we will present a lower bound for the

optimal solution (Erdős et al. 1994).

5.3.1. Lower bound of multiway cut problem

Let G = (V, E) be simple graph, and χ: T→ N be a partial coloration, T⊆ V. let w be a

color dependent weight function. For any collection 𝓟 of color changing path

define ni(uv; 𝓟) = # {p ∈ 𝓟: uv ∈ p; χ(t(p) = i}.

Definition:

Path packing (𝓟) is a family of color-changing path such that: for all edge uv and for all

51

color i ≠ j, ni(uv; 𝓟) + nj(vu; 𝓟) ≤ w(uv; j,i)

Ҏ (G, χ) = maximum |𝒫|

Theorem 5.3:

For any graph, G and partial coloration χ, we have:

Ҏ (G, χ) ≤ L (G, χ)

Proof:

Let χ̃: V→ N be an optimal coloration and 𝓟 be path packing.

Define function f: 𝓟 →E such that f(p) = e (e: is the last color-changing edge in path p in

optimal coloration χ̃)

For any color-changing edge e = uv:

{p ∈ 𝓟: f(p) = 𝑒} ≤ ni (uv; 𝓟) + nj(vu; 𝓟) ≤ w(uv; j,i).

{p ∈ 𝓟: f(p) = 𝑒} ≤ w (uv; j,i).

∑ # {𝑝 ∈ 𝓟: 𝑓(𝑝) = 𝑒}𝑒∈𝐸 ≤ ∑ 𝑤(𝑢𝑣; 𝑗, 𝑖)𝑒∈𝐸 .

∑ # {𝑝 ∈ 𝓟: 𝑓(𝑝) = 𝑒} = |𝒫|𝑒∈𝐸 ≤ ∑ 𝑤(𝑢𝑣; 𝑗, 𝑖)𝑒∈𝐸 = 𝐜𝐡𝐚𝐧𝐠𝐞(G, χ̃).

|𝒫| ≤ 𝐜𝐡𝐚𝐧𝐠𝐞(G, χ̃).

since χ̃ is an optimal coloration then change (G, χ̃) = L (G, χ)

Max |𝒫| ≤ 𝐜𝐡𝐚𝐧𝐠𝐞(G, χ̃).

Ҏ (G, χ) ≤ 𝐜𝐡𝐚𝐧𝐠𝐞(G, χ̃). □

5.3.2. Multi way cuts in trees

Definition:

In put: Given a tree T = (V, E) with n vertices, nonnegative edge weights and a set of

terminals S = {s1, s2, …, sk}, where S ⊆V.

Question: Find a minimum total weight subset E′ ⊆ E such that its removal from the tree

separates vertices in to k components each one have one terminals si.

Erdős et al. (1994) give a polynomial time algorithm to find multiway cut (in trees).

Coloration Algorithm:

52

Let T = (V, E) be a tree with n vertices, and a set of terminals S=L(T) (set of leaves on T),

and χ: S →C be a partial coloration. let w be a color dependent weight function.

Define Penalty function: Pen:V→(𝒩 ∪ ∞)𝑟, if the color of v is i, Peni(v) is the length of

subtree partition by v from the root .

Step1:

Determine pen(v) for every vertex in tree (start from leaves to the root):

• For every v∈ L(T); let peni(v) ={
0 if v ∈ Si,

∞ else,

• For every v∉ L(T); and peni(v) is not computed yet and every pen (son (v)) is

known; let peni(v)= ∑ minj=1,…,r{ w(uv; ji) + 𝐩𝐞𝐧j(v)}u∈son(v)

Step2:

Determine an optimal coloration χ̃ of tree. (start from root to the Father (leaves))

• χ̃(root) = i, such that i minimizes peni(root).

• For vertex v that not determinant χ̃(v), let Father (v) = u, and χ̃(u) is known, then: χ̃(v)

= i, such that i minimizes {w (vu; i, χ̃(u)) + peni(v)}.

