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Chapter 1: Introduction 
 

Combinatorial optimization is a subset of mathematical optimization that is related to 

operations research, algorithm theory, and computational complexity theory. It is a topic 

that consists of finding an optimal object from a finite set of objects. In many such 

problems, an exhaustive search is not feasible. It operates on the domain of those 

optimization problems, in which the set of feasible solutions is discrete or can be reduced 

to discrete, and in which the goal is to find the best solution. 

Combinatorial optimization has important applications in several fields, including artificial 

intelligence, machine learning, mathematics, auction theory, and software engineering. 

One of the famous combinatorial optimization problems is the minimum cut problem 

which has been solved in polynomial time for the first time by using the max-flow min-cut 

theorem. An important and natural generalization of the minimum cut problem is the 

minimum k-cut problem (MKCP). In the contrast of the minimum cut problem, MKCP is 

NP-hard. MKCP has applications in very-large-scale integration (VLSI) design, data-

mining, finite elements and communication in parallel computing. 

In this thesis, we give a survey of MKCP. 

Our contribution is to survey most known results for MKCP in one essay. For the best of 

our knowledge, this is done for the first time. 

A minor contribution is the solvability of MKCP in polynomial time for forests in general. 

Organization of the thesis 

In chapter 2, we introduce some preliminaries on graph theory and complexity of 

algorithms. 

In chapter 3, we define MKCP, determine its complexity, and present some of its variants. 

In chapter 4, we present some applications of MKCP and some of its variants. 

In chapter 5, we describe some solved special instances of MKCP and some of its variants. 

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Exhaustive_search
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Discrete_set
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Auction_theory
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Data-mining
https://en.wikipedia.org/wiki/Data-mining
https://en.wikipedia.org/wiki/Finite_elements
https://en.wikipedia.org/wiki/Parallel_computing
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In chapter 6, we describe known approximation algorithms for MKCP and some of its 

variants. 

Finally, we conclude in chapter 7. 
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Chapter 2: Preliminaries 

2.1 Graph theory 

We will introduce some definitions on graph theory, and present the important theorem 

linking between max-flow and min-cut. 

2.1.1  Fundamental definitions 

Definition 1: 

A graph G is a pair of sets (V(G), E(G)) where V(G) is the set of vertices and 

E(G)V(G)×V(G) is the set of edges. 

G is undirected if (u, v) and (v, u) represent the same edge e denoted {u, v} or uv or vu. 

In this case, u and v are called the end points of the edge e. u and v are adjacent vertices. 

All considered graphs are undirected except particular mentioned cases. 

The ends of an edge are said to be incident with the edge. If two or more edges of a 

undirected graph have a common vertex, then the edges are called adjacent. 

A loop is an edge with identical ends. A link is an edge with distinct ends. A multiple 

edge or a parallel edge is set of edges sharing the same end points. 

The degree of a vertex v in graph G is the number of edges incident with v, and it is denoted 

by deg(v). The order of G is the number of vertices of G, denoted by n = |V(G)|, and the 

size of G is the number of edges of G, denoted by 𝑚 =  |E(G)|. A graph is finite if its order 

and size are finite. 

A graph is simple if it has neither loops or multiple edges. 

A directed graph or (digraph) is a graph where the edges (u, v) and (v, u) do not represent 

the same edge. 

A graph that has a weight function w: E → R+ from the set of edges into the set of 

nonnegative real number is called a weighted graph. Weighted graphs may be either 

directed or undirected. 
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Graphs come in many several types; we will present some of them. 

Definition 2 

A complete graph, Kn, is a simple undirected graph in which every pair of distinct 

vertices is connected by a unique edge. 

Definition 3  

A subgraph F = (V(F), E(F)) of a graph G = (V(G), E(G)) is a graph such that V(F) ⊆ V(G) 

and E(F) ⊆ E(G). 

Let G = (V, E) be an undirected graph. A clique C is a complete subgraph of G. The size 

of clique is the number of vertices in clique. 

A maximum clique of a graph is a clique, such that there is no clique with more vertices. 

Given a subset U of vertices of G = (V, E), an induced subgraph G(U) is a subgraph of 

G, such that we keep all edges of G linking vertices of U in G(U). 

Definition 4 

A bipartite graph G (V, E) is a graph whose vertices set V can be separated into two subsets 

V1. and V2 such that every edge has an endpoint in V1 and another one in V2. 

Definition 5 

A path (or a linear graph) is a simple graph whose nodes can be ordered in a linear 

sequence 𝑣1, … , 𝑣𝑛 , such that for every i, (1 ≤ 𝑖 ≤ 𝑛 − 1), 𝑣𝑖𝑣𝑖+1 are the edges of the 

graph. In this case, we called it a 𝑣1𝑣𝑛 − 𝑝𝑎𝑡ℎ. 

A connected graph is a graph for which for any pair of vertices u and v, there exists a uv-

path. Otherwise, it is called a disconnected graph. 

A connected component U of a graph G is a maximal set of vertices such that the 

corresponding induced subgraph G(U) is connected. The number of connected components 

of G is denoted by comb(G). 

A cycle, Cn (n  ≥  3), is a simple graph of n vertices 𝑣1, … , 𝑣𝑛 and n edges (𝑣1𝑣2, 

𝑣2𝑣3, …  , 𝑣𝑛−1𝑣𝑛, 𝑣𝑛𝑣1). A Hamilton cycle of a graph G is a cycle that pass through every 

vertex of G exactly once.  

Definition 6 

http://www.edmath.org/MATtours/discrete/concepts/cgraph.html
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A planar graph is a graph which can be drawn in the plane such that its edges intersect 

only at their end points. 

Definition 7 

A forest is an undirected graph in which any two vertices are connected by at most one 

path. A tree is a connected forest. 

2.1.2  Cuts 

Let G = (V, E) be an undirected graph. A cut related with a set of vertices A, C(A, A̅) or 

C(A), is the set of edges with one endpoint in A and the other in A̅. 

Given a partition {𝑉1, 𝑉2, … , 𝑉𝑘} of V, a k-cut C (𝑉1, 𝑉2, … , 𝑉𝑘) is the set of edges with one 

end point in one of the 𝑉𝑖, i = 1, 2, …, k, and the other one is in another distinct 𝑉𝑗, j = 1, 

2, …, k, i.e., i ≠ j. Each 𝑉𝑖, i = 1, 2, …, k, is called a component of the k-cut. 

In this case, a self-edge is an edge which both endpoints in the same component, and a 

cross-edge is an edge which endpoints in different components. 

For any pair of vertices x and y in G, a xy-cut is any cut C (X,X̅) such that x ∈ X and  y ∈ X̅. 

The value of a cut (respectively a k-cut) in an unweighted graph is the number of edges 

belonging to this cut (respectively k-cut). The value of a cut (respectively a k-cut) in a 

weighted graph is the total sum of the weights of the edges belonging to this cut 

(respectively k-cut). 

2.1.3 Minimum st-cut problem 

The minimum st-cut problem can be defined as follows: 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

and a pair of distinct vertices s and t. 

Question: Find the st-cut with the minimum value. 

Example 

Consider the graph G = (V, E) in figure (2-1), the set of edges {xv, xt , xy} is an xy-cut, 
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with value 4, the min xy-cut is the set of edges {vu, ts , xy} with weight 4. 

There are many approaches to solve the min st–cut problem, we will present the one 

depending on the max-flow min-cut theorem. 

t

v

x

s

u

2

1

y

1

7

1

1

(x, y)-cut

Min (x, y)-cut

 

We will define some basic concepts on directed graph necessary for the max-flow min-cut 

theorem. 

2.1.3.1 Cuts in directed graph 

In a directed graph G = (V, E), an out cut C+(A) or C⃗ (A, A̅) related to a set of vertices A, 

is the set of edges starting from A and ending in A̅. 

An in cut C−(A) or C⃗ (A̅, A) related with a set of vertices A is the out cut C+(A̅). 

A cut C(A) in a directed graph G related with a set of vertices A, is the union of the 

corresponding out cut and in cut, i.e., C(A) =  C+(A) ∪ C−(A). 

2.1.3.2  Flows 

A network N = N (s, t)) is a directed graph with two distinct vertices, a source s and a sink 

t, together with a nonnegative real function (capacity function) defined on its edge set E, 

and the remaining vertices, I, are called intermediate vertices. 
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The capacity of an edge is a mapping cap: E → R+. It represents an upper bound of flow 

that can pass through an edge. 

A flow f in a network N(s, t) is mapping f: E → R+, that satisfies the following conditions: 

• Capacity constraint condition: for every intermediate vertex v, 

f−( v) = ∑ f({u: uv∈E} uv) = ∑ f({u: vu∈E} vu) = f+( v)  

• Conservation condition: for every edge uv, 

f (uv) ≤ cap(uv). 

 

The value of the flow f is defined by val(f) = ∑ f(sv)v∈V , where s is the source of the 

network N(s, t). It represents the amount of flow passing from the source to the sink. 

If A is a set of vertices in the network, the net flow out of A is f+(A) − f−(A), the net flow 

into A is f−(A) − f+(A). 

For example, network in figure (2-2) the value of flow is 6. 

6,2

2,2

x y

6
,0

 

 

Proposition (2-1) 

Let N(s, t) be a network, and A be any subset of vertices in N. For any flow f, we have: 

∑  (f+( v) − f−(v)) = f+( A) − f−

v∈A

 ( A) 
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Proof 

f+( A/{v}) = f+( A) − f+( v) + f+( v, A/{v}), 

f−( A/{v}) = f−( A) − f−( v) + f−( A/{v}, v), 

∑  (f+( v) − f−(v)) = f+( A/{v}) − f−( A/{v})v∈A/{v}   

∑  (f+( v) − f−(v))v∈A/{v} = f+( A) − f+( v) + f+( v, A/{v} ) − f−( A) + f−( v) + f−( A/{v}, v)  

∑  (f+( v) − f−(v))v∈A/{v} = f+( A) − f−( A).                                                                              □ 

 

Lemma (2-1) 

Let N(s, t) be a network, and A be any set of vertices in N such that 𝑠 ∈ 𝐴 and 𝑡 ∈ �̅�. For 

any flow f, we have: val(f) = f+(A) − f−(A). 

Proof: 

For every v ∈ A − {s},  f+( v) = f−( v) , then f+( v) − f−( v) = 0, hence 

∑  (f+( v) − f−(v))𝑣∈𝐴−{𝑠} = 0 and since f+(s) − f−(s) = val(f), then 

f+( A) − f−( A) = ∑  (f+( v) − f−(v)) =  f+(s) − f−(s) + ∑  (f+( v) − f−(v))𝑣∈𝐴−{𝑠}𝑣∈𝐴 .  

Hence: f+( A) − f−( A) = val(f).                                                                                       □ 

The following theorem proves that the capacity of any st-cut in a network N(s, t) is bounded 

below by the value of any flow from s to t, or an st-flow. 

Theorem (2-1) 

Let N(s, t) be a network. For any cut  C+(A), such that 𝑠 ∈ 𝐴, and for any flow f in N, we 

have: 

val(f) ≤ cap(C+(A)) 

Proof 

By lemma (2-1), and since f−(A)≥ 0, then  val(f) = f+(A) − f−(A) ≤  cap(C+(A)).    □ 

2.1.3.3 Maximum flow problem 

Input: Given a network N(s, t), of order n and size m, a nonnegative capacity function 

cap: 𝐸 ⟶ 𝑁. 

Question: Find an st-flow f with a maximum value. 
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The first algorithm solving maximum flow problem is due to Ford and Fulkerson (1955). 

2.1.3.4  The max-flow min-cut theorem 

Theorem (2-2) 

The maximum value of an st-flow is equal to the minimum capacity over all st-cuts. 

This theorem was proved by  Elias et al. in 1956, and independently also by Ford and 

Fulkerson in 1956. 

By theorem (2-2) we conclude that the maximum st-flow problem is equivalent to the min 

st-cut problem, i.e., by maximizing the value of the flow from s to t we can get the minimum 

st-cut. 

Example: 

Let G = (V, E) be the directed graph of figure (2-3). To find a min xy-cut by using the 

maximum flow algorithm, we will use the final residual graph corresponding to graph G, 

and find the set of vertices that are reachable from source in the residual graph, all edges 

which start from a reachable vertex to a non-reachable vertex represent a min xy-cut. The 

maximum value of an xy-flow is 20, then by max- flow min -cut theorem the total weight 

of min xy-cut is 20. 

https://en.wikipedia.org/wiki/Peter_Elias
https://en.wikipedia.org/wiki/L.R._Ford,_Jr.
https://en.wikipedia.org/wiki/D.R._Fulkerson
https://en.wikipedia.org/wiki/D.R._Fulkerson
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2.1.4  Minimum Cut Problem 

Input: Given an undirected graph G = (V, E), and a nonnegative weight function 𝑤: 𝐸 ⟶

𝑁. 

Question: Find a cut in G with the minimum total weight. 

For every pair of vertices x and y in the graph G = (V, E) of order n, if we compute all min 

xy-cuts, and then pick the xy-cut having the smallest weight, we will get the minimum cut 

on G. Gomory and Hu (1961) proved that the number of different xy-cuts in a graph is at 

most n−1 cuts, and moreover that there is an effectual tree construction, representing the 

minimum xy-cuts for all pairs x and y in the graph. 

