
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Modeling of Infectious Diseases  
    
 
 

 
Project Team: 

Wajdan Almahdi (439018287) 

Nouf Altheban (439021062) 

 

Supervisor: 

Dr.Fehaid Alshammari 

November 2022 
 

 

 



1 
 

Contents 

1. Introduction                                                                                              2 

2. The Kermack-McKendriek Model                                                         4 

3. More complex model to study the spread of infectious diseases           6 

3.1.       Equilibrium points                                                                           8 

 3.2 Linear stability analysis                                                                   9 

 3.3.    The basic reproduction number (𝑹𝟎)                                             11 

4. Numerical Solutions                                                                               12 

References                                                                                                    15 

Appendix                                                                                                      16 

 

 

 

 

 



2 
 

1. Introduction 

A disease is a specific aberrant state that adversely affects an organism's 

structure or function in whole or in part but is not instantly caused by an external 

harm. It's common knowledge that diseases are medical illnesses with recognizable 

indications and symptoms. A disease can be brought on by either internal 

dysfunctions or external sources like infections. Internal immune system 

abnormalities, for instance, can result in a wide range of diseases, such as different 

types of immunodeficiency, hypersensitivity, allergies, and autoimmune disorders. 

 

Naturally, the mathematics of illnesses is a data-driven field. The ability to 

connect mathematical models and data is crucial in this area of inquiry, even 

though some work that is entirely theoretical has been done. One of the most 

comprehensive sources of biological data comes from case reports from doctors; 

we frequently know the number of weekly disease cases for various areas 

throughout several decades. This data also has the hallmark of social impacts, such 

as variations in the birth rate or elevated mixing rates throughout the academic 

year. As a result, a full understanding of disease dynamics necessitates a number of 

mathematical methods, including model construction, differential equation 

solution, and statistical analysis. 
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The premise that the population can be divided into a number of separate 

classes depending on their experience with the disease is the same one that almost 

all mathematical models of diseases begin with. The simplest of these models 

divides people into three categories: vulnerable, infectious, and recovered. It is 

known as the SIR model. People belong to the vulnerable class via birth. People 

who are susceptible have never been exposed to the disease but are nonetheless 

capable of contracting it, moving them into the infectious class. 

 

By creating a differential equation for the percentage of people in each class, 

we may mathematically enhance this description (the equations are shown at the 

end of the article). Computer simulations of this mathematical model anticipate 

declining oscillations in a manner that is consistent with mathematical theory (you 

might want to compare this with the damped oscillations observed in a spring). 

Therefore, even though this model initially depicts severe epidemics occurring at 

regular intervals, the illness level gradually achieves a constant amount. 
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2. The Kermack-McKendriek Model 

Considered as one of the first compartmental models, Kermack-McKendrick 

epidemic model was developed in the late 1920s with the pioneering work of 

Kermack and McKendrick.The model is described as the SIR model for the spread 

of disease, which consists of a system of three ordinary differential equations 

characterizing the changes in the number of susceptible (S), infected (I), and 

recovered (R) individuals in a given population. The model is a good one for many 

infectious diseases, despite its simplicity. Ever since, numerous and more complex 

compartmental mathematical models have been developed. For instance, in 

biology, modeling is particularly useful in studying organs like the lungs, heart, 

intestinal edema and cancer, etc. Almost all these models take their source on 

Kermack-McKendrick’s model and serve to help gain insights into the 

transmission and control mechanisms of diseases like HIV, TB, malaria and their 

interactions with others. Then most of the works done on modeling the dynamics 

of epidemiological diseases have been limited only to models based on (a system 

of) classical first-order differential equations. However, there is a growing interest 

in applying fractional calculus to mathematical epidemiology since it has turned 

out recently that many phenomena in different fields, including sciences, 
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engineering, and technology, can be described very successfully by the models 

using fractional-order differential equations. In this model, a population of size 

N(t) is divided into different classes, disjoint and based on their disease status. At 

time t, S=S(t) is the part of population representing individuals susceptible to a 

disease, I=I(t) is the part of population representing infectious individuals, R=R(t) 

is the part representing individuals that recovered from the disease. One of the 

most famous epidemic models is Kermack-McKendrick SIR model. Let 

N(t)=S(t)+I(t)+R(t), the Kermack-McKendrick then is 

#$
#%
= 	−𝛽𝑆𝐼																											          (1) 