• χ̃(leave) = χ(leave).

Running time complexity:

The running time complexity is O (n×r2× (max weight)), since in every step we calculate

r2 sums, take the minimum, and around 2n steps.

Example:

Find multiway cut on tree, the set of terminals are all leaves and the edges and their

weights are as follow:

w(mx)=6, w(xy)=2, w(xz)=6, w(yL8) =5, w(yL7) =5, w(zL6) =7, w(zL5) =2, w(uL4) =1,

w(uL3) =4, w(uL2) =5, w(vL1) =2, w(vu) =1, w(mv) =1. (Figure 6.1).

Step1:

Determine pen(v) for every vertex in tree; first compete penalty for all terminals:

53

pen(L2) = (∞, 0,∞,∞,∞,∞,∞,∞), , pen(L1) = (0,∞,∞,∞,∞,∞,∞,∞)

pen(L4) = (∞,∞,∞, 0,∞,∞,∞,∞), , pen(L3) = (∞,∞, 0,∞,∞,∞,∞,∞)

pen(L6) = (∞,∞,∞,∞,∞, 0,∞,∞), , pen(L5) = (∞,∞, ∞,∞, 0,∞,∞,∞)

pen(L8) = (∞,∞,∞,∞,∞,∞,∞, 0), , pen(L7) = (∞,∞, ∞,∞,∞,∞, 0,∞)

Second compute penalty from father leaves to the root:

pen(v) = (6,7,8,8,8,8,8,8), , pen(u) = (10,5,6,9,10,10,10,10)

pen(y) = (10,10,10,10,10,10,5,5), , pen(𝑧) = (9,9,9,9,7,2,9,9)

pen(𝑚) = (21,22,22,22,22,16,20,20), , pen(x) = (15,15,15,15,15,9,13,13)

Step2:

Determine an optimal coloration χ̃ of tree from root to leaves. (Figer 6.2).

χ̃(m) =6, χ̃(v) =1, χ̃(x) =6, χ̃(L1) =1, χ̃(L2) =2, χ̃(L3) =3, χ̃(L4) = 4, χ̃(z)=6, χ̃(y)=7, χ̃(L5)

=5, χ̃(L6) =6, χ̃(L7) =7, χ̃(L8) = 8.

Figure (5-9): Example of a T tree with

weight edge

 Optimal coloration of T

54

5.3.3. Particular cases of multiway cut in trees

First case:

In put: Given a tree T = (V, E), color dependent weights function and a set of terminals

S; where S ⊊V.

Question: Find multiway cuts.

In this case, we have a set of leaves U which do not belong to the set of terminals.

To solve this problem, we do the followings:

Step1: remove all leaves which are not terminals then find the optimal coloration for all

vertices (V- U).

Step2: return the leaves U which we deleted and color this leaves with father color i.e.

For every u ∈U; χ̃ (u) = χ̃ (Father(u)).

Figure (5-10) multiway cut on tree, first case

Step2

Step1

55

Second case:

In put: Given a tree T = (V, E), colour dependent weights function and a set of terminals

S; such that S= L(T) ∪ {v1, v2, … , vb}.(𝑣𝑖 is an internal vertex on the tree).

Question: Find multiway cut.

To solve this problem:

step1: partition the tree on the terminals {v1, v2, … , vb}, which are not leaves then we will

get b+1 components, and for each one, we will find the optimal coloration.

Step2: glue the components on the {v1, v2, … , vb}.

Figure (5-11) multiway cut on tree, second case

Step1

Step2

56

Third case:

In put: Given a tree T = (V, E), colour dependent weights function and a set of terminals

S ⊆ V.

Question: Find multiway cut.

In this case, the set of terminals do not have any condition; it can contain some inner

vertices and not necessary all leaves are terminals.

Step1: remove all leaves which are not terminals.