For example, consider the graph G= (V, E) in figure (2,4). The weight of min xy-cut 

between any pair of vertices of G is equal to the weight of min xy-cut of the vertices of 

corresponding Gomory-Hu tree. 
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2.2 Complexity of Algorithms 

An algorithm is a well-defined computational producer which takes any instance of the 

problem as input and return the solution as output. For any algorithm, the number of 

elementary computational steps in demand for the algorithm and done by it is the 

computational complexity of the algorithm. It depends on the size and the nature of the 

input. 

We will measure the complexity not in absolute terms but as a function of the data size 

(sometimes it depends on more than one variable). It is usually expressed using big O 

notation that we can estimate the growth of a function without worrying about constant 

multipliers or smaller order terms. 

Big O notation ,O(f(n)), is the set of functions that asymptotically grow in the same manner 

as f, i.e. O(f(n)) = {h(n): there exist c and N > 0 such that ∀ n > N, 0≤ h(n) ≤ c f(n)} 

If the complexity of algorithm is O(𝑛𝑏), with a fixed b > 0, then the algorithm is called a 

polynomial time algorithm. If the complexity of an algorithm is O(𝑛), then the algorithm 

is called a linear time algorithm. 

Strong polynomial time algorithm is algorithm satisfies the following: 

• With arbitrary input, the complexity of algorithm is O(𝑛𝑏), with a fixed b > 0. 

•  the space used by the algorithm is bounded by a polynomial in the size of the input. 

For problems, most important classifications depend on the difficulty of the problem. We 

will present some famous classes of problems. 

2.2.1  The Class P 

Definition 

The class of problems solved by a polynomial time algorithm. 

Example: 

The maximum flow problem. This problem has been solved by a polynomial time 

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation


13 

 

algorithm. King et al. (1992) find a polynomial algorithm for maximum flow problem with 

running time O(𝑚𝑛 + 𝑛2+𝜀). The best running time for max flow is O(𝑚𝑛), it is due to 

Orlin (2013). 

2.2.2  The Class NP 

Definition 

A decision problem belongs to the class NP, if given any instance of the problem whose 

answer is yes, we can check it in polynomial time. 

Example: 

Input: Graph (V, E). 

Question: Is G bipartite? 

This problem belongs to the NP class since we can check in polynomial time, for given a 

bipartition [X, Y] of G if each edge in G has one endpoint in X and another end in Y. 

2.2.3  The Class Co-NP 

Definition 

A decision problem belongs to the class co-NP, if given any instance of the problem whose 

answer is No, we can check it in polynomial time. 

Example: 

Input: Graph (V, E). 

Question: Is G bipartite? 

This problem belongs to the co-NP class since we can check in polynomial time by using 

the proposition (every non-bipartite graph contains an odd cycle). 

From both definitions of NP and Co-NP classes, we can conclude a relation between the 

previous classes: 

 P ⊆ NP and P ⊆ co − NP, then P ⊆ NP ∩ co − NP. (See figure (2-5)) (Wikipedia 2007). 

A clearly but still open question is whether the classes NP and co-NP are different. It is 
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generally believed that NP ≠ co-NP, but nobody knows how to prove it. 

Example: 

Input: A nonnegative integer x. 

Question: Is x prime? 

This problem belongs to the co-NP class since we can check in polynomial time, if there 

exists integer number  𝑦1 , 𝑦2 such that 𝑥 = 𝑦1 × 𝑦2 , then x not prime. But this problem 

not belongs to NP class, until now there is no polynomial algorithm to check whether an 

integer number is prime. 

2.2.4  NP-complete problems 

Definition 

A polynomial-time reduction, Π, of a problem F to a problem Q is a polynomial time 

algorithm, which transforms each input S in F to an input T in Q, and which transforms an 

output for the input T to an output for input S in polynomial time, and we can say that 

problem F is polynomial reducible to problem Q by Π, denoted by F ≼Π Q. This relation 

is reflexive i.e. for any problem F, F ≼Π F. It is also transitive, i.e. let F, Q and R be 

problems, if  F ≼Π1 Q and  Q ≼Π2 R then  F ≼Π3 R. 

Definition 

A problem F is called NP-complete, if F belongs to class NP, and for each problem Q in 

NP there exists a polynomial time reduction of Q to F, i.e., 

if F ∈ NP, and ∀Q ∈ NP, Q ≼ F, then F ∈ Np-complete. 

It implies that if one NP-complete problem can be solved in polynomial time, then each 

problem in NP can be solved in polynomial time. Moreover, if F belongs to NP, Q is NP-

complete and there exists a polynomial-time reduction of Q to F, then also F is NP-

complete, i.e., 

If F ∈ NP, Q ∈NP-complete and  Q ≼Π F then F ∈ NP-complete. 

Theorem (2-3) 

The satisfiability problem for Boolean formula is NP-complete. 
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This theorem was proved independently by Cook (1971) and Levin (1973). 

Example 

The maximum clique problem: 

Input: Given an undirected graph G = (V, E) and M ∈ Z+. 

Question: Is there a clique in G of size greater than or equal to M? 

By applying Theorem (2-3), Karp (1972) proved that maximum clique problem is NP-

complete. (He finds a polynomial time reduction from satisfiability to maximum clique 

problem  (  

2.2.5  NP-hard problems 

Definition 

A decision problem F is NP-hard if, for every problem Q in NP, there is a polynomial-time 

reduction from Q to F. 

There is no polynomial-time algorithm (right now) that solves an NP-hard problem 

optimally unless P = NP.  

In other words: F is NP-hard ⇐⇒ If F can be solved in polynomial time, then P = NP. 

Note that some NP-hard optimization problems can be polynomial time approximated up 

to some constant approximation ratio. 

Example 

The traveling salesman problem: 

Input: A weighted graph. 

Question: Find a Hamilton cycle with minimum total weight. 

https://en.wikipedia.org/wiki/Polynomial-time_reduction
https://en.wikipedia.org/wiki/Polynomial-time_reduction
https://en.wikipedia.org/wiki/Approximation_algorithm
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P, NP, NP-complete, and NP-hard set of problems. The 

figure is valid under the assumption that P NP. (Wikipedia 2007)

P, NP, NP-complete, and NP-hard set of problems. The 

figure is valid under the assumption that P NP. (Wikipedia 2007)

NP-Complete
NP-Co

NP

PNP- hard

 

2.2.6   Approximation algorithm 

We will define the ratio between the result obtained by the algorithm and the optimal 

solution. It helps us to know how much the approximation is close to the optimal solution, 

and to compare between different algorithms. 

Let cost(opt(I)) be the value of an optimal solution to a problem for input I, and cost(sol(I)) 

be the value of an algorithm solution to the same problem for the same input I. 

Definition 

For some 𝛼 > 1, the 𝛼-approximation algorithm for a minimization problem is an algorithm 

which produces the value of an optimal solution to the problem for any input I with at most 

𝛼×cost(opt(I)). 𝛼 is called the approximation factor, i.e. 

cos(opt(I)) ≤  cost(sol(I)) ≤ 𝛼×cost(opt(I)). 

For some 𝛽 < 1, the 𝛽-approximation algorithm for a maximization problem is an algorithm 

which produces the value of an optimal solution to the problem for any input I with at least 

𝛽×cost(opt(I)), i.e., 𝛽×cost(opt(I)). ≤ cost(sol(I)) ≤ cost(opt(I)). 
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Chapter 3: The Min k-cut problem and some of its variants 

In this chapter, we introduce the Min k-Cut Problem: definition, complexity and then 

discuss some of its variants. 

3.1 Minimum k-Cut Problem 

3.1.1  Definition 

The minimum k-cut problem optimization version: 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

and a positive integer k. 

Question: Find a k-cut with the minimum total weight. 

The minimum k-cut problem decision version: 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

and a positive integer k and 𝑀 ∈ 𝑁. 

Question: Is there a k-cut with total weight less than or equal to M. 

This problem is a generalization of the Minimum Cut Problem which can be solvable in 

polynomial time, based on the fundamental Max-Flow Min-Cut Theorem. 

3.1.2  Complexity 

For any graph and if k is a part of the input (k is variable) Goldschmidt and Hochbaum 

(1994) proved this theorem: 

Theorem 3.1: 

The Minimum k-cut decision problem is NP-complete (if k is a part of the input). 

Proof: 

To prove this theorem, they have reduced Maximum Clique decision problem to 

Minimum k-cut decision problem in polynomial time. 
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By using the fact that the Maximum Clique decision problem is NP-complete (this 

problem was one of the 21 NP-complete problems that Karp (1972) enumerated) 

We can present the Maximum Clique decision problem as follows: 

Input: Given an undirected graph G = (V, E) and M ∈ Z+. 

Question: Is there a clique in G of size greater than or equal to M? 

Consider an undirected graph with {0, 1} weights on the edges. The minimum k-cut is 

equivalent to separate the given graph into at least (nonempty) k connected components 

such that the number of self-edges on components is maximum. 

Suppose that the graph G has a clique H of size M = |𝑉| − (k − 1); then the number of 

edges between any vertex v ∉ H and u ∈ H is less than the edges between vertices inside 

H since in a clique there is an edge between every pair of vertices: 

∑ w(euv) <
u∈H
v∉H

∑ w(euv)

u∈H
v∈H

 

Then when we cut the graph G into k partitions with minimum cross-edges between 

components, the clique H must be one of these components. 

Then the Maximum Clique decision problem can be reduced with polynomial time to the 

Min k-cut decision problem. Since Maximum clique problem is NP-complete, then The 

Min k-cut decision problem is NP-complete.                                   □ 

 

For example: if we consider the graph G in (Figure 3.1), it has a clique of size 6 and 

when we find a minimum 3-cut, the clique must be one of the components. 

The following proposition is due to Dahlhaus et al. (1992). 
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V1

V2

V3

 
 

Proposition 3.1: 

The Minimum k-cut optimization version problem (if k is a part of the input) is NP-hard. 

Proof: 

We know if the decision problem is NP-complete then the Optimization Problem is NP-

hard. 

And by theorem (3.1), the Min k-cut decision problem is NP-complete then the Min k-cut 

optimization problem is NP-hard.                                    □ 

For planar graphs, Dahlhaus et al. (1992) showed that the optimization min k-cut problem, 

for a fixed k, can be solved in polynomial time. 

For any graph and a fixed k, Goldschmidt and Hochbaum (1994) gave a polynomial 

algorithm with running time 𝑂(𝑛𝑘2
) for the Min k-cut optimization problem. 

 Problem K variable K fixed 

Complexity Min k-cut optimization NP-hard P 

Min k-cut decision NP-complete P 

Table (3-1).  Complexity of minimum k- cut problem  
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3.2 Variants of the k cut problem 

There are a lot of variants of the min k-cut problem; we give here the most important. We 

classify them into three main classes according to the change in the objective function 

(question) or the input. 

3.2.1  Change in the Objective function 

3.2.1.1 Ratio Cut Problem 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

and positive integer k. 

Question: Find a k-cut C that minimizes ∑ 𝑤(𝑒)𝑒∈𝐶 𝑘⁄  . 

This problem was considered by Chvátal (1973). He proved following proposition: 

Proposition (3.2): 

The solution to the ratio problem is attained for k=2. 

Proof: 

Suppose Ω2 is a min cut of the graph G = (V, E) and suppose that Ωk is a min k-cut. 

w(Ω2) ≤ w(Vi - ⋃ 𝑉𝑗)𝑖≠𝑗 , 1 ≤ i ≠ j, ≤ k. 

k w(Ω2) ≤ w(V1 - ⋃ 𝑉𝑗)1≠𝑗  + w(V2 - ⋃ 𝑉𝑗)2≠𝑗  + … + w(Vk - ⋃ 𝑉𝑗)𝑘≠𝑗  

k w (Ω2) ≤ 2 w (Ωk) 

w (Ω2)

2
≤

w (Ωk)

k
                                                                                                                      □ 

3.2.1.2 Strength Cut Problem 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

and a positive integer k. 

Question: Find a k-cut C that minimizes ∑ 𝑤(𝑒)𝑒∈𝐶 (𝑘 − 1)⁄  . 

A strong polynomial algorithm was given by Cunningham (1985) with running time 
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O(𝑛4) to solve this problem. 

3.2.1.3 Barahona Multi Cut Problem 

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

and positive integer k. 

Question: Find a k-cut C that minimizes ∑ 𝑤(𝑒)𝑒∈𝐶 − 𝑘 . 

Barahona (2000) has reduced this problem to minimizing a symmetric submodular 

function. He gives a polynomial algorithm to compute a convex hull of functions 𝑓(𝑘) (the 

intersection of all convex set containing 𝑓(𝑘) )of an optimal solution of the problem with 

running time 𝑂(𝑛4). 

3.2.1.4 The Max k-Cut Problem 

In put: Given an undirected graph G = (V, E), a nonnegative weight function w: E⟶R, 

and a positive integer k. 

Question: Find a k-cut C that maximizes ∑ 𝑤(𝑒)𝑒∈𝐶 . 

This problem is a generalization of the famous Max Cut problem. 

The maximum cut problem is closely linked to the Max Bipartite Subgraph Problem: if the 

weights are positive, the Max Bipartite Subgraph Problem and the maximum cut problem 

are equivalent. 

The Max Cut problem in general is NP-hard (Garey and Johnson 1979). But there are 

special cases for which the Max-Cut can be solved in polynomial time: 

• In planar graphs: Orlova and Dorfman (1972) and Hadlock (1975) showed that the 

Max-Cut can be solved in polynomial time independently. 

• If the graph is not contractible to 𝐾5( 𝐾5 can’t be formed from the graph by deleting 

edges and vertices and by contracting edges), Barahona (1983) showed that the Max 

Cut problem can be solved in polynomial time. 