#,
#%
= 𝛽𝑆𝐼 − 𝑣𝐼                              (2) 

#.
#%
	=	𝑣𝐼																																													(3) 

subject to the initial condition: 𝑆(0) = 𝑆2, 𝐼(0) = 𝐼2, and	𝑅(0) = 𝑅2, and 

therefore, 𝑁(0) = 𝑆2 + 𝐼2 + 𝑅2 . The basic reproduction number 𝑅2 = 𝛽𝑆2/𝜇 is 

the threshold that completely determines the dynamics of transmission of the 

epidemic.  We have three cases:  

• If 	𝑅2 >1, then I(t) increases (disease will spread, epidemic case). 

• If 	𝑅2 <1, then I(t) decreases (disease will disappear). 

• If 	𝑅2 =1, then I(t) will remain the same. 
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3. More complex model to study the spread of 

infectious diseases 

Let us define the following parameters: 

β = infection	rate 
µ = death	rate	, the	same	for	all	individuals 
v = recovery	rate	 
γ = rate	by	which	recovered	individuals	have	lost	their	immunity	and 
	became	susceptible	the	disease	 
 
We assume relationships between 𝑆, 𝐼, and	𝑅 as showing in the following diagram: 
     

 

                                  Figure 1: Diagram shown relationships between S, I, and R. 

We thus have the following system of differential equations: 

#P
#%
= 𝐴 − 𝛽𝑆𝐼 + 𝛾𝑅 − 𝜇𝑆       (4) 

 
#,
#%	
= 𝛽𝑆𝐼 − 𝑣𝐼 − 𝜇𝐼                (5) 
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#.
#%
= 𝑣𝐼 − 𝛾𝑅 − 𝜇𝑅                (6) 

 
 
 
 
To show that the solutions are bounded, we introduce a differential equation for 
N(t), which is obtained by adding 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). Thus, 
 

#T
#%
= #P

#%
+ #,

#%
+ #.

#%
. 

We know 𝑁(0) = 𝑁˳	,where		𝑁˳	is	a	constant. 
 
𝑑𝑁
𝑑𝑡

= 𝐴 − 𝜇	(	𝑆 + 𝐼 + 𝑅) 
         
        = 𝐴 − 𝜇𝑁. 
 
 
We thus have 
 
𝑑𝑁(𝑡)
𝐴 − 𝜇𝑁

= 𝑑𝑡 

 

X𝜇
𝑑𝑁

𝐴 − 𝜇𝑁
= 	−𝜇X𝑑𝑡 

  
ln(𝐴 − 𝜇𝑁) = −𝜇𝑡 + 𝑐	  
 
  −𝜇𝑁 = 𝑒[\]^ − 𝐴 
 

𝑁 = 	
−𝑒\]^

𝜇
+	
𝐴
𝜇
			 

 

	𝑁(0) = −
𝑒2]^

𝜇
+	
𝐴
𝜇
= 𝑁_ 

 
𝑒2]`

µ
= 𝑁˳ −

𝐴
µ

 

 
𝑒`	 = −µ	𝑁˳ + 𝐴	 
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	𝐶 = ln|−𝜇𝑁˳ + 𝐴| 
 

𝑁(𝑇) =
𝐴
µ
−
𝑒[d%

µ
× 𝑒fg|[d	T˳]h| 

 
 

	=
−1
µ
𝑒[d	%	[−µ𝑁˳ + 𝐴] +

𝐴
µ

 

 

= 𝑁˳	𝑒[d	% −
𝐴
µ
𝑒[d	% +

𝐴
µ

 

 

𝑁(𝑡) = 𝑁˳	𝑒[d	% +
𝐴
µ
[1 − 𝑒[d%] 

 
𝑁(𝑡) → 	 h

\
				as					𝑡 → ∞.  That means the solutions (total population density) 

increase with time until they reach the value h
\
, which means the solutions are 

bounded by this value. Therefore, the model is biologically reasonable.  
 