Step2: partition the tree on the terminals which are not leaves, and for each component

find the optimal coloration.

Step3: joined the components on the terminals which are not leaves.

Step4: add the removed leaves and colour it with father’s colour.

57

Chapter 6: Approximation Algorithms

In this chapter, we describe two approximation algorithms for MKCP.

6.1. Approximation Algorithms for min k-cut

6.1.1. Greedy algorithm

The idea of this algorithm is to separate G into two components, and then separate one of

the two components into two components (we get three components), and so on, until the

process generates k components. In each step, we enumerate all possible cuts and select

the one having the smallest weight. This algorithm is due to Saran and Vazirani (1995).

6.1.2. Algorithm EFFICIENT

Consider the cut C on a graph G, and let Comps(C) be the number of connected components

in G induced by removing the cut C. If uv is an edge on G, we denote by Cuv be a min uv-

cut separating the vertices u and v.

Phase 1. Find the cut Cuv= min uv-cut for every edge uv in G.

Phase 2. Order the cuts on phase 1 as sequence (𝐶1, 𝐶2 , … , 𝐶𝑚), by the weight function

such that (w (C1) ≤ w(C2) ≤ ⋯ ≤ w(C𝑚)).

Phase 3. Create a k-cut C by selecting cuts from sequence (C1, C2 , … , Cm) such that C =

⋃ Ci
b
i=1 , (2 ≤b≤ m), and then isolate any cut Cj from {C1, C2 , … , Cb} that satisfies Cj ⊆

⋃ Ci
j−1
i=1 .

Note:

• In phase 1, to find the cut Cuv= min uv-cut, we use the max -flow min -cut theorem,

and to find the set {C1, C2 , … , Cm} we used m times this theorem.

• Let C be a k- cut producer from this algorithm generating more than k components,

58

we can remove some edges from C until creating a k cut.

• Now every edge uv in G is contained in the cut Cuv , then ⋃ Ci = Em
i=1 , and it creates

n components.

Lemma 6.1:

If {C1, C2 , … , Cd} is a k- cut producer from this algorithm, then for any s; 1 ≤ 𝑠 < 𝑑, we

have: Comps (⋃ 𝐶𝑖
𝑠
𝑖=1) < Comps (⋃ 𝐶𝑖)

𝑠+1
𝑖=1

Proof:

There exists at least one edge uv in the set Ci+1 − ⋃ Ci
s
i=1 since Ci+1 ⊈ ⋃ Ci

s
i=1 , and since

the edge uv does not belong to the cut ⋃ Ci
s
i=1 then it is a self-edge in the graph induced by

the cut ⋃ Ci
s
i=1 , the end points u,v belong to the same connected component, since uv

belongs to the cut Ci+1 then it is a cross-edge in the graph induced by the cut ⋃ 𝐶𝑖
𝑠+1
𝑖=1 , the

end points u, v belong to the different component.

Then the graph induced by the cut ⋃ 𝐶𝑖
𝑠+1
𝑖=1 have more connected components. □

We can develop the algorithm EFFICIENT by using Gomory-Hu trees. For any graph, G

= (V, E), there exists a set of |𝑉|-1 cuts, that contain a min cut between every pair of

vertices in G, then to find the cuts {C1, C2 , … , Cm} we need only (n-1) max flows.

6.1.3. Algorithm EFFICIENT with Gomory-Hu trees

Phase 1. Compute a Gomory-Hu tree in G.

Phase 2. Order the cuts on T as a sequence (ℎ1, ℎ2 , … , ℎ𝑛−1), by the weight function (w

(h1) ≤ w(h2) ≤ ⋯ ≤ w(h𝑛−1)).

Phase 3. Create a k-cut C by selecting cuts from the sequence (ℎ1, ℎ2 , … , ℎ𝑛−1), such that

b is the minimum number satisfying Comps(⋃ ℎ𝑖) ≥ 𝑘𝑏
𝑖=1 .