• If the graph can be embedded in tours and the weights are equal to +1 or -1, 

Barahona (1981) showed that the Max Cut problem can be solved in polynomial 
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time. 

• If the graph has only negative weights, McCormick and Rinaldi (2003) showed that 

the Max Cut can be solved in polynomial time by reducing the Max Cut problem to 

the Min-Cut problem with positive weights, then it can be solved, using flows, in 

polynomial time. 

3.2.1.5 The max k-Un Cut Problem 

In put: Given an undirected graph G = (V, E) and a nonnegative weight function w: E⟶R. 

Question: Find a k-cut C that maximizes ∑ 𝑤(𝑒)𝑒∉𝐶 . 

This problem is equivalent to min k-cut problem, because maximizing the total self-edges 

weight is equivalent to minimizing the total cross-edges weight. 

Since min k-cut is NP-hard then max k-uncut is NP-hard. 

Proposition (3.4): 

If approximation algorithm for min k-cut is α then the factor for max k-uncut is 
𝛼

𝛼−1
. 

Proof: 

Consider graph G= (V, E) with |E| = m. Suppose OPTΩ is an optimum solution for min k-

cut, OPTF is an optimum solution for max k-uncut. 

∑ 𝑤(𝑒)𝑒∉𝐶 + ∑ 𝑤(𝑒)𝑒∈𝐶 = 𝑚, (self-edge: ∑ 𝑤(𝑒)𝑒∉𝐶  , cross-edge: ∑ 𝑤(𝑒)𝑒∈𝐶  ) then: 

OPTF + OPTΩ = m 

OPTF = m - OPTΩ 

OPTΩ ≤ OPT1 ≤ α OPTΩ 

m – OPTF ≤ m - OPT2 ≤ α OPTΩ 

m – OPTF ≤ α (m – OPTF) 

-α m ≤ m – α m ≤ (1-α) OPTF 

-α m ≤ (1-α) OPTF 

𝛼

𝛼−1
 m ≥ OPTF                                                                                                                                                                                                □  
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3.2.2  Additional condition to the k-cut 

3.2.2.1 Capacity Min k-cut problem 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁,  

a positive integer k, and a set of capacities {𝑠1, 𝑠2, … , 𝑠𝑘} where ∑ 𝑠𝑖
𝑘
𝑖=1 = |𝑉|. 

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each 

component 𝑉𝑖 contain at most 𝑠𝑖 vertices. 

This problem is NP-complete even for k = 2 (Gary and Johnson (1976)), and there is no 

known approximation algorithm to solve this problem. 

3.2.2.2 Minimum Multiway Cut Problem 

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

a positive integer k, and a subset of vertices T = {𝑡1, 𝑡2, … , 𝑡𝑘} ⊆ 𝑉 called terminals. 

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each 

component 𝑉𝑖 contains exactly one terminal  𝑡𝑖 . 

When 𝑘 = 2  (we have only two terminals: one source and one sink), then the multiway 

cut problem is equivalent to the st-cut problem which is solvable in polynomial time. The 

multiway cut problem is NP-hard for 𝑘 ≥ 3; due to Dahlhaus (1992). 

3.2.2.3 The Minimum Steiner k-Cut Problem 

The Minimum Steiner k-cut problem is a generalization of both the minimum k-cut 

problem and the minimum multiway cut problem. It is defined as follows: 

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

a positive integer r, a subset of vertices T = {𝑡1, 𝑡2, … , 𝑡𝑟} ⊆ 𝑉 called terminals, and a 

positive integer 𝑘 ≤ 𝑟. 
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Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each 

component 𝑉𝑖 contains exactly one terminal  𝑡𝑖 . 

If 𝑘 = 𝑟, we have the minimum multiway cut problem. If T = 𝑉, we have the minimum 

k-cut. 

3.2.2.4 Cardinality Min Cut Problems 

• k-card cut: 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

and a positive integer k. 

Question: Find the set of edges, having cardinally k, with minimum total weight, when 

deleted, partitions the graph into 2 components. 

• ≥ k-card cut: 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

and a positive integer k. 

Question: Find the set of edges, has cardinally greater than or equal k, with minimum 

total weight, when deleted, partitions the graph into 2 components. 

In general, for any graph, k-card cut and ≥k-card cut are NP-hard even for unweighted 

graph due to Bruglieri et al. (2003). 

3.2.3  Other Variants 

3.2.3.1 Capacitated Max k-Cut Problem 

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

a positive integer k, and a set of capacities {𝑠1, 𝑠2, … , 𝑠𝑘} where ∑ 𝑠𝑖
𝑘
𝑖=1 = |𝑉|. 

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with maximum total weight, such that each 

component 𝑉𝑖 contains at most 𝑠𝑖 vertices. 
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3.2.3.2 Capacitated Max k-Un Cut Problem 

In put: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

a positive integer k, and a set of capacities {𝑠1, 𝑠2, … , 𝑠𝑘} where ∑ 𝑠𝑖
𝑘
𝑖=1 = |𝑉|. 

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with maximum total weight of self-edges, such that 

each component 𝑉𝑖 contains at most 𝑠𝑖 vertices. 

Choudhury (2008) consider two integer linear programs and show that the integrality gap 

(ratio between the optimal solution to the linear programming relaxation and the optimal 

solution to the integer linear program) is not bounded. 

3.2.3.3 Multiway Un Cut Problem 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

a positive integer k, and a subset of vertices T = {𝑡1, 𝑡2, … , 𝑡𝑘} ⊆ 𝑉 called terminals. 

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with maximum total weight of self-edges, such 

that each component 𝑉𝑖 contains exactly one terminals 𝑡𝑖 . 

3.2.3.4 The k-route cut problem 

Input: Given an undirected graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, 

an integer connectivity requirement k, and a collection  {(𝑠1, 𝑡1), … , (𝑠𝑟 , 𝑡𝑟)} of source-

sink pairs. 

Question: Find k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each (𝑠𝑖 , 𝑡𝑖) is 

disconnected, i.e., does not belong to the same component. 

3.2.3.5 Directed multiway cut problem 

Input: Given a directed graph G = (V, E), a nonnegative weight function 𝑤: 𝐸 ⟶ 𝑁, and 

a set 𝐾 ⊆ 𝑉×𝑉 of order pair of vertices of G. 

Question: Find a k-cut 𝐶(𝑉1, 𝑉2, … , 𝑉𝑘) with minimum total weight, such that each 

component 𝑉𝑖 contains exactly one terminal  𝑡𝑖 . 
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problem Special graph 
Special 

k 
Complexity Reference 

Min k-cut General graph  NP-hard Dahlhaus et al. (1992). 

Min k-cut General graph K=2 P King et al. (1992). 

Min k-cut General graph Fixed k P 
Goldschmidt and 

Hochbaum (1994) 

Min k-cut tree  p  

Ratio cut General graph  P Chvátal (1973) 

Strength cut General graph  P Cunningham (1985). 

Barahona 

multi cut 
General graph  P Barahona (2000). 

Max k-cut General graph  NP-hard 
Garey and Johnson 

(1979). 

Max k-cut planar  p 

Orlova and Dorfman 

(1972) and Hadlock 

(1975). 

Max k-cut 
not contractible to 

𝐾5 
 P Barahona (1983). 

Max k-cut 

graph can be 

embedded in tours 

and the weights are 

equal to +1 or -1 

 P Barahona (1981). 

Max k-cut 
graph has only 

negative weights 
 P 

McCormick and 

Rinaldi (2003) 

Max k-un cut General graph  NP -hard Choudhury (2004) 

Table (3-2).  The complexity of minimum k- cut problem and some of its variants. 
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Capacity Min 

k-cut 
  

NP-

complete 

Gary and Johnson 

(1976) 

Multiway cut General graph K > 2 NP -hard Dahlhaus (1992). 

Multiway cut  K=2 P King et al. (1992). 

Multiway cut tree  P Erdős et al. (1994) 

Cardinality 

k-cut 
General graph  NP -hard Bruglieri et al. (2003). 

Cardinality 

k-cut 
Tree  P Bruglieri et al. (2003). 
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Chapter 4: Some Applications 

 

The minimum cut problem has several applications. Picard and Queyranne (1982) survey 

applications including graph partitioning problems, the study of project networks, and 

partitioning items in a database. 

An important application of graph partitioning is data clustering using a graph model - the 

pairwise similarities between all data objects form a weighted graph adjacency matrix that 

contains all necessary information for clustering. 

The problem of determining the connectivity of a network arises frequently in issues of 

network design and network reliability, and exploits an extremely tight connection between 

minimum cuts and network reliability. 

Minimum cut computations are used to find the subtour elimination constraints that are 

needed in the implementation of cutting plane algorithms for solving the traveling salesman 

problem. Padberg and Rinaldi (1990) and Applegate (1992) have reported that solving min-

cut problems was the computational bottleneck in their state-of-the-art cutting plane based 

TSP algorithm, as well as other cutting-plane based algorithms for combinatorial problems 

whose solutions induce connected graphs. 

Minimum cut problems also play an important role in large-scale combinatorial 

optimization, finite elements and, VLSI circuit partitioning, which is a key step in VLSI 

CAD. 

Minimum cut problems arise in the design of compilers for parallel languages (Chaterjee 

et al. 1996). Consider a parallel program that we are trying to execute on a distributed 

memory machine. In the alignment distribution graph for this program, vertices correspond 

to program operations and edges correspond to flows of data between program operations. 

More detailed applications are presented here below: spin glass models, unconstrained 0-1 

quadratic programming and image segmentation problem. 
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4.1. Spin glass model 

It is a very interesting problem in numerical physics ground state problem. This problem 

is NP-hard in general. A spin-glass is a disordered magnet, where the magnetic spin of 

the component atoms is not ranged in a regular pattern. In normal magnets, magnetic 

moments of interacting atoms align in one particular fashion. The interactions are either 

ferromagnetic (the spins align in the same direction) or anti-ferromagnetic (the spins 

align in the opposite directions). In disordered magnet, we may have several types and 

strengths of interactions at the same time. Figure 4.1 

 

FIGURE (4-1): Graphic representation of the random spin structure of a spin glass (top) and the 

ordered one of a ferromagnet (bottom). (Wikipedia 2011) 

 

Between every atom there is an interaction energy given by: Hij = - J(R) Si Sj, where Si: is 

the magnetic spin of the atom i, and J(R) =𝐴 
cos (𝐷𝑟𝑖𝑗)

𝐵3(𝑟𝑖𝑗)
3

  such that A, B and C depending on 

the material, rij is the range between the atom i and j. 

Physics Model: 

Sherrington and Kirkpatrick (1975) proposed a simple spin-glass model to construe the 

physical properties of the systems, consisting of interacting spins. This famous model can 

be defined as follows: 

Assume that the spins are existing at the nodes of net (usually square or cubic) and each 
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spin atom is represented by Vector, take the values: Si = 1, -1 (i=0,1, 2, …, n). 

Assume the interactions between the spins happen for the neighbors. 

 

The energy function of the system is given by: 

H = - ∑  Jij Si Sj(i,j)∈L     … (4.1) (Hamilton function) 

The ground state problem is to find minimum energy system  

i.e. min {H(S) =∑  Jij Si Sj(i,j)∈L  , where S is spin configuration}. 

Graphic Model: 

Spin-glass can be reduced to the MAX-CUT problem. (Barahona 1987) 

We can be modeled the problem on graph G= (V, E) where the vertices correspond to the 

spins, and if there is an interaction between the spins Si, Sj the corresponding vertices are 

connected by an edge Si Sj. We can associate the weight:  wij = - Jij, then the ground state 

problem is equivalent to the problem: 

 min {H(S) =  ∑  wij Si Sj(i,j)∈E  : Si ∈ {+1,−1} , i ∈ V }. 

This problem is to be established an assignment of +1 and -1 to the vertices of the graph 

such that  ∑  wij Si Sj(i,j)∈E  is minimum. Figure (4-2). 
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Figure (4-2): Spin glass problem 

 

Every assignment induces a partition of the nodes in graph into node sets 𝑉+ and 

𝑉−,where : 𝑉+ = {i ∈ V: Si = +1}, V− = {i ∈ V: Si = −1}. 
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min∑  wij Si Sj(i,j)∈E =  min [∑ Wiji,j∈V+ + ∑ Wiji,j∈V− + ∑ −Wiji∈V+

j∈V−
] , 

min∑  wij Si Sj(i,j)∈E = min [(∑ Wiji,j∈V+ + ∑ Wiji,j∈V− + ∑ −Wij) + (∑ Wij + ∑ −Wij)i∈V+

j∈V−
i∈V+

j∈V−
i∈V+

j∈V−
],  

min∑  wij Si Sj(i,j)∈E = min [(∑ Wiji,j∈V+ + ∑ Wiji,j∈V− + ∑ Wij) + (∑ −Wij + ∑ −Wij)i∈V+

j∈V−
i∈V+

j∈V−
i∈V+

j∈V−
],  

min∑  wij Si Sj(i,j)∈E = min [∑ Wiji,j∈𝐸 − 2∑ Wiji∈V+

j∈V−
], 

min∑  wij Si Sj(i,j)∈E = min [C − 2∑ Wiji∈V+

j∈V−
], where C = ∑ Wiji,j∈𝐸  is a constant. 

To find min [C − 2∑ Wiji∈V+

j∈V−
] is equivalent to find maximum[∑ Wiji∈V+

j∈V−
]. 