 
 

3.1 Equilibrium points  
 
Equilibrium is a state of a system which does not change.  If the dynamics of a 
system is described by a differential equation (or a system of differential 
equations), then equilibria can be estimated by setting a derivative (all derivatives) 
to zero. 
 
Example:  

#T
#%no(T) 

 
 
To find equilibria we have to solve the equation f(N)=0. 
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Now we apply that to our system in equations (4-6). The SIR model has a disease-
free equilibrium point (DFE) which is 

(𝑺𝟎, 𝑰𝟎, 𝑹𝟎) = r
𝑨
𝝁
, 𝟎, 𝟎u 

3.2 Linear stability analysis  

We now analyze the local stability of the system (4-6) around the DFE point. 
 
The Jacobian matrix of the system 
 

#P
#%
= 𝐴 − 𝛽𝑆𝐼 + 𝛾𝑅 − 𝜇𝑆 = 𝑓(𝑆, 𝐼, 𝑅)        

 
#,
#%	
= 𝛽𝑆𝐼 − 𝑣𝐼 − 𝜇𝐼 = 𝑔(𝑆, 𝐼, 𝑅)                 

 
#.
#%
= 𝑣𝐼 − 𝛾𝑅 − 𝜇𝑅 = 𝑧(𝑆, 𝐼, 𝑅)                 

 
 
 
is as follow: 
 

  J = 	

⎝

⎜
⎛

|o
|P
								 |o

|,
											 |o

|.	
|}
|P
								 	|}

|,
												 |}

|.
|~
|P
								 |~

|,
												 |~

|.⎠

⎟
⎞

   = �
−𝛽𝐼 − 𝜇 −𝛽𝑆 𝛾
𝛽𝐼 𝛽𝑆 − 𝑣 − 𝜇 0
0 𝑣 −𝛾 − 𝜇

�. 

  
 
We then find the Jacobian matrix at the disease-free equilibrium (DFE): 

 
 

J�h
\
, 0,0� =

⎝

⎛
−𝜇													 −𝛽 h

\
										 		𝛾

0													 𝛽 h
\
− (𝑣 + 𝜇)				 	0

0													 𝑣 −𝜇 − 𝛾⎠

⎞ 
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|	𝐽 − 𝜆𝐼| = ��	

⎝

⎛
−𝜇													 −𝛽 h

\
										 		𝛾

0													 𝛽 h
\
− (𝑣 + 𝜇)				 	0

0													 𝑣 −𝜇 − 𝛾⎠

⎞ − �
𝜆						 0					 0
0							 𝜆					 0
0						 0					 𝜆

�	�� 

 
 

=
�
�
−𝜇 − 𝜆 −𝛽

𝐴
𝜇
	 					𝛾

0 							𝛽
𝐴
𝜇
− (𝑣 + 𝜇) 	− 𝜆 						0

0 𝑣		 						−𝛾 − 𝜇 − 𝜆

�
�
 

 
 
The characteristic polynomial, therefore, is 
  
(𝜇 + 𝜆)(−𝛽 h

\
− (𝑣 + 𝜇) − 𝜆)(𝜇 + 𝛾 + 𝜆) 

 
The eigenvalues are: 
𝜆�= −𝜇,															𝜆� = −𝜇 − 𝛾,														𝜆� = 𝛽 h

\
− (𝑣 + 𝜇).		 

 
Hence	the	DFE	is	stable	(as	in	case	B	in	Figure	2)	if		

𝛽 h
\
< 𝑣 + 𝜇,						(7)	

and the DFE	is	unstable	(as	in	case	C	in	Figure	2)		if		
	

𝛽 h
\
> 𝑣 + 𝜇.					(8)	
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Figure 2: Phase portrait for the system (4-6). 

 
 
 
 
       3.3 The basic reproduction number (𝐑𝟎) 
 
An important concept in epidemiology is the basic reproduction number, defined 
as follows: In a healthy population we introduce one infection and compute the 
expected infection among the susceptibles caused by this single infection. We call 
it the expected secondary infection, or basic reproduction number, and denote 
it by 𝑅2.  
 