6.1.4. Approximation factor for the k-cut problem

Union property:

Let G be a graph and the sequence C = (C1, C2 , … , Cr) be all possible cuts in G, and for

59

every i and j, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 , w(Ci) ≤ w(Cj). And let H = (h1, h2 , … , hl) be any

subsequence cuts of C. The cut H satisfies union property if for every k, 1 ≤ 𝑘 ≤

index(hl), if h1 ∪ h2 ∪ …∪ hq = C1 ∪ C2 ∪ …∪ Ck , such that hq is the last cut in the

sequence H with index(hq) ≤ 𝑘.

Lemma 6.2:

If the cuts h1, h2 , … , hl are induced by the algorithm EFFICIENT, then these cuts satisfy

union property.

Proof:

The proof is by contradiction, let (C1, C2 , … , Cr) be all possible cuts in G, assume the cuts

(h1, h2 , … , hl) be subsequence from(C1, C2 , … , Cr), and it induced by Algorithm

EFFICIENT, assume it do not satisfies union property, then there exist k , 1 ≤ 𝑘 ≤

index(hl), such that h1 ∪ h2 ∪ …∪ hq ≠ C1 ∪ C2 ∪ …∪ Ck (6-1)

and hq is the last cut with index(hq) ≤ 𝑘.

Let index ((hq+1) = j , and since w(hq) < w(hq+1), then w(Ck) < w(Cj), and from

equivalents (6-1), hq ≠ Ck, and

 h1 ∪ h2 ∪ …∪ hq = C1 ∪ C2 ∪ …∪ Ck−1. (6-2)

Suppose the edge e belong to the cut Ck − [C1 ∪ C2 ∪ …∪ Ck−1], then 𝑒 ∉ C1 ∪ C2 ∪ …∪

Ck−1], and by (6-2), e ∉ h1 ∪ h2 ∪ …∪ hq.

Let Ce be a min cut separate the endpoint of e, and since 𝑒 ∈ Ck, then w(Ce) ≤ w(Ck),

and w(Ck) < w(hq+1), then w(Ce) < w(hq+1), then e ∈ h1 ∪ h2 ∪ … ∪ hq, it is

contradiction. □

Theorem 6.1:

Algorithm EFFICIENT finds a k-cut having weight within a factor of (2 −
2

𝑘
)of the

optimal. (Saran and Vazirani (1995).

Proof:

Consider an undirected graph G = (V, E), and let C be an optimal min k-cut in G that

60

partitions G into k components {𝑉1, 𝑉2, … , 𝑉𝑘}, Ci ⊆ C be the cut separating 𝑉𝑖 from 𝑉̅𝑖 (1≤

𝑖 ≤ k). Hence 𝐶 = ⋃ 𝐶𝑖
𝑘
𝑖=1 , and sort the cut 𝐶𝑖 by weight function, w(C1) ≤ w(C2) ≤ ⋯ ≤

w(𝐶𝑘), and let H be the k -cut induced by Algorithm EFFICIENT, and H = ⋃ hi
l
i=1 (l ≤

k − 1).

By proposition (5-1)∶ w(C) = w(⋃ Ci) =
1

2

k
i=1 ∑ w(Ci)

k
i=1 , then:

2w(C) = ∑ w(Ci)
k
i=1 , (6-3)

since w(Ci) ≤ w(Ck) for every i then: 2w(C) = w(C1) + w(C2)+ . . +w(Ck) ≤ k w(Ck),

then:
2

𝑘
w(C) ≤ w(Ck). (6-4)

Since 𝑙 ≤ 𝑘 − 1, and by lemma (6-2) the cuts (ℎ1, . . , ℎ𝑙) satisfies union property,

∑ 𝑤(ℎ𝑖) ≤𝑙
𝑖=1 ∑ 𝑤(𝐶𝑖)