 

4.2 Unconstrained 0-1 Quadratic Programming 

Consider the Quadratic 0-1 program as follows: 

Minimum {𝑓(𝑥) =  ∑ ∑ 𝑞𝑖𝑗𝑥𝑖𝑥𝑗
𝑛
𝑗=𝑖+1 + ∑ 𝑐𝑖𝑥𝑖: 𝑥 ∈ {0,1}𝑛𝑛

𝑖=1
𝑛−1
𝑖=1 }. ----- (4.2) 

This problem in general is NP- hard. It can be reduced to Max Cut problem (Ameur et al 

2001). 

Let 𝑠𝑖 = 2𝑥𝑖 − 1  then 𝑥𝑖 =
𝑠𝑖+1

2
, if 𝑥𝑖 = 0 then 𝑠𝑖 = −1, and if 𝑥𝑖 = 1 then 𝑠𝑖 = 1, 

hence if 𝑥𝑖 = {0,1} then 𝑠𝑖 = {+1, −1}. 

𝑓(𝑥) =  ∑ ∑ 𝑞𝑖𝑗(
𝑠𝑖+1

2
)(

𝑠𝑗+1

2
)𝑛

𝑗=𝑖+1 + ∑ 𝑐𝑖 (
𝑠𝑖+1

2
) : 𝑠𝑖 ∈ {1,−1}𝑛,𝑛

𝑖=1
𝑛−1
𝑖=1   

𝑓(𝑥) =
1

4
 ∑ ∑ 𝑞𝑖𝑗(𝑠𝑖𝑠𝑗 + 𝑠𝑖 + 𝑠𝑗 + 1)𝑛

𝑗=𝑖+1 +
1

2
∑ 𝑐𝑖𝑠𝑖 +

1

2
∑ 𝑐𝑖: 𝑠𝑖 ∈ {1, −1}𝑛,𝑛

𝑖=1
𝑛
𝑖=1

𝑛−1
𝑖=1   

𝑓(𝑥) =  ∑ ∑ (
1

4
𝑞𝑖𝑗)𝑠𝑖𝑠𝑗 + ∑ [

1

4
{∑ 𝑞𝑖𝑗 +𝑖−1

𝑗=1 ∑ 𝑞𝑖𝑗
𝑛
𝑗=𝑖+1 } +

1

2
𝑐𝑖] 𝑠𝑖

𝑛
𝑖=1

𝑛
𝑗=𝑖+1 +𝑛−1

𝑖=1

 ∑ ∑
1

4
𝑞𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1  +

1

2
∑ 𝑐𝑖

𝑛
𝑖=1 : 𝑠𝑖 ∈ {1, −1}𝑛,  

And by setting: 𝑤𝑖𝑗 =
1

4
𝑞𝑖𝑗  , 𝑤0𝑗 =

1

4
{∑ 𝑞𝑖𝑗 +𝑖−1

𝑗=1 ∑ 𝑞𝑖𝑗
𝑛
𝑗=𝑖+1 } +

1

2
𝑐𝑖  , 𝑐1 =

 ∑ ∑
1

4
𝑞𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 +

1

2
∑ 𝑐𝑖

𝑛
𝑖=1 , 𝑠0 = 1 . 
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We obtain the following equivalent problems: 

Minimum {𝑔(𝑠) =  ∑ ∑ 𝑤𝑖𝑗𝑠𝑖𝑠𝑗
𝑛
𝑗=𝑖+1 : 𝑠𝑖 ∈ {1,−1}𝑛+1𝑛−1

𝑖=0 }.    ---- (4-3) 

And we can reduce (4-3) to the Max Cut problem by using the spin glass model. 

4.3 Image Segmentation problem 

A fundamental problem in computer vision is that of segmenting an image into coherent 

regions. A basic segmentation problem is that of partitioning an image into a foreground 

and a background: assign each pixel in the image as belonging to the foreground or the 

background. Figure (4-3). 

 

 

Figure (4-3): In the right input Image, in the left optimal segment. (Boykov and Jolly (2011) 

 

The main contribution to the problem with graphs was proposed by Boykov et al. (2001), 

inspired by a previous work by Greig et al. (1989). 

Let V be the set of pixels in an image, and E be the set of pairs of adjacent pixels. V and 

E produce an undirected graph G (V, E). 

Each pixel i has a likelihood 𝑎 𝑖 >  0 that it belongs to the foreground and a likelihood 

𝑏𝑖  >  0 that it belongs to the background. These likelihoods are specified in the input to 

the problem. 

We want the foreground/background boundary to be smooth: for each pixels i and j , 

there is a separation penalty 𝑝𝑖𝑗≥ 0 for placing one of them in the foreground and the 

other in the background. 

Image Segmentation problem 

Given: Pixel graphs G (V, E), likelihood functions a, b: V →𝑅+, and a penalty function 

p: E →𝑅+. 
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Question: (Find the optimum labelling) Partition the pixels into two sets A be the set of 

pixels assigned to foreground and B be the set of pixels assigned to background such that: 

Maximize  q(A, B) = ∑ aii∈A + ∑ bi − ∑ pijij∈E
|A∩{i,j}|=1

i∈B . 

Rewrite q(A, B) as follows: 

q(A, B) = ∑ (ai+bi)i∈V  − ∑ bi −i∈A ∑ ai − ∑ pijij∈E
|A∩{i,j}|=1

i∈B  . 

Since C = ∑ (ai+bi)i∈V  is constant then: 

 q(A, B) = C −

[
 
 
 
 

∑bi +

i∈A

∑ai + ∑ pij

ij∈E
|A∩{i,j}|=1

i∈B
]
 
 
 
 

. 

Maximizing q(A, B) is equivalent to minimizing:  

q̃(A, B) = ∑ai +

i∈A

∑bi + ∑ pij

ij∈E
|A∩{i,j}|=1

i∈B

 

To minimize �̃�(𝐴, 𝐵), we can formulate it as a Min-Cut problem by constructing a 

network where the source (dummy vertex s) is connected to all the pixels with likelihood 

function 𝑎𝑖 , and the sink (dummy vertex t) is connected to all the pixels with likelihood 

function 𝑏𝑖; two edges (i,j) , and (j,i) with 𝑝𝑖𝑗  penalty function are added between two 

adjacent pixels. 

An st-cut then represents pixels assigned to the foreground in A and pixels assigned to 

the background in B. Figure (4-4). 
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Figure (4-4): Using the min-cut approach for image segmentation. Boykov and Jolly (2011) 

a. 
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Chapter 5: Special Instances of MKCP 

 

In this chapter, we introduce some special instances of the minimum k-cut problem and 

some of its variants. 

5.1. Minimum k-cut for fixed k 

A natural approach for solving MKCP with a fixed k is the greedy approach. 

5.1.1. Greedy Algorithm 

A greedy algorithm is an algorithmic method that builds up a solution step by step, and at 

every step, we can make a choice that looks best at the moment, it makes a locally-optimal 

choice in the hope that this choice will lead to a globally-optimal solution. We get the 

optimal solution of the complete problem at the end of the algorithm. 

Greedy algorithms are used for optimization problems. 

If a greedy algorithm can solve a problem, then it generally becomes the best method to 

solve that problem as the greedy algorithms are in general more efficient than other 

techniques. But greedy algorithms cannot always be applied. 

Greedy approach for k-cut: 

The base of this algorithm is to apply the minimum st- cut using the max-flow min-cut 

theorem repeatedly. 

Consider a graph G of size n, we will have (𝑛
𝑘
) subsets of size k. 

For each subset 𝑉𝑗 = {𝑣1, 𝑣2, … , 𝑣𝑘}; (1 ≤  𝑗 ≤  (𝑛
𝑘
) ) , choose one vertex vi (1 ≤ i ≤ k) 

and partition it from V using (vi-V) min cut and again choose another vertex vi (1 ≤ i ≤ k-

1) and partition it from V using minimum (vi-V) min cut, repeat this process to get k 

components in each one there exactly one vertex 𝑣𝑖  from Vj. 

From {𝑣1, 𝑣2, … , 𝑣𝑘}  we pick vi and apply (vi-V) min cut it cost (k) k-cut 
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and from {𝑣1, 𝑣2, … , 𝑣𝑘−1}  we pick vi and apply (vi-V) min cut it cost (k-1) k-cut 

and from {𝑣1, 𝑣2, … , 𝑣𝑘−2}  we pick vi and apply (vi-V) min cut it cost (k-2) k-cut 

we produce 𝑘. (𝑘 − 1). (𝑘 − 2)… (2)(1) = 𝑘! k-cut, the running time of this   algorithm 

will be 𝑂(𝑛𝑘). 

This algorithm fails even in a planar graph.  We can develop this algorithm by exchange 

min (s-t) cut by min (S-T) cut such that S and T have more than one vertex, S is called 

core set, and T is called terminal set. 

A min (S- T) cut is the set of edges of minimum total weight which partition graph into 

two connected components 𝑉𝑠 (source set) and 𝑉𝑡 (sink set), such that 𝑉𝑠 ∩ 𝑉𝑡 = 𝜙, 𝑉𝑠 ∪

𝑉𝑡 = 𝑉, and the core set is sub set of source set and the terminal set is sub set of sink set. 

Figure (5-1).  

 

 

 

 

 

 

 

 

 

The min (S-T) cut can be found in polynomial time by reducing it to min (s-t) cut which 

finds by Max flow – Min cut theorem, we joined every vertex in the core set S to pretend 

point s by infinite weight arcs, and joined every vertex in the terminal set T to pretend 

point t by infinite weight arcs, and then we can find min (s-t) cut. Figure (5-2). 

Sink set

Source set

S T
 tV

sV

Terminal 

set

Core set

Sink set

Source set

S T
 tV

sV

Terminal 

set

Core set
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S T

s t 

 

A maximal min (S-T) cut is a min (S-T) cut with maximal source, to find it we will find 

all the min (S-T) cut and pick the one with maximal source, obviously, we reduce min (S-

T) cut to min (s-t) cut then apply Max flow algorithm, and in the final residual graph find 

all nodes reachable from the terminal which is satisfies the min cut, the remaining nodes 

is a maximal source. Figure (5-3). 

6,5

2,2

Min(s-t)cut Maximal 

min(s-t)cut

s

t

 

5.1.2. A polynomial algorithm 

Goldschmidt and Hochbaum (1994) give a polynomial algorithm to find the minimum k-

cut for a fixed k with running time 𝑂(𝑛𝑘2
 𝑇(𝑛,𝑚)), where T(n, m) is the (best) running 
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time complexity for the minimum (s, t) cut algorithm. The idea for finding an optimal 

solution is to find a maximal minimum (S-T) cut (which is unique), i.e., a minimum (S-T) 

cut with a maximal source set, the core set S having at most k-2 vertices, and the terminal 

set T having at most k-1 vertices. 

The following result is an important proposition for the minimum k–cut problem. It is a 

basic result for a lot of algorithms. 
 

Proposition (5-1) 

For any graph G, let C be a minimum k-cut in G = (V, E) separating V into k components 

V1, …, Vk, and let Ci = Ci(Vi, V̅i) ⊆ C be the set of edges separating Vi from �̅�i, then: 

w(C) =
1

2
∑ w(Ci)

k
i=1 . 

Proof: 

w(Ci) = w[Ci(Vi, V̅i)] = ∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)],
𝑘
𝑗=1
𝑖≠𝑗

  

∑ 𝑤(𝐶𝑖)
𝑘
𝑖=1 = ∑ ∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)]

𝑘
𝑗=1
𝑖≠𝑗

= ∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)] +𝑘
𝑖=1,𝑗=1

𝑖<𝑗

∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)],
𝑘
𝑖=1,𝑗=1

𝑖>𝑗

 𝑘
𝑖=1   

Since w(C) = ∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)] =𝑘
𝑖=1,𝑗=1

𝑖<𝑗

∑ 𝑤[𝐶𝑖(𝑉𝑖 , 𝑉𝑗)],
𝑘
𝑖=1,𝑗=1

𝑖>𝑗

 then: 

∑ 𝑤(𝐶𝑖)
𝑘
𝑖=1 = 2𝑤(𝐶). 

w(C) =
1

2
∑ w(Ci)

k
i=1  .                                                                                                  □ 

 

Let C be a minimum k-cut that partitions the graph into k components 𝑉1 … , 𝑉𝑘  , and 𝐶𝑖 

be the subset of the cut C, denoted 𝐶𝑖(𝑉𝑖 , 𝑉�̅� ), that have one endpoint in 𝑉𝑖 and the other 

end in 𝑉�̅� (1 ≤ 𝑖 ≤ 𝑘). 

We sort these components: 𝑤(𝐶1) ≤ 𝑤(𝐶2)  ≤ ⋯  ≤ 𝑤(𝐶𝑘) . 

If we consider all min k-cuts, we will pick the one, that generates 𝑉1 as a maximal 

component, i.e., there is no min k-cut �̌� , such that the cut �̌�𝑖 is a subset of  𝐶,̌ and 

partitions the graph into (𝑉�̌�, �̌�𝑖
̅) and w(�̌�1) ≤ w(�̌�𝑖)  for every i , and 𝑉1 ⊆ 𝑉1̌. 

 

Theorem (5-1): 
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For any graph G, for k > 3, if 𝑉1 contains at least k-2 vertices then there exist a set S⊆ 𝑉1 

with |𝑆|=k-2, and there exist a set T= {𝑡1, … , 𝑡𝑘−1} where 𝑡𝑖 ∈ 𝑉𝑖 (2 ≤ 𝑖 ≤ 𝑘) such that 

𝐶1 is the maximal min (S-T) cut. 