Since both sides of the inequalities (7-8) are positive, we can divide both sides of 
the inequalities by 𝛽 h

\
  to obtain   
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1 < �]\

���
,						(9)	

and the DFE	is	unstable	if		
	

1 > �]\

���
.					(10)	

We	can	clearly	see	that	the	disease	will	disappear	when		

1 <
𝑣 + 𝜇

𝛽 h
\

 

and the disease will spread when  

1 >
𝑣 + 𝜇

𝛽 h
\

 

We thus take the basic reproduction number (R2) to be 
 

𝑅2 =
�h

\(�]\)
. 

 
This is because we know the disease disappear when the DFE is stable (R2 < 1) 
and the disease will spread when the DFE is unstable (R2 > 1). 
 

4. Numerical simulations 

In this section, we numerically using Matlab and ode45 solver examine the impact 
of the basic reproduction number 𝑅2 on the model solutions. We analytically 
showed that the disease will disappear when 𝑅2 < 1 and the disease will spread 
when 𝑅2 > 1. Here, we confirm that numerically. In Table 1, we picked random 
values that make 𝑅2 = 0.5 < 1 and show in Figure 3 that the disease disappeared. 
In Figure 3 when 𝑅2 = 1.5 > 1 the infectious disease continues spreading. We see 
in Figure 3 the solution (𝑆) moves towards the stable equilibrium point 	

(𝑆2, 𝐼2, 𝑅2) = r
𝐴
𝜇
, 0,0u = (2,0,0), 

since the parameters in Table 1 make it locally stable (𝑅2 = 0.5 < 1). While the 
solutions move away from this point when 𝑅2 = 1.5 > 1 since it becomes 
unstable. We thus confirmed our analytical result. 
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 Table 1: Parameters used in Figure 3. 

Parameter Description Value 
𝑆2 Initial susceptible population (at 𝑡 = 0) 0.9 
𝐼2 Initial infected population (at 𝑡 = 0) 0.1 
𝑅2 Initial recovered population (at 𝑡 = 0) 0 
𝐴 Birth rate 2 
𝛽 Effective contact rate 0.5 
𝑣 Recovery rate 1 
𝜇 Normal death rate 1 
𝛾 Rate by which recovered individuals have lost their 

immunity and became susceptible the disease 
1 

𝑅2 Basic reproduction number (𝑅2 =
�h

\(�]\)
) 0.5 

 
 

 
 

Table 2: Parameters used in Figure 4. 

Parameter Description Value 
𝑆2 Initial susceptible population (at 𝑡 = 0) 0.9 
𝐼2 Initial infected population (at 𝑡 = 0) 0.1 
𝑅2 Initial recovered population (at 𝑡 = 0) 0 
𝐴 Birth rate 2 
𝛽 Effective contact rate 1.5 
𝑣 Recovery rate 1 
𝜇 Normal death rate 1 
𝛾 Rate by which recovered individuals have lost their 

immunity and became susceptible the disease 
1 

𝑅2 Basic reproduction number (𝑅2 =
�h

\(�]\)
) 1.5 
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Figure 3: The solution of the system (4-6) with parameters from  

Table 1when R0<1. The disease disappeared. 

Figure 4: The solution of the system (4-6) with parameters from 

Table 1when R0>1. The disease continues spreading. 
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Appendix  
 
 

 
function dv = fun_SIR(t,v) 
global A gamma mu beta V 
S = v(1); % susceptible 
I = v(2); % infected 
R = v(3); % recovered 
dv = zeros(3,1); 
dv(1) = A - beta*S*I +gamma*R- mu*S; 
dv(2) = beta*S*I - V*I - mu*I; 
dv(3) = V*I- gamma*R - mu*R; 

 
 
  
  
%------------------------------------------------------------------------------------------- 

 
global A V gamma mu beta 
%% parameters 
A = 2; 
V = 1; 
gamma = 1; 
mu = 1; 
beta = 1.5; 
R0 = beta*A/(mu*(V+mu)) 
%% initial conditions 
S0 = 0.9; % susceptible 
I0 = 0.1; % infected 
R0 = 0; % recovered 
init = [S0; I0; R0]; 
tspan = [0,15]; 
[t,v] = ode45('fun_SIR',tspan,init); 
plot(t,v(:,1),'LineWidth',3), hold on 
plot(t,v(:,2),'LineWidth',3), hold on 
plot(t,v(:,3),'LineWidth',3), hold on 