𝑘−1
𝑖=1 , then

𝑤(H) = w(⋃ hi) ≤ ∑ 𝑤(ℎ𝑖) ≤𝑙
𝑖=1

l
i=1 ∑ 𝑤(𝐶𝑖)

𝑘−1
𝑖=1 ,

𝑤(H) ≤ ∑ 𝑤(𝐶𝑖) = ∑ 𝑤(𝐶𝑖) + 𝑤(𝐶𝑘
𝑘−1
𝑖=1

𝑘−1
𝑖=1) − 𝑤(𝐶𝑘) = ∑ 𝑤(𝐶𝑖) − 𝑤(𝑘

𝑖=1 𝐶𝑘),

𝑤(H) ≤ ∑ 𝑤(𝐶𝑖) − 𝑤(𝑘
𝑖=1 𝐶𝑘) , from (6-3) and (6-4)

𝑤(H) ≤ 2𝑤(𝐶) −
2

𝑘
𝑤(𝐶),

𝑤(H) ≤ 2 (1 −
1

𝑘
)𝑤(𝐶) □

Running time complexity:

Let G = (V, E) be an undirected graph, If we assume that the running time for max flow is

T(n,m) such that |V| = n, and |E| = m. (The best running time for min cut is O(𝑚𝑛), it is

due to Orlin. (2013).

The running time of the algorithm EFFICIENT with Gomory-Hu tree is O((n-1) T(n,m))

and if T(n,m) = O(𝑚𝑛) then our algorithm has running time O(𝑚𝑛2).

6.1.5. Algorithm SPLIT

Phase 1: Pick the smallest cut split the graph in to two components, and remove the edges

of this cut from graph.

Phase 2: In the present graph, again pick the smallest cut split one of the component in to

61

two components, and remove the edges of this cut from graph.

Repeat this process until the present graph has k connected components.

The different between SPLIT and EFFICIEN algorithms that SPLIT algorithm picks

smallest cut in the present graph and EFFICIEN algorithm picks smallest cut in the initial

graph.

Running time complexity:

If the graph G has order n, then to generate a new component, we need (n-1) max flows,

and to create k components we need (k-1) split, then the running time of SPLIT algorithm

is O (k n (T(n,,m)).

Algorithm SPLIT finds a k-cut having weight within a factor of (2 −
2

𝑘
) of the optimal.

(Saran and Vazirani (1995).

6.1.6. Lower bound

Theorem (6-2)

The min k cut found by EFFICIENT and SPLIT algorithms lies in the range

(1 − ε) (2 −
2

k
) optC ≤ optB ≤ (2 −

2

k
) optC

Such that 0 ≤ 𝜀 ≤ 1, and C is the optimal k-cut and B is the k-cut found by EFFICIEN or SPLIT

algorithms

Proof:

Consider the graph G = (V, E), of order =(2k-1), let 𝑉 = {𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑦𝑘+1, … , 𝑦2𝑘−1},

and let the weight function as figure (6-1).

62

EFFICIEN and SPLIT algorithmsEFFICIEN and SPLIT algorithms

γ

δ

δ

δ

δ

δ

δ γ

γ

γ

γ

γ

Note that 𝛿 = 2𝛾(1 − 𝜀), and 𝜀 > 0.

The min k-cut, C, is the cut of all edge of weight 𝛾, then 𝑤(𝐶) = 𝑘𝛾 .

The min k-cut, B, is the cut of all edge of weight 𝛿, then 𝑤(𝐵) = 𝛿(𝑘 − 1).

𝑤(𝐵) = 𝛿(𝑘 − 1) = 2𝛾(1 − 𝜀)(𝑘 − 1),

𝑤(𝐵) = 𝛾𝑘(1 − 𝜀)
2

𝑘
(𝑘 − 1) = 𝑤(𝐶)(1 − 𝜀) (2 −

2

𝑘
). □

6.2. Approximation Algorithms for the variants of the min k-cut

6.2.1. Multiway Cut Problem

Dahlhaus and Johnson (1994) give a 2 (1 −
1

𝑘
) approximation algorithm for the multiway

cut problem; the best approximation algorithm is O(log|k|)given by Garg et al. (1996).