Proof: 

Suppose that 𝐶1 is not a min (S-T) cut. We will prove that there is a contradiction with 

the fact that C is a minimum k- cut. (See Figure (5-4)). 

• First, we prove three statements: 

Statement 1: for any min (S, T) cut, if S is contained in 𝑽𝟏 then the source set 𝑽𝒔 ⊆

𝑽𝟏. 

Suppose that there exists a min (S, T) cut denoted Ć, S⊆ 𝑉1 and  𝑉𝑠 ⊊ 𝑉1,. (See Figure (5-

5)). 

Let the set of edges C1x ⊆ C1 , the set of edges Ć𝑥 ⊆ Ć, such that for every edge uv in 

C1x, u and v belong to 𝑉𝑠, for every edge uv in Ć𝑥, u and v belong to 𝑉 − 𝑉1 . (See Figure 

(5-6)). 

 

We reverse the two choices: 𝑤( C1x)  < 𝑤(Ćx)  and  𝑤( C1x)  ≥ 𝑤(Ćx). 

➢ If 𝑤( C1x)  < 𝑤(Ćx)  , in the cut Ć, if we replace the section of the cut Ćx  by C1x , we 

will get the cut  [(Ć ∪ C1x) − (Ćx)] and it min (S, T) cut, hence it is a contradiction 

with claim Ć is min (S-T) cut. 

➢ If 𝑤( C1x)  ≥ 𝑤(Ćx), assume that ℂ is a cut that partitions G in to k components 

Ѷ1, Ѷ2, . . , Ѷ𝑘, such that: Ѷ1 = 𝑉1 ∪ 𝑉𝑠 , Ѷ2 = 𝑉2 − 𝑉𝑠 , …, Ѷ𝑘 = 𝑉𝑘 − 𝑉𝑠. Let ℂ𝑖 ⊆ ℂ  
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is the cut partitioning Ѷ𝑖 from Ѷ̅𝑖. 

To get a feasible k- cut, every component should be not empty. 

For every i ( 2 ≤ 𝑖 ≤ 𝑘) 𝑡𝑖 ∈ 𝑉𝑖 , and 𝑡𝑖 ∉ 𝑉𝑠 since 𝑇 ∩ 𝑉𝑠 = 𝜙, then 𝑉𝑖 − 𝑉𝑠 ≠ 𝜙. 

Let Cx ⊆ C be the set of edges, such that for every edge uv in Cx, u and v belong to 𝑉𝑠. 

We can replace the cut Cx by Ćx , hence:  ℂ = (C ∪ Ćx) – Cx . 

I. The set of edges partitioning the connected component 𝑽𝒊, 𝑽𝒋 is equivalent to the 

set of edges partitioning the connected component Ѷ𝒊, Ѷ𝒋, 

𝐶 (𝑉𝑖 , 𝑉𝑗) = 𝐶 (Ѷ𝑖 , Ѷ𝑗) for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ≥ 2. 

Since C1x ⊆ 𝐶x and 𝑤( C1x)  ≥ 𝑤(Ćx), then 𝑤( Cx)  ≥ 𝑤(Ćx). 

If  𝑤( Cx)  > 𝑤(Ćx)  and since ℂ = (C ∪ Ćx) – Cx, then 𝑤(ℂ) <  𝑤(C) and this is a 

contradiction with that C is a min k-cut. 

Hence 𝑤( Cx) = 𝑤(Ćx)  then  𝐶𝑥 = 𝐶1𝑥, then: 

𝐶 (𝑉𝑖 , 𝑉𝑗) ∩ 𝐶𝑥 = 𝜙 for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ≥ 2.                                        [5-1] 

If there exist an edge e ∈ 𝐶 (𝑉𝑖 , 𝑉𝑗) ∩ Ć𝑥 then: 

𝑤(ℂ) = 𝑤((C ∪ Ćx) – Cx) ≤ 𝑤(C) + w(Ćx) – w(C1x) − 𝑤(𝑒) 

Since: w(Ćx) = w(C1x) then  𝑤(ℂ) ≤ 𝑤(C) − 𝑤(𝑒) 

Since 𝑤(𝑒) > 0 then 𝑤(ℂ) < 𝑤(C) and it is a contradiction with C is a min k-cut. 

then 𝐶 (𝑉𝑖 , 𝑉𝑗) ∩ Ćx = 𝜙 for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ≥ 2.                                         [5-2] 

from [5-1] and [5-2]:   𝐶 (𝑉𝑖 , 𝑉𝑗) = 𝐶 (Ѷ𝑖 , Ѷ𝑗) for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ≥ 2. 

II. The total weight of the set of edges partitioning the connected component 𝑉1, 𝑉𝑖 is 

equivalent to the total weight of the set of edges partitioning the connected 

component Ѷ𝟏, Ѷ𝒊 ,  𝑤(𝐶 (𝑉1, 𝑉𝑖)) = 𝑤(𝐶 (Ѷ1, Ѷ𝑖)) for, 𝑖 ≥ 2. 

It is enough to prove that 𝑤(𝐶 (𝑉1, 𝑉𝑖 ∩ 𝑉𝑠)) = 𝑤(𝐶 (𝑉𝑖 , 𝑉𝑖 ∩ 𝑉𝑠)), and we know that 

𝑤(𝐶 (𝑉1, 𝑉𝑖 ∩ 𝑉𝑠) ≥ 𝑤(𝐶 (𝑉𝑖 , 𝑉𝑖 ∩ 𝑉𝑠)), or 𝑤(𝐶 (𝑉1, 𝑉𝑖 ∩ 𝑉𝑠) ≤ 𝑤(𝐶 (𝑉𝑖 , 𝑉𝑖 ∩ 𝑉𝑠)), since if 

it is not, we have a contradiction with our claim C is a min k-cut. 

By I and II: for every i: 𝑤(ℂ𝑖) = 𝑤(C𝑖) and then there exist a min k cut ℂ, 𝑤(ℂ1) ≤

𝑤(𝐶𝑖), 𝑖 ≥ 2 , and 𝑉1 ⊂ Ѷ1, which contradicts the maximality claim. It follows that, for 
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any min (S, T) cut, if S ⊂ 𝑉1, |𝑆| = 𝑘 − 2, then the source set 𝑉𝑠 ⊆ 𝑉1.                        □ 

If |𝑉1| = 𝑘 − 2 then 𝑆 = 𝑉1 ⊆ 𝑉𝑠 , hence 𝑉1 = 𝑉𝑠 and 𝐶1 = Ć. 

Statement 2: 1f |𝑽𝟏| > 𝒌 − 𝟐  and there exist 𝑪𝟐 minimum (S, T) cut, such that 𝑪𝟐 ≠

𝑪𝟏 then 𝒘(𝑪𝟐) < 𝒘(𝑪𝟏). 

We prove this statement by contradiction. Suppose that w (𝐶2) ≥ 𝑤(𝐶1). Let 𝑉𝑠2  be the 

source set of the cut 𝐶2 then from statement 1, 𝑉𝑠2 ⊆ 𝑉1. 

If   𝑉𝑠2 ⊂ 𝑉1 , and w (𝐶2) ≥ 𝑤(𝐶1), then  𝐶1 does not have a maximal source cut, and it is 

a contradiction.                                                                                                             □ 

Statement 3: If |𝑽𝟏| > 𝒌 − 𝟐 and every minimum (S, T) cut have weight strictly less 

than 𝒘(𝑪𝟏), then it generates min k- cut have total weight less than the cut C. 

Consider every possible core set {s1, … , sk−2} in V1 pick the set {s1, … , sk−2} such that 

min ({s1, … , sk−2} − T)cut is of maximum weight. From statement 1, the source set of 

this cut is a proper subset of V1, then there exists at least s0 in V1 not belonging to the 

source set. Now consider the cut Csi a min ({s0, s1, … si−1, si+1, . . , sk−2} − T) cut. The 

size of the core set of this cut is k-2. Let the source set of the cut Csi is Vsi
, and from 

statement 1, Vsi
⊂ 𝑉1. Let the cut 𝐶𝑆𝑖

⊂ Csi be the set of edges with both end points in 

𝑉1.and V̅si
= V1 − Vsi

 

Claim 1: 𝑠𝑖 ∉ 𝑉𝑠𝑖
 , for every i = 0,1, ..., k-2. 

By using the shrink producer on 𝑉1, we will get 𝐶1, and 𝑉1 satisfies claim 2. 

Claim 2: 𝑤(𝐶𝑆𝑖
) < 𝑤(𝐶1(V̅si

)) 

Let 𝑆𝑖 be the component contain 𝑠𝑖, 𝐶1is the output of the shrink producer, and 𝐶∗ be the 

cut partitioning the graph into 𝑆0, 𝑆1, …,𝑆𝑘−2, 𝑉 − (⋃ 𝑆𝑖
𝑘−2
𝑖=0 ). 

Claim 3:  𝒘(𝑪∗) < 𝟐𝒘(𝑪𝟏). 

By proposition (5-1): w(C) =
1

2
∑ w(Ci)

k
i=1 ≥

𝑘

2
 w(C1). 

By claim 3: w(C) =
1

2
∑ w(Ci)

k
i=1 ≥

𝑘

2
 w(C1) =

𝑘

2
 
2

2
w(C1) >

𝑘

4
𝑤(𝐶∗), 

hence w(C) >
𝑘

4
𝑤(𝐶∗), and at this moment the cut 𝐶∗separate graph in to k components 
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and has a weigh less than the optimal one, which is a contradiction.                  □ 

 

The theorem (5-1) consider the maximal minimum (S-T) cut for k > 3 in the following 

theorem we will consider the maximal minimum (S-T) cut for 𝑘 = 3. 

Let C be the minimum k-cut that partition graph into 3 connected components 𝑉1, 𝑉2, 𝑉3  , 

and let 𝐶𝑖 be the subset of the cut C that 𝐶𝑖(𝑉𝑖 , 𝑉�̅� ) denoted the set of edges have one 

endpoint in 𝑉𝑖 and the other end in 𝑉𝑖 complement (1 ≤ 𝑖 ≤ 3), we sort this component: 

𝑤(𝐶1) ≤ 𝑤(𝐶2)   ≤ 𝑤(𝐶3) . 

If we consider all min 3-cuts, we will pick the one, that generates 𝑉1 maximal component. 

 

Theorem (5-2): 

For any graph G, for k= 3, if 𝑉1  have size at least 2 vertices, then there exist a set S⊆ 𝑉1 

with |𝑆|=2, and there exist a set T= {𝑡1, 𝑡2} where 𝑡𝑖 ∈ 𝑉𝑖+1 (1 ≤ 𝑖 ≤ 2) such that 𝐶1is the 

maximal min (S-T) cut. 

Proof: 

let 𝐶1 is not a min (S-T) cut and then we will have contradiction with C is minimum 3- 

cut. 

Suppose there exist min (S, T) cut denoted Ć, 𝑆 = {𝑠1, 𝑠2} contend in 𝑉1 and 𝑇 =

{𝑡1, 𝑡2}, 𝑡1 ∈ 𝑉2 𝑎𝑛𝑑 𝑡2 ∈ 𝑉3 , if we enumerate all min (S-T) cut, we pick the cut Ć  such 

that w (Ć)  be maximum one. 

By statement 1 of theorem (5-1),  𝑉𝑠 ⊂ 𝑉1, then there exist 𝑠0 ∈ (𝑉1 − 𝑉𝑠) ⊆ 𝑉�̅�. Let Cs1
be 

min ({𝑠2, 𝑠0} − {t1, t2})cut, and let 𝑉𝑠1  be maximal source set of the cut Cs1
, by claim1: 

𝑠1 ∉ 𝑉𝑠1, then the cut Ć ∪ Cs1
 generates a 4-cut, the cut Ć make two connected 

components𝑉𝑠 and 𝑉�̅� , and the cut Cs1
 make two connected components 𝑉𝑠1  and �̅�𝑠1 , since 

𝑠2 in the core set of Cs1
, then 𝑠2 ∈ 𝑉𝑠1 ,and since  𝑠1 ∉ 𝑉𝑠1th en   𝑠1 ∈ �̅�𝑠1 then we will have 

4 connected components: 𝑉𝑠1 ∩ 𝑉𝑠 , �̅�𝑠1 ∩ 𝑉𝑠 , 𝑉𝑠1 ∩ �̅�𝑠 , �̅�𝑠1 ∩ �̅�𝑠 and every components not 

empty: 𝑠2 ∈ 𝑉𝑠1 ∩ 𝑉𝑠 , 𝑠1 ∈ �̅�𝑠1 ∩ 𝑉𝑠 , 𝑠0 ∈ 𝑉𝑠1 ∩ �̅�𝑠 , {𝑡1, 𝑡2} ⊆ �̅�𝑠1 ∩ �̅�𝑠. 