6.2.2. The Minimum Steiner k-Cut Problem

Chekuri et al. (2004) give two approximation algorithms for the problem: a greedy one

with a 2 (1 −
1

𝑘
)-approximation based on Gomory-Hu trees, and a 2 (1 −

1

|𝑇|
)-

approximation based on LP rounding.

63

6.2.3. Capacitated Max k-Cut Problem

• For un equal capacities: Feige et al. (2001) give an approximation algorithm with a

lower bound of
1

2
+ 𝜀 when k = 2, and 𝜀 is a universal constant.

• For equal capacities: Andrson (1999) give an algorithm that obtains a 1 −
1

𝑘
+ Ω(

1

𝑘3
)

performance guarantee.

• For general (equal or un equal capacities): Ageev et al. (2001) give a
1

2
 approximation

algorithm.

6.2.4. Multiway Un Cut Problem

Langberg et al. (1970) give a 0.8535-approximation algorithm for multiway uncut use

linear programming relaxation. (linear programming relaxation of a 0-1 integer program

is the problem that arises by replacing the constraint that each variable must be 0 or 1 by a

weaker constraint, that each variable belong to the interval [0,1]).

6.2.5. k-route cut problem

Chuzhoy et al. (2011) give a 𝑂(𝑘𝑙𝑜𝑔𝑟)
3

2-approximation algorithm for k-route cut.

6.2.6. Directed multiway cut problem

The best approximation for this problem is O(min(√n, opt)) by Gupta (2003).

Kortsarts et al. (2005) gives an 𝑂(𝑛
2

3)- approximation algorithm with running time O (nm2).

https://en.wikipedia.org/wiki/0-1_integer_programming
https://en.wikipedia.org/wiki/Interval_(mathematics)

64

Chapter 7 : Conclusion

Dahlhaus et al. (1992) proved that the Minimum k-cut optimization problem is NP-hard.

Saran and Vazirani (1995) find a 2 (1 −
1

𝑘
) −approximation algorithm, with running time

O(n − 1) max flow, based on Gomory- Hu trees.

For a fixed k, Xiao et al. (2011) give a polynomial algorithm with a running time

𝑂(𝑛4𝑘) max flow.

Future investigations can be studying the minimum k-cut problem in graphs other than

trees or forests, as outerplanar graphs or series parallel graphs. If these studies keep the

NP-hardness of the problem, approximations algorithms will be a motivated approach for

this problem.

65

References

[1] A. Ageev, R. Hassin, and M. Sviridenko (2001), A 0.5-approximation algorithm for max

dicut with given sizes of parts, SIAM Journal on Discrete Mathematics 14 (2), pp. 246-255.

[2] W. Ben Ameur, A. R. Mahjoub and J. Neto (2010); The Maximum cut problem, in:

Paradigms of Combinatorial Optimization Problems and New Approaches, V. T. Paschos

(editor), 2nd edition, Wiley.

[3] G. Andersson (1999), An approximation algorithm for max p-section, Lecture Notes in

Computer Science (Proceedings of STACS’99) 1563, pp. 237–247.

[4] F. Barahona (1981), Balancing signed of fixed genus in polynomial time, Technical Report,

Departement of Mathematics, University of Chile.

[5] F. Barahona (1983), The max-cut problem on graphs not contractible to K5, Operations

Research Letters 2, pp. 107-111.

[6] F. Barahona and A. R. Mahjoub (1986), On the cute polytope, Mathematical Programming

36, pp. 157-173.

[7] F. Barahona (2000), On the k-cut problem, Operations Research Letters 26, pp. 99-105.