Let the cut Cin
s1

  be  part of the cut Cs1
with all end points in 𝑉𝑠, and the cut Cout

s1
  be  
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part of the cut Cs1
 with all end points in �̅�𝑠 

The cut C2 = Cin
s1

∪ Ć    generates a 3-cut: 𝑉𝑠1 ∩ 𝑉𝑠 , �̅�𝑠1 ∩ 𝑉𝑠 , �̅�𝑠. Figure (5-7) 

The cut C3 = Cout
s1

∪ Ć    generates a 3-cut: 𝑉𝑠 ,𝑉𝑠1 ∩ �̅�𝑠 , �̅�𝑠1 ∩ �̅�𝑠. Figure (5-8) 

 

 

And from assumption (Ć be maximum min (S-T) cut and Cs1
be min (S-T)) w(Cs1

) ≤

𝑤(Ć) < 𝑤(𝐶1). If we assume w(Cin
s1

) ≤ w(Cout
s1

) then 

2w(Cin
s1

) ≤ w(Cin

s1

∪ Cout
s1

) ≤ w(Cs1
) < w(C1). Hence  w(Cin

s1
) <

1

2
w(C1), and 

then 𝑤(C2) = 𝑤(Cin
s1

∪ Ć )  ) <
1

2
w(C1) + w(C1) =

3

2
 w(C1) 

By proposition (5-1): w(C) =
1

2
∑ w(Ci)

3
i=1 ≥

3

2
 w(C1) > w(C2) 

Then the cut C2 separates the graph into 3 connected components and have a weight less 

than the optimal one, it’s a contradiction.                                                                   □ 

 

The following algorithm is due to Goldschmidt and Hochbaum (1994). 

5.1.3.  The min k- cut Algorithm for fixed k (k=3) 

Input: A graph G = (V, E), and k=3. Let 𝑊° = ∞. 

Step 1: 

For i (1 ≤ 𝑖 ≤ |𝑉|), let 𝑉1 = {𝑣𝑖}, such that 𝑣𝑖 ∈ 𝑉,  i.e., we enumerate all subset of V 
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having one vertex. Let 𝑤1 be the total weight of the incident edges in 𝑣𝑖, and 𝑤2 be the 

min 2–cut on �̅�1. If  𝑤1+𝑤2 < 𝑊°, then put   𝑊° = 𝑤1+𝑤2 , (it makes 3 components  

𝑉1, 𝑉2, 𝑉3 , and | 𝑉1| = 1) 

else do step 2. 

Step 2: 

Let 𝑤3 be the weight of maximum min (S-T) cut such that |𝑆| = 2, and |𝑇| = 2, i.e. we 

enumerate all subset of V have two vertices. Pick S= {𝑠1, 𝑠2} and T= {𝑡1, 𝑡2} such that 

min(S-T) cut have a maximum source set 𝑉𝑠. Let 𝑤4 be the weight of a min (𝑡1−𝑡2)-cut 

in the set �̅�𝑠 = 𝑉𝑡. If  𝑤3+𝑤4 < 𝑊°, then put  𝑊° = 𝑤3+𝑤4 , (it makes 3 components  

𝑉1, 𝑉2, 𝑉3 ). 

Output: 𝑊° the total weight of min 3-cut, and the components 𝑉1, 𝑉2, 𝑉3. 

 

Running time complexity: 

Let G = (V, E) be an undirected graph. We know that the running time for min 2-

cut is T(n,m) such that |V| = n, and |E| = m. (The best running time for min 2-cut 

is O(𝑚𝑛), it is due to Orlin (2013)). 

In step 1, to pick 𝑣𝑖 from V we have n ways, then the complexity to find  ( 𝑤1 +   𝑤2) is 

O(n T(n,m)), and in step 2, to pick S and T from V we have (𝑛
2
)(𝑛−2

2
), i.e., 

(
𝑛(𝑛−1)

2

(𝑛−2)(𝑛−3)

2
) ways, then the complexity to find  ( 𝑤3 +   𝑤4) is O(𝑛4 T(n,m)). 

Then the whole complexity of the algorithm is : O( (𝑛4 + n)T(n,m)) =O( 𝑛4T(n,m)). 

5.1.4. The min k- cut Algorithm for fixed k (k > 3) 

Input: graph G = (V, E), and k > 3.  Let 𝑊° = ∞. 

Step 1: 

For i (1 ≤ 𝑖 ≤ 𝑘 − 3), let 𝑉1 = {𝑣1, … , 𝑣𝑖} such that 𝑣𝑖 ∈ 𝑉,  i.e. we enumerate all subset 

S of V have i vertices, let 𝑤1 be the weight of the min (S-T) cut partition G in to 𝑉𝑠 and 𝑉𝑡 

,let 𝑤2 be the min(k-1) – cut on �̅�𝑠. If  𝑤1+𝑤2 < 𝑊°, then put   𝑊° = 𝑤1+𝑤2 , (it makes k 

components  𝑉1, … , 𝑉𝑘 , and | 𝑉1| = 𝑖) 
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else do step 2. 

Step 2: 

Let 𝑤3 be the weight of maximal min (S-T) cut such that |𝑆| = 𝑘 − 2, and |𝑇| = 𝑘 − 1, 

i.e. we enumerate all subset of V have [(k-1) + (k-2) =(2k-3)] vertices pick S=

{𝑠1, . . . , 𝑠𝑘−2} and T= {𝑡1, … , 𝑡𝑘−1} that the min(S-T) cut have maximum source set 𝑉𝑠. 

Let 𝑤4 be the weight of min (𝑘 − 1)-cut in the set �̅�𝑠 = 𝑉𝑡. If  𝑤3+𝑤4 < 𝑊°, then 

put  𝑊° = 𝑤3+𝑤4 , (it makes k components  𝑉1, … , 𝑉𝑘 ). 

Output: 𝑊° the total weight of min k-cut, and the components 𝑉1, … , 𝑉𝑘. 

Running time complexity: 

In step 1, to pick 𝑉1 from V, we have(𝑛
1
) + (𝑛

2
) + ⋯+ ( 𝑛

𝑘−3
)  ways, then the complexity 

to find  ( 𝑤1 +   𝑤2) is O (n𝑘−3(T(n,m) + R(k − 1))). In step 2, to pick S and T from V, 

we have ( 𝑛
𝑘−2

)(𝑛−(𝑘−2)

𝑘−1
) = ( 𝑛

2𝑘−3
) ways, then the complexity to find  ( 𝑤3 +   𝑤4) is 

O(n2𝑘−3(T(n,m) + R(k − 1))). 

Then the whole complexity of the algorithm is: 

R(k) = O((n2𝑘−3 + n𝑘−3)(T(n,m) + R(k − 1))) ≈ O(n2𝑘−3(T(n,m) + R(k − 1))). 

Proposition (5-2): 

The running time of the given algorithm is O(n𝑘2
). 

Proof: 

The whole running time is: R(k) = O(n2𝑘−3(T(n,m) + R(k − 1))). 

R(k − 1) = O(n2(𝑘−1)−3(T(n,m) + R(k − 2))), 

R(k − i) = O(n2(𝑘−𝑖)−3(T(n,m) + R(k − (i + 1))), 

then R(k) = O(n2𝑘−3T(n,m) + n2𝑘−3n2(𝑘−1)−3(T(n,m) + R(k − 2))). 

R(k) = O(n2𝑘−3T(n,m) + n2𝑘−3n2(𝑘−1)−3T(n,m) + n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3(T(n,m) + R(k − 3))). 

R(k) = O((n2𝑘−3 + n2𝑘−3n2(𝑘−1)−3 + n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3)T(n,m) +

n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3R(k − 3))). 

R(k) = O((n2𝑘−3 + n2𝑘−3n2(𝑘−1)−3 + ⋯+ n2𝑘−3 …n2(𝑘−(𝑘−4))−3)T(n,m) + R(3)), 

since R(3) =  O( 𝑛4T(n,m)), then 
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R(k) = O ((n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3 … n5)T(n,m) + 𝑛4T(n,m)), 

n2𝑘−3n2(𝑘−1)−3n2(𝑘−2)−3 … n5 = n2𝑘−3+2(𝑘−1)−3+..+5 = n(2𝑘−3)(𝑘−3)−2(1+2+⋯+(𝑘−4)) 

Let 𝛽 = (2𝑘 − 3)(𝑘 − 3) − 2(1 + 2 + ⋯+ (𝑘 − 4)) 

𝛽 = (2𝑘 − 3)(𝑘 − 3) − 2(
(𝑘 − 4)(𝑘 − 3)

2
)) = (𝑘 − 3)(2𝑘 − 3 − 𝑘 + 4) 

𝛽 = (𝑘 − 3)(𝑘 + 1) = 𝑘2 − 2𝑘 − 3 

R(k) = O (𝑛𝑘2−2𝑘−3T(n,m) + 𝑛4T(n,m)) 

R(k) = O ((𝑛𝑘2−2𝑘−3 + 𝑛4)T(n,m)), 

R(k) = O ((𝑛𝑘2−2𝑘+1)T(n,m)) = O(n𝑘2
)                                                                  □ 

5.1.5. The development of polynomial algorithms 

Goldschmidt and Hochbaum (1994) give the first polynomial algorithm to solve MKCP 

for a fixed k by finding a minimum (S-T) cut with maximal source set, the core set S has 

at most k-2 vertices; and the terminal set T has at most k-1 vertices such that  𝑉𝑠 ⊆ 𝑉1 and 

𝑉𝑡 ⊆ �̅�1, and by use the size of source and sink sets , denoted the min (S-T) cut  by: 

min(1, k-1) cut .The complexity of this algorithm is O(𝑛𝑘2
𝑇(𝑛,𝑚)). If we modified the 

bound of sizes of core set S and the terminal set T we will get better polynomial 

algorithm. 

Kamidoi et al. find a minimum (S-T) cut with maximal source set, the core set S has at 

most k-2 vertices; and S is sub set of 𝑉𝐷 = {𝑉1, … , 𝑉𝑑  }, 𝑑 =  ⌈(𝑘 − √𝑘)/2⌉ − 1 ; and the 

terminal set T has at most k-2 vertices, such that  𝑉𝑠 ⊆ 𝑉𝐷 and 𝑉𝑡 ⊆ �̅�𝐷. By using the size 

of source and sink sets , we denote min (S-T) cut by: min (d, k-d) cut . The complexity of 

this algorithm is O (𝑛
4𝑘

(1−1.71/√𝑘)
−34

𝑇(𝑛,𝑚)). 

Xiao et al. (2011), find a minimum (S-T) cut, the core set S has at most 2 ⌊
𝑘

2
⌋ vertices; and 

S is sub set of 𝑉𝐷 = {𝑉1, … , 𝑉𝑑  }, 𝑑 =  ⌊
𝑘

2
⌋ ;and the terminal set T has at most k-1 vertices, 
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such that  𝑉𝑠 ⊆ 𝑉𝐷 and 𝑉𝑡 ⊆ �̅�𝐷, denoted the min (S-T) cut  by: min(⌊
𝑘

2
⌋, k-⌊

𝑘

2
⌋) cut . The 

complexity of this algorithm is O (𝑛4𝑘−𝑙𝑜𝑔𝑘𝑇(𝑛,𝑚)). 

 

 
Goldschmidt and 

Hochbaum 
Kamidoi et al. Xiao et al. 

Bounds on 

|𝑺| and |𝑻| 
k-2 and k-1 k-2 and k-2 2 ⌊

𝑘

2
⌋ and k-1 

The min (S-

T) cut 
(1, k-1) cut 

(d, k-d) cut 

𝑑 =  ⌈(𝑘 − √𝑘)/2⌉ − 1 
(⌊

𝑘

2
⌋, k-⌊

𝑘

2
⌋) cut 

Complexity 

of the min k-

cut problem 

O (𝑛𝑘2
𝑇(𝑛,𝑚)) O (𝑛

4𝑘

(1−1.71/√𝑘)
−34

𝑇(𝑛,𝑚)). O (𝑛4𝑘−𝑙𝑜𝑔𝑘𝑇(𝑛,𝑚)). 

5.2. Minimum k-cut in forests 

The connectivity number is the minimum number of vertices, whose removal makes graph 

disconnected or trivial. It is denoted 𝜆(𝐺). The connectivity number of a disconnected 

graph is 0, and the connectivity number of a tree is 1. 

5.2.1. The min k-cut for a tree 

Lemma (5-1): 

If we remove (n-1) edges from a tree, we will get n connected components, where n is the 

number of vertices for the considered tree. 

Proof: 

Table (5-1).  Development of polynomial algorithms for min k- cut problem for a 

fixed k 
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We prove the lemma by induction on n. 

1- When n = 2 (if we remove one edge e = uv from a tree), we will get two connected 

components. 

2- Suppose the lemma is true when n = k-1, then if we remove (k-2) edges from a tree we 

will get k-1 connected component, each one is a subtree, and if we remove one extra 

edge from one of them we will get k connected components. 

 

Lemma (5.2): 

Let T= (V, E) be a tree, with nonnegative edge weights. If we sort edges by weight 

function (w (e1) ≤ w(e2) ≤ ⋯  ≤ w(en−1)) then a minimum k -cut is the set of edges 

C= {𝑒1, 𝑒2, … , 𝑒𝑘−1}. 

Proof: 

Suppose C~ is a minimum k- cut with w(C~) < w(C). Thus C~ must have less than k-1 

edges. It follows, by using Lemma 5.1, C~ forms less than k components, and this is a 

contradiction. 

 

Corollary (5-1) 

The minimum k-cut problem in trees is solvable in polynomial time. 

5.2.2. The min k- cut problem for forests 

 

Proposition (5-3) 

Let t be the number of the connected component on a forest. 

For any n ≥  𝑡, if we remove (n-t) edges from a forest we will get n connected 

components. 

Proof: 

We will prove this proposition by induction on n. 

Suppose that this is true when n=k-1, then if we remove (k-t-1) edges from a forest we will 

get k-1 = n connected components, each one is a tree, and if we remove one extra edge 

from one of them we will get k connected components, and the total edges we have 
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removed is (k-t-1) +1 = (k-t) edges                                                                        □ 

 

Lemma (5.3) 

Let F= (V, E) be a forest, with nonnegative edge weights. If we sort edges by weight 

function (w (e1) ≤ w(e2) ≤ ⋯  ≤ w(ek−t) ≤ w(e|V|)) then a minimum k -cut is the set 

of edges C= {𝑒1, 𝑒2, … , 𝑒𝑘−𝑡}, where t is the number of connected components of F. 

Proof 

Suppose C~ is minimum k- cut with w(C~) < w(C). Thus C~ must have less than k-t edges. 

It follows then, by lemma 5.2, C~ forms less than k components, and this is a contradiction. 

5.3. Special Instances of Multiway cut problem 

We will present some basic definitions necessary for the proof of the main result of this 

section. 

Coloration: 

Let G = (V, E) be a simple graph, and a set of colors N={1,2, … , 𝑟}. A map  χ̃ : V→ N is a 

vertex coloration on G. 

Partial Coloration: 

Let G = (V, E) be a simple graph, a set of colors N={1,2, … , 𝑟}, and let T⊆ V. A map χ: 

T→ N is a partial coloration. 

A partial coloration defines a partition of T by Ti = {u∈T: χ(u)=i}. 

Color dependent weight function: 

Color dependent weight function W: E→N∪ {0} determine for every edge uv and colors i 

, j the positive integer number w(uv; i, j) meaning the weight of edge uv, in which the 

color of u is i and the color of v is j. 

We suppose the following in color dependent weight function: 

• If u and v have the same color i then the color weight of edge uv is zero. 

i.e. w (uv; i,i) = 0 

• In undirected graphs, the weight of edge uv is equal to the weight of edge vu. 
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i.e. w(uv;i,j) = w(vu;j,i) 

In color independent weight function: for any edge uv ∈ E there is no effect of color on 

the edge weight, w(uv; i,j) = w(uv; a,b) such that i ≠ a, j ≠ b. 

Color-Changing edge: 

In the colouration  χ̃, an edge uv is color-changing if  χ̃(u) ≠ χ̃(v). 

Cut in graph coloring: 

The set of color-changing edge form cut. 

Color-Changing path: 

In the colouration  χ̃, a path P is color-changing if  χ̃(s(P)) ≠ χ̃(t(P)) 

(s(P) is starting point of path and t(P) is the end) and P has no internal vertex. 

Changing of coloration: 

Let graph G= (V, E) and define color dependent weight function on G, the changing 

number of the coloration χ is the sum of weights of color-changing edge 

change (G, χ̃) = ∑ 𝑤(𝑢𝑣;𝑢𝑣∈𝐸 𝑖, 𝑗) ; χ̃(u) = i, χ̃(v) = j. 
 

Multiway cut problem: 

The multi way cut problem for the color weight independent function is the length of the 

pair (G, χ) and defined by: 

L (G, χ) = minimum change (G,χ̃). 

An optimal coloration is a coloration χ̃ such that change (G, χ̃)=  L (G, χ). 

Since the multiway cut is NP-hard problem, we will present a lower bound for the 

optimal solution (Erdős et al. 1994). 

5.3.1. Lower bound of multiway cut problem 

Let G = (V, E) be simple graph, and χ: T→ N be a partial coloration, T⊆ V. let w be a 

color dependent weight function. For any collection 𝓟 of color changing path 

define ni(uv; 𝓟) = # {p ∈ 𝓟: uv ∈ p; χ(t(p) = i}. 

Definition: 

Path packing (𝓟) is a family of color-changing path such that: for all edge uv and for all 
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color i ≠ j, ni(uv; 𝓟) + nj(vu; 𝓟) ≤ w(uv; j,i) 

Ҏ (G, χ) = maximum |𝒫| 
 

Theorem 5.3: 

For any graph, G and partial coloration χ, we have: 

Ҏ (G, χ) ≤ L (G, χ) 

Proof: 

Let χ̃: V→ N be an optimal coloration and 𝓟 be path packing. 

Define function f: 𝓟 →E such that f(p) = e (e: is the last color-changing edge in path p in 

optimal coloration χ̃ ) 

For any color-changing edge e = uv: 

# {p ∈ 𝓟: f(p) = 𝑒} ≤ ni (uv; 𝓟) + nj(vu; 𝓟) ≤ w(uv; j,i). 

# {p ∈ 𝓟: f(p) = 𝑒} ≤ w (uv; j,i). 

∑ # {𝑝 ∈ 𝓟: 𝑓(𝑝) = 𝑒}𝑒∈𝐸  ≤ ∑ 𝑤(𝑢𝑣;  𝑗, 𝑖)𝑒∈𝐸 . 

∑ # {𝑝 ∈ 𝓟: 𝑓(𝑝) = 𝑒} = |𝒫|𝑒∈𝐸  ≤ ∑ 𝑤(𝑢𝑣;  𝑗, 𝑖)𝑒∈𝐸 = 𝐜𝐡𝐚𝐧𝐠𝐞(G, χ̃). 

|𝒫| ≤ 𝐜𝐡𝐚𝐧𝐠𝐞(G, χ̃). 

since χ̃  is an optimal coloration then change (G, χ̃) = L (G, χ) 

Max |𝒫| ≤ 𝐜𝐡𝐚𝐧𝐠𝐞(G, χ̃). 

Ҏ (G, χ) ≤ 𝐜𝐡𝐚𝐧𝐠𝐞(G, χ̃).                                                                                                    □ 

5.3.2. Multi way cuts in trees 

 

Definition: 

In put: Given a tree T = (V, E) with n vertices, nonnegative edge weights and a set of 

terminals S = {s1, s2, …, sk}, where S ⊆V. 

Question: Find a minimum total weight subset E′ ⊆ E such that its removal from the tree 

separates vertices in to k components each one have one terminals si. 

Erdős et al. (1994) give a polynomial time algorithm to find multiway cut (in trees). 

Coloration Algorithm: 
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Let T = (V, E) be a tree with n vertices, and a set of terminals S=L(T) (set of leaves on T), 

and χ: S →C be a partial coloration. let w be a color dependent weight function. 

Define Penalty function: Pen:V→(𝒩 ∪ ∞)𝑟, if the color of v is i, Peni(v) is the length of 

subtree partition by v from the root . 

Step1: 

Determine pen(v) for every vertex in tree (start from leaves to the root): 

• For every v∈ L(T); let peni(v) ={
0       if v ∈ Si,

∞                else,
 

• For every v∉ L(T); and peni(v) is not computed yet and every pen (son (v)) is 

known; let peni(v)= ∑ minj=1,…,r{ w(uv; ji)  +  𝐩𝐞𝐧j(v)}u∈son(v)  

Step2: 

Determine an optimal coloration χ̃ of tree. (start from root to the Father (leaves)) 

• χ̃(root) = i, such that i minimizes peni(root). 

• For vertex v that not determinant χ̃(v), let Father (v) = u, and χ̃(u) is known, then: χ̃(v) 

= i, such that i minimizes {w (vu; i, χ̃(u)) + peni(v)}. 

• χ̃(leave) = χ(leave). 

Running time complexity: 

The running time complexity is O (n×r2× (max weight)), since in every step we calculate 

r2 sums, take the minimum, and around 2n steps. 

Example: 

Find multiway cut on tree, the set of terminals are all leaves and the edges and their 

weights are as follow: 

w(mx)=6, w(xy)=2, w(xz)=6, w(yL8) =5, w(yL7) =5, w(zL6) =7, w(zL5) =2, w(uL4) =1, 

w(uL3) =4, w(uL2) =5, w(vL1) =2, w(vu) =1, w(mv) =1. (Figure 6.1). 

 

Step1: 

Determine pen(v) for every vertex in tree; first compete penalty for all terminals: 
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pen(L2) = (∞, 0,∞,∞,∞,∞,∞,∞), , pen(L1) = (0,∞,∞,∞,∞,∞,∞,∞) 

pen(L4) = (∞,∞,∞, 0,∞,∞,∞,∞), , pen(L3) = (∞,∞, 0,∞,∞,∞,∞,∞) 

pen(L6) = (∞,∞,∞,∞,∞, 0,∞,∞), , pen(L5) = (∞,∞, ∞,∞, 0,∞,∞,∞) 

pen(L8) = (∞,∞,∞,∞,∞,∞,∞, 0), , pen(L7) = (∞,∞, ∞,∞,∞,∞, 0,∞) 

Second compute penalty from father leaves to the root: 

pen(v) = (6,7,8,8,8,8,8,8), , pen(u) = (10,5,6,9,10,10,10,10) 

pen(y) = (10,10,10,10,10,10,5,5), , pen(𝑧) = (9,9,9,9,7,2,9,9) 

pen(𝑚) = (21,22,22,22,22,16,20,20), , pen(x) = (15,15,15,15,15,9,13,13) 

Step2: 

Determine an optimal coloration χ̃ of tree from root to leaves. (Figer 6.2). 

χ̃(m) =6, χ̃(v) =1, χ̃(x) =6, χ̃(L1) =1, χ̃(L2) =2, χ̃(L3) =3, χ̃(L4) = 4, χ̃(z)=6, χ̃(y)=7, χ̃(L5) 

=5, χ̃(L6) =6, χ̃(L7) =7,  χ̃(L8) = 8. 

 

 

 

Figure (5-9): Example of a T tree with 

weight edge 

 Optimal coloration of T 
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5.3.3. Particular cases of multiway cut in trees 

First case: 

In put: Given a tree T = (V, E), color dependent weights function and a set of terminals 

S; where S ⊊V. 

Question: Find multiway cuts. 

In this case, we have a set of leaves U which do not belong to the set of terminals. 

To solve this problem, we do the followings: 

Step1: remove all leaves which are not terminals then find the optimal coloration for all 

vertices (V- U). 

Step2: return the leaves U which we deleted and color this leaves with father color i.e. 

For every u ∈U; χ̃ (u) = χ̃ (Father(u)). 

 

 

 

 

Figure (5-10) multiway cut on tree, first case 

Step2 

Step1 
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Second case: 

In put: Given a tree T = (V, E), colour dependent weights function and a set of terminals 

S; such that S= L(T) ∪ {v1, v2, … , vb}.(𝑣𝑖 is an internal vertex on the tree). 

Question: Find multiway cut. 

To solve this problem: 

step1: partition the tree on the terminals  {v1, v2, … , vb}, which are not leaves then we will 

get b+1 components, and for each one, we will find the optimal coloration. 

Step2: glue the components on the {v1, v2, … , vb}. 
 

 

Figure (5-11) multiway cut on tree, second case 

Step1 

Step2 



56 

 

 

Third case: 

In put: Given a tree T = (V, E), colour dependent weights function and a set of terminals 

S ⊆ V. 

Question: Find multiway cut. 

In this case, the set of terminals do not have any condition; it can contain some inner 

vertices and not necessary all leaves are terminals. 

Step1: remove all leaves which are not terminals. 

Step2: partition the tree on the terminals which are not leaves, and for each component 

find the optimal coloration. 

Step3: joined the components on the terminals which are not leaves. 

Step4: add the removed leaves and colour it with father’s colour. 
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Chapter 6: Approximation Algorithms 

 

In this chapter, we describe two approximation algorithms for MKCP. 

6.1. Approximation Algorithms for min k-cut 

 

6.1.1. Greedy algorithm 

The idea of this algorithm is to separate G into two components, and then separate one of 

the two components into two components (we get three components), and so on, until the 

process generates k components. In each step, we enumerate all possible cuts and select 

the one having the smallest weight. This algorithm is due to Saran and Vazirani (1995). 

6.1.2. Algorithm EFFICIENT 

Consider the cut C on a graph G, and let Comps(C) be the number of connected components 

in G induced by removing the cut C. If uv is an edge on G, we denote by Cuv be a min uv-

cut separating the vertices u and v. 

Phase 1. Find the cut Cuv= min uv-cut for every edge uv in G. 

Phase 2. Order the cuts on phase 1 as sequence (𝐶1, 𝐶2 , … , 𝐶𝑚), by the weight function 

such that (w (C1) ≤ w(C2) ≤ ⋯  ≤ w(C𝑚)). 

Phase 3. Create a k-cut C by selecting cuts from sequence (C1, C2 , … , Cm) such that C =

⋃ Ci
b
i=1  , (2 ≤b≤ m), and then isolate any cut Cj from {C1, C2 , … , Cb} that satisfies Cj ⊆ 

⋃ Ci
j−1
i=1 . 

Note: 

• In phase 1, to find the cut Cuv= min uv-cut, we use the max -flow min -cut theorem, 

and to find the set {C1, C2 , … , Cm} we used m times this theorem. 

• Let C be a k- cut producer from this algorithm generating more than k components, 
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we can remove some edges from C until creating a k cut. 

• Now every edge uv in G is contained in the cut Cuv , then  ⋃ Ci = Em
i=1 , and it creates 

n components. 
 

Lemma 6.1: 

If  {C1, C2 , … , Cd} is a k- cut producer from this algorithm, then for any s; 1 ≤ 𝑠 < 𝑑, we 

have: Comps (⋃ 𝐶𝑖
𝑠
𝑖=1 ) < Comps (⋃ 𝐶𝑖)

𝑠+1
𝑖=1  

Proof: 

There exists at least one edge uv in the set  Ci+1 − ⋃ Ci
s
i=1  since Ci+1 ⊈ ⋃ Ci

s
i=1 , and since 

the edge uv does not belong to the cut ⋃ Ci
s
i=1  then it is a self-edge in the graph induced by 

the cut ⋃ Ci
s
i=1 , the end points u,v belong to the same connected component, since uv 

belongs to the cut Ci+1 then it is a cross-edge in the graph induced by the cut ⋃ 𝐶𝑖
𝑠+1
𝑖=1 , the 

end points u, v belong to the different component. 