[8] Y.Y. Boykov, M.P.Jolly (2011), Interactive graph cuts for optimal boundary & region

segmentation of objects in N-D images, Proceedings. Eighth IEEE International Conference

on.

[9] J. A. Bondy and U. S. R. Murty (2008); Graph Theory; 1st edition, Springer Verlag.

[10] M. Bruglieri, F. Maffioli and M. Ehrgott (2004), Cardinality constrained minimum cut

problems: Complexity and Algorithms, Discrete Applied Mathematics 137, pp. 311-341.

[11] C. Chekuri, S. Guha, and J. (Seffi) Naor (2004), The Steiner k-Cut Problem, SIAM J.

Discrete Math 20, pp. 261–271.

[12] S. R. Choudhury (2008), Approximation algorithms for a graph-cut problem with

applications to a clustering problem in bioinformatics, MSc thesis, Department of

Mathematics and Computer Science, University of Lethbridge.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7460
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7460

66

[13] V. Chvátal (1973), Tough Graphs and Hamiltonian Circuits, Discrete Mathematics 5, pp.

215-228.

[14] S. A. Cook (1971), The complexity of theorem-proving procedures, Proceedings of the third

annual ACM symposium on Theory of computing, pp. 151-158.

[15] W. H. Cunningham (1985), Optimal Attack and Reinforcement of a Network, J. Assoc.

Comput. Mach. 32, pp. 549- 561.

[16] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis (1994),

The complexity of multiterminal cuts, SIAM Journal on Computing, pp. 864-894.

[17] P. Erdős and L. A. Székely (1994), On weighted multiway cuts in trees, Mathematical

Programming 65, pp. 93-105.

[18] U. Feige and M. Langberg (2001), Approximation algorithms for maximization problems

arising in graph partitioning, J. Algorithms 41, pp. 174–211.

[19] M. R. Garey and D. S. Johnson (1979), Computers and Intractability: A Guide to the Theory

of NP-Completeness, 1st edition, W. H. Freeman and Co, New York.

[20] N. Garg, V. Vazirani, and M. Yannakakis (1997), Primal-dual approximation algorithms

for integral flow and multi-cut in trees, Algorithmica 18, pp. 3-20.

[21] D. R. Gaur, R. Krishnamurti, and R. Kohli, (2008), The capacitated max k-cut problem,

Mathematical Programming 115, pp. 65-72.

[22] M. X. Goemans and D. P. Williamson (1995), Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming, J. Assoc.

Comput. Mach. 42, pp. 1115-1145.

[23] M. X. Goemans and D. P. Williamson, (2004), Approximation algorithms for max 3-cut and

other problems via complex semidefinite programming, J. Comput. Sys. Sci. 68, pp. 442-

470.

[24] O. Goldschmidt and D. S. Hochbaum (1994), A polynomial algorithm for the k-cut problem

for fixed k, Mathematics of Operation Research 19, pp. 24-37.

[25] R. E. Gomory and T. C. Hu (1991), Multi-terminal network flows, J. Soc. Indust. Apple.

Math. 9, 551-570.

67

[26] A. Gupta (2003), Improved approximation algorithm for directed multi cut, Proceedings of

the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 12-

14.

[27] F. Hadlock (1975), Finding a maximum cut of a planar graph in polynomial time, SIAM

Journal on Computing 4, pp. 221-225.

[28] V. Kann, S. Khanna, J. Lagergren, and Panconesi (1997), On the hardness of approximating

max-k-cut and its dual, Chicago Journal of Theoretical Computer Science.

[29] R. M. Karp (1972), Reducibility among combinatorial problems, in: R. E. Miller and J. W.

Thatcher (editors), Plenum, New York, pp. 85-103.