Then the graph induced by the cut ⋃ 𝐶𝑖
𝑠+1
𝑖=1  have more connected components.     □ 

 

We can develop the algorithm EFFICIENT by using Gomory-Hu trees. For any graph, G 

= (V, E), there exists a set of |𝑉|-1 cuts, that contain a min cut between every pair of 

vertices in G, then to find the cuts {C1, C2 , … , Cm} we need only (n-1) max flows. 

6.1.3. Algorithm EFFICIENT with Gomory-Hu trees 

Phase 1. Compute a Gomory-Hu tree in G. 

Phase 2. Order the cuts on T as a sequence (ℎ1, ℎ2 , … , ℎ𝑛−1), by the weight function (w 

(h1) ≤ w(h2) ≤ ⋯  ≤ w(h𝑛−1)). 

Phase 3. Create a k-cut C by selecting cuts from the sequence (ℎ1, ℎ2 , … , ℎ𝑛−1), such that 

b is the minimum number satisfying Comps(⋃ ℎ𝑖) ≥ 𝑘𝑏
𝑖=1 . 

6.1.4. Approximation factor for the k-cut problem 

Union property: 

Let G be a graph and the sequence C = (C1, C2 , … , Cr) be all possible cuts in G, and for 
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every i and j, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 , w(Ci) ≤ w(Cj). And let  H = (h1, h2 , … , hl) be any 

subsequence cuts of C. The cut H satisfies union property if for every k, 1 ≤ 𝑘 ≤

index(hl), if  h1 ∪ h2 ∪ …∪ hq =  C1 ∪ C2 ∪ …∪ Ck , such that hq is the last cut in the 

sequence H with index(hq) ≤ 𝑘. 

Lemma 6.2: 

If the cuts h1, h2 , … , hl are induced by the algorithm EFFICIENT, then these cuts satisfy 

union property. 

Proof: 

The proof is by contradiction, let (C1, C2 , … , Cr) be all possible cuts in G, assume the cuts 

(h1, h2 , … , hl) be subsequence from(C1, C2 , … , Cr), and it induced by Algorithm 

EFFICIENT, assume it do not satisfies union property, then there exist k , 1 ≤ 𝑘 ≤

index(hl), such that    h1 ∪ h2 ∪ …∪ hq ≠  C1 ∪ C2 ∪ …∪ Ck                                    (6-1)                    

and hq is the last cut with index(hq) ≤ 𝑘. 

Let index ((hq+1) = j , and since w(hq) < w(hq+1), then w(Ck) < w(Cj), and from 

equivalents (6-1), hq ≠  Ck, and 

 h1 ∪ h2 ∪ …∪ hq =  C1 ∪ C2 ∪ …∪ Ck−1.                                                                  (6-2) 

Suppose the edge e belong to the cut Ck − [C1 ∪ C2 ∪ …∪ Ck−1], then  𝑒 ∉ C1 ∪ C2 ∪ …∪

Ck−1], and by (6-2), e ∉  h1 ∪ h2 ∪ …∪ hq. 

Let Ce be a min cut separate the endpoint of e, and since 𝑒 ∈ Ck, then  w(Ce) ≤ w(Ck), 

and w(Ck) < w(hq+1), then w(Ce) < w(hq+1), then e ∈  h1 ∪ h2 ∪ … ∪ hq, it is 

contradiction.                                                                                                                     □ 

Theorem 6.1: 

Algorithm EFFICIENT finds a k-cut having weight within a factor of (2 −
2

𝑘
)of the 

optimal. (Saran and Vazirani (1995). 

Proof: 

Consider an undirected graph G = (V, E), and let C be an optimal min k-cut in G that 



60 

 

partitions G into k components {𝑉1, 𝑉2, … , 𝑉𝑘}, Ci ⊆ C be the cut separating 𝑉𝑖 from �̅�𝑖  (1≤

𝑖 ≤ k). Hence 𝐶 = ⋃ 𝐶𝑖
𝑘
𝑖=1 , and sort the cut 𝐶𝑖 by weight function, w(C1) ≤ w(C2) ≤ ⋯ ≤

w(𝐶𝑘), and let H be the k -cut induced by Algorithm EFFICIENT, and  H = ⋃ hi
l
i=1  ( l ≤

k − 1). 

By proposition (5-1)∶ w(C) = w(⋃ Ci) =
1

2

k
i=1 ∑ w(Ci)

k
i=1 , then: 

2w(C) = ∑ w(Ci)
k
i=1 ,                                                                                                    (6-3) 

since w(Ci) ≤ w(Ck) for every i then: 2w(C) = w(C1) + w(C2)+ . . +w(Ck) ≤ k w(Ck), 

then:  
2

𝑘
w(C) ≤ w(Ck).                                                                                                  (6-4)  

Since 𝑙 ≤ 𝑘 − 1, and by lemma (6-2) the cuts (ℎ1, . . , ℎ𝑙) satisfies union property, 

∑ 𝑤(ℎ𝑖) ≤𝑙
𝑖=1 ∑ 𝑤(𝐶𝑖)

𝑘−1
𝑖=1 , then 

𝑤(H) = w(⋃ hi) ≤ ∑ 𝑤(ℎ𝑖) ≤𝑙
𝑖=1

l
i=1 ∑ 𝑤(𝐶𝑖)

𝑘−1
𝑖=1  , 

𝑤(H) ≤ ∑ 𝑤(𝐶𝑖) = ∑ 𝑤(𝐶𝑖) + 𝑤(𝐶𝑘
𝑘−1
𝑖=1

𝑘−1
𝑖=1 ) − 𝑤(𝐶𝑘) = ∑ 𝑤(𝐶𝑖) − 𝑤(𝑘

𝑖=1 𝐶𝑘), 

𝑤(H) ≤ ∑ 𝑤(𝐶𝑖) − 𝑤(𝑘
𝑖=1 𝐶𝑘) , from (6-3) and (6-4) 

𝑤(H) ≤ 2𝑤(𝐶) −
2

𝑘
𝑤(𝐶), 

𝑤(H) ≤ 2 (1 −
1

𝑘
)𝑤(𝐶)                                                                                                     □ 

Running time complexity: 

Let G = (V, E) be an undirected graph, If we assume that the running time for max flow is 

T(n,m) such that |V| = n, and |E| = m. (The best running time for min cut is O(𝑚𝑛), it is 

due to Orlin. (2013). 

The running time of the algorithm EFFICIENT with Gomory-Hu tree is O((n-1) T(n,m)) 

and if T(n,m) = O(𝑚𝑛) then our algorithm has running time O(𝑚𝑛2). 

6.1.5. Algorithm SPLIT 

Phase 1: Pick the smallest cut split the graph in to two components, and remove the edges 

of this cut from graph. 

Phase 2: In the present graph, again pick the smallest cut split one of the component in to 
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two components, and remove the edges of this cut from graph. 

Repeat this process until the present graph has k connected components. 

The different between SPLIT and EFFICIEN algorithms that SPLIT algorithm picks 

smallest cut in the present graph and EFFICIEN algorithm picks smallest cut in the initial 

graph. 

Running time complexity: 

If the graph G has order n, then to generate a new component, we need (n-1) max flows, 

and to create k components we need (k-1) split, then the running time of SPLIT algorithm 

is O (k n (T(n,,m)). 

Algorithm SPLIT finds a k-cut having weight within a factor of (2 −
2

𝑘
) of the optimal. 

(Saran and Vazirani (1995). 

6.1.6. Lower bound 

Theorem (6-2) 

The min k cut found by EFFICIENT and SPLIT algorithms lies in the range 

(1 − ε) (2 −
2

k
) optC ≤ optB ≤ (2 −

2

k
) optC 

Such that 0 ≤ 휀 ≤ 1, and C is the optimal k-cut and B is the k-cut found by EFFICIEN or SPLIT 

algorithms 

Proof: 

Consider the graph G = (V, E), of order =(2k-1), let 𝑉 = {𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑦𝑘+1, … , 𝑦2𝑘−1}, 

and let the weight function as figure (6-1). 
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EFFICIEN and SPLIT algorithmsEFFICIEN and SPLIT algorithms
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γ
 

γ
 

γ
 

 

 

Note that 𝛿 = 2𝛾(1 − 휀), and 휀 > 0. 

The min k-cut, C, is the cut of all edge of weight 𝛾, then 𝑤(𝐶) = 𝑘𝛾 . 

The min k-cut, B, is the cut of all edge of weight 𝛿, then 𝑤(𝐵) = 𝛿(𝑘 − 1). 

𝑤(𝐵) = 𝛿(𝑘 − 1) = 2𝛾(1 − 휀)(𝑘 − 1), 

𝑤(𝐵) = 𝛾𝑘(1 − 휀)
2

𝑘
(𝑘 − 1) = 𝑤(𝐶)(1 − 휀) (2 −

2

𝑘
).                                                      □ 

6.2. Approximation Algorithms for the variants of the min k-cut 

6.2.1. Multiway Cut Problem 

Dahlhaus and Johnson (1994) give a 2 (1 −
1

𝑘
) approximation algorithm for the multiway 

cut problem; the best approximation algorithm is O(log|k|)given by Garg et al. (1996). 

6.2.2. The Minimum Steiner k-Cut Problem 

Chekuri et al. (2004) give two approximation algorithms for the problem: a greedy one 

with a 2 (1 −
1

𝑘
)-approximation based on Gomory-Hu trees, and a 2 (1 −

1

|𝑇|
)-

approximation based on LP rounding. 
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6.2.3. Capacitated Max k-Cut Problem 

• For un equal capacities: Feige et al. (2001) give an approximation algorithm with a 

lower bound of  
1

2
+ 휀 when k = 2, and 휀 is a universal constant. 

• For equal capacities: Andrson (1999) give an algorithm that obtains a 1 −
1

𝑘
+ Ω(

1

𝑘3
) 

performance guarantee. 

• For general (equal or un equal capacities): Ageev et al. (2001) give a 
1

2
 approximation 

algorithm. 

6.2.4. Multiway Un Cut Problem 

Langberg et al. (1970) give a 0.8535-approximation algorithm for multiway uncut use 

linear programming relaxation. ( linear programming relaxation of a 0-1 integer program 

is the problem that arises by replacing the constraint that each variable must be 0 or 1 by a 

weaker constraint, that each variable belong to the interval [0,1]). 

6.2.5. k-route cut problem 

Chuzhoy et al. (2011) give a 𝑂(𝑘𝑙𝑜𝑔𝑟)
3

2-approximation algorithm for k-route cut. 

6.2.6. Directed multiway cut problem 

The best approximation for this problem is O(min(√n, opt)) by Gupta (2003). 

Kortsarts et al. (2005) gives an 𝑂(𝑛
2

3)- approximation algorithm with running time O (nm2). 

 

 

  

https://en.wikipedia.org/wiki/0-1_integer_programming
https://en.wikipedia.org/wiki/Interval_(mathematics)
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Chapter 7 : Conclusion 

 

Dahlhaus et al. (1992) proved that the Minimum k-cut optimization problem is NP-hard. 

Saran and Vazirani (1995) find a 2 (1 −
1

𝑘
) −approximation algorithm, with running time 

O(n − 1) max flow, based on Gomory- Hu trees. 

For a fixed k, Xiao et al. (2011) give a polynomial algorithm with a running time 

𝑂(𝑛4𝑘) max flow. 

Future investigations can be studying the minimum k-cut problem in graphs other than 

trees or forests, as outerplanar graphs or series parallel graphs. If these studies keep the 

NP-hardness of the problem, approximations algorithms will be a motivated approach for 

this problem. 
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24 ≥ k-Card Cut 

16 Approximation algorithm 

21 Barahona Multi Cut Problem 

12 Big O 

4 Bipartite graph 

24 Capacity Max k-Cut 

25 Capacity Max k-Un Cut 

23 Capacity Min k-Cut Problem 

6 Capacity of an edge 

13 Class Co-NP 

13 Class NP 

12 Class P 

4 Clique 

50 Color changing edge 

50 Color changing path 

49 Color dependent weight function 

49 Coloration 

4 Complete graph 

12 Computational complexity 

4 Connected component 

5 Connected graph 

47 Connectivity number 

20 Convex hull 

36 Core set 
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4 Cross-edge 

5 Cut 

6 Cut in directed graph 

50 Cut in graph coloring 

3 Degree of vertex 

3 Directed graph 

25 Directed Multi Cut 

4 Disconnected graph 

3 Finite graph 

7 Flow 

5 Forest 

3 Graph  

4 Hamilton cycle 

32 Image Segmentation Problem 

6 In cut 

24 k-card Cut 

5 k-cut 

25 k-Route Cut 

63 Linear programming relaxation 

12 Linear time algorithm 

3 Link 

3 Loop 

21 Max k-Cut Problem 

37 Maximal min (S-T) Cut 

4 Maximal qlique 

8 Maximum flow problem 

36 Min (S-T) Cut 
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11 Minimum cut problem 

17 Minimum k-cut problem decision version 

17 Minimum k-cut problem optimization version 

23 Minimum Multiway Cut Problem 

23 Minimum Steiner k- Cut Problem 
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6 Net work 

15 NP- hard problem 
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51 Pantly function 
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14 Polynomial time reduction 

12 Polynomial-time algorithm 

20 Ratio Cut Problem 

5 Self-edge 
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