[30] V. King, S. Rao, and R. E. Tarjan (1994), A faster deterministic maximum flow algorithm,

In selected papers from the Third Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA, Orlando, FL, USA. Academic Press, Inc, pp. 447- 474,

[31] Y. Kortsarts, G. Kortsarz and Z. Nutov (2005), Greedy Approximation Algorithms for

Directed Multicuts, Networks and International Journal 45, pp. 214-217.

[32] M. Langberg, Y. Rabani and C. Chaitanya (1970), Approximation Algorithms for Graph

Homomorphism Problems, Lecture Notes in Computer Science 4110, pp. 176-187, in:

Approximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques.

[33] L. A. Levin (1973), Universal search problems, Problemy Perdaci Informacii 9, pp. 265-

266.

[34] S. T. McCormick, M. R. Rao, and G. Rinaldi (2003), Easy and difficult objective functions

for max cut, Mathematical Programming 94, pp. 459-466.

[35] J. B. Orlin (2013), Max flows in O(nm) time, or better, TOC '13 Proceedings of the forty-

fifth annual ACM symposium on Theory of computing, pp 765-774.

[36] H. Saran and V. V. Vazirani (1995), Finding k cuts within twice the optimal, SIAM Journal

on Computing 24, pp. 101-108.

[37] M. Xiao, L. Cai and A.C-C.Yao (2011), Tight Approximation Ratio of a General Greedy

Splitting Algorithm for the Minimum k-Way Cut Problem, Algorithmica 59, pp. 510-520.

[38] Wikipedia (2011), https://commons.wikimedia.org/wiki/File:Spin_glass_by_Zureks.svg.

https://commons.wikimedia.org/wiki/File:Spin_glass_by_Zureks.svg

68

[39] Wikipedia (2007), https://en.wikipedia.org/wiki/NP_(complexity)#/media/File:P_np_np-

complete_np-hard.svg.

69

Terminology Index

24 ≥ k-Card Cut

16 Approximation algorithm

21 Barahona Multi Cut Problem

12 Big O

4 Bipartite graph

24 Capacity Max k-Cut

25 Capacity Max k-Un Cut

23 Capacity Min k-Cut Problem

6 Capacity of an edge

13 Class Co-NP

13 Class NP

12 Class P

4 Clique

50 Color changing edge

50 Color changing path

49 Color dependent weight function

49 Coloration

4 Complete graph

12 Computational complexity

4 Connected component

5 Connected graph

47 Connectivity number

20 Convex hull

36 Core set

70

4 Cross-edge

5 Cut

6 Cut in directed graph

50 Cut in graph coloring

3 Degree of vertex

3 Directed graph

25 Directed Multi Cut

4 Disconnected graph

3 Finite graph

7 Flow

5 Forest

3 Graph

4 Hamilton cycle

32 Image Segmentation Problem

6 In cut

24 k-card Cut

5 k-cut

25 k-Route Cut

63 Linear programming relaxation

12 Linear time algorithm

3 Link

3 Loop

21 Max k-Cut Problem

37 Maximal min (S-T) Cut

4 Maximal qlique

8 Maximum flow problem

36 Min (S-T) Cut

71

5 Min st-cut

11 Minimum cut problem

17 Minimum k-cut problem decision version

17 Minimum k-cut problem optimization version

23 Minimum Multiway Cut Problem

23 Minimum Steiner k- Cut Problem

3 Multiple edge

25 Multiway Un Cut

6 Net work

15 NP- hard problem

14 NP-complete problem

3 Order of graph

6 Out cut

51 Pantly function

49 Partial Coloration

4 Path graph

50 Path packing

4 Planar graph

14 Polynomial time reduction

12 Polynomial-time algorithm

20 Ratio Cut Problem

5 Self-edge

3 Simple graph

4 Size of clique

3 Size of graph

29 Spin glass

20 Strength Cut Problem

72

12 Strong polynomial time algorithm

4 Sub graph

36 Terminal set

5 Tree

5 Value of a cut

7 Value of a flow

3 Weighted graph

