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4.2 Nonlinear Schlömilch’s Integral Equation …………………………….…… 40 

4.2.1 Examples ………………………………………………………...…… 41 

 

References ............................................................................................................. 44 



1 
 

 

INTRODUCTION 

 

 

The last century witnessed a revolution in physical sciences that caused a profound 

change in the concepts and tools of applied mathematics. The theory of integral 

equations was one of these tools that have emerged and played – and still playing – a 

major role in studying the behavior of solutions of various types of boundary value 

problems.  As a result, an intensive amount of research has been carried on this area, 

and the majority of it was devoted to the Fredholm integral equations, because they 

offer a powerful tool in solving a wide spectrum of problems related to physics and 

other areas.  

The theory has been developed by Fredholm in 1900, then flourished by the hands of 

Hilbert, Frechet, Riesz, Lebesgue, and other famous mathematicians. Today, the 

theory occupies a prominent place in the mathematical research, and attracts an 

increasing number of researches from different disciplines. This research project is a 

humble attempt to make a contribution to this theory and its applications.  

The project consists of four chapters. The first chapter introduces important theorems, 

such as Banach contraction principle and existence and uniqueness theorem of linear 

and nonlinear Fredholm integral equations in the spaces 𝐶([𝑎,𝑏]) and 𝐿2.   

The second chapter deals with the Adomian decomposition method (ADM), and how 

to use it to find solutions of the linear and nonlinear Fredholm integral equations of 

second kind. Then we discuss the convergence analysis of the ADM for them.  

In the third and fourth chapters, Fredholm integral equations of the first kind and 

Schlömilch’s integral equation are transformed in such a manner that the ADM can be 

applied. We use the regularization method combined with the ADM to handle all 

forms of this type of integral equations. We also present theorems concerning the 

convergence of the ADM. 
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Chapter 1 
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for the Fredholm Integral Equation 
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1.1 Fixed-Point Theorem and its Applications 

Theorems concerning the existence and properties of fixed points are known as fixed-

point theorems [6,11]. Such theorems are the most important tools for proving the 

existence and uniqueness of the solution to various mathematical models (differential 

integral and partial differential equation, etc.) representing phenomena arising in 

different fields, such as steady-state temperature distribution, chemical reaction, 

neutron transept theory, economic theories, epidemics and flow of fluids. 

In this chapter, we state and prove the Banach contraction principle which is one of 

the simplest and most useful methods for the contraction of solution of linear and 

nonlinear integral equation. 

Definition (1.1) 

Let 𝑇 be a mapping of a normed space 𝑋 into itself. 

𝑇: 𝑋 → 𝑋, 

then 𝑇 is called a contraction mapping if there exists a constant 𝑀, 0 ≤ 𝑀 < 1 such 

that 

                   ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝑀 ‖𝑥 − 𝑦‖,         ∀𝑥, 𝑦 ∈ 𝑋.                                         (1.1) 

Definition (1.2)  

Let 𝑋 be a Banach space and 𝑇: 𝑋 →  𝑋, then a point 𝑥 ∈ 𝑋 such that  

𝑇𝑥 = 𝑥 

is called a fixed point of 𝑇. 

Theorem (1.3): Banach contraction principle 

Let 𝑋 be a Banach space and 𝑇: 𝑋 →  𝑋 is a contraction mapping, then it has a unique 

fixed point 𝑥∗ ∈ 𝑋, 𝑖. 𝑒. 𝑇𝑥∗ = 𝑥∗. 

Proof: 

We first show the existence of the fixed point. 

Let 𝑥0 be an arbitrary point in 𝑋 and we define  

𝑥1 = 𝑇𝑥0,  𝑥2 = 𝑇𝑥1, … ,  𝑥𝑛 = 𝑇𝑥𝑛−1 . 

Thus, 

𝑥2 = 𝑇𝑥1 = 𝑇(𝑇𝑥0) = 𝑇2𝑥0, 

𝑥3 = 𝑇𝑥2 = 𝑇(𝑇2𝑥0) = 𝑇
3𝑥0, 
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. 

. 

. 

𝑥𝑛 = 𝑇𝑥𝑛−1 = 𝑇(𝑇
𝑛−1𝑥0) = 𝑇

𝑛𝑥0 

If 𝑚 > 𝑛, say 𝑚 = 𝑛 + 𝑝, 𝑝 = 1, 2, 3, … 

then  

‖𝑥𝑛+𝑝 − 𝑥𝑛‖ = ‖𝑇𝑛+𝑝𝑥0 − 𝑇
𝑛𝑥0‖ = ‖𝑇(𝑇

𝑛+𝑝−1𝑥0) − 𝑇(𝑇
𝑛−1𝑥0)‖ 

                                  ≤ 𝑀 ‖𝑇𝑛+𝑝−1𝑥0 − 𝑇
𝑛−1𝑥0‖. 

Continuing this process (𝑛 − 1) times, we have: 

                      ‖𝑥𝑛+𝑝 − 𝑥𝑛‖ ≤ 𝑀𝑛 ‖𝑇𝑝𝑥0 − 𝑥0‖, 𝑛 = 0,1, ….                      (1.2) 

However,  

‖𝑇𝑝𝑥0 − 𝑥0‖ =‖𝑇
𝑝𝑥0 − 𝑇

𝑝−1𝑥0 + 𝑇
𝑝−1𝑥0 − 𝑇

𝑝−2𝑥0 + 𝑇
𝑝−2𝑥0 −⋯+ 𝑇𝑥0 − 𝑥0‖ 

                       ≤ ‖𝑇𝑝𝑥0 − 𝑇
𝑝−1𝑥0‖ + ‖𝑇

𝑝−1𝑥0 − 𝑇
𝑝−2𝑥0‖ +⋯+ ‖𝑇𝑥0 − 𝑥0‖. 

Since 

𝑇𝑃𝑥0 = 𝑇
𝑃−1𝑥1,  𝑇

𝑃−1𝑥0 = 𝑇
𝑃−2𝑥1, … ,  𝑇𝑥0 = 𝑥1, 

we have  

‖𝑇𝑝𝑥0 − 𝑥0‖ ≤ ‖𝑇𝑝−1𝑥1 − 𝑇
𝑝−1𝑥0‖ + ‖𝑇

𝑝−2𝑥1 − 𝑇
𝑝−2𝑥0‖ +⋯+ ‖𝑥1 − 𝑥0‖. 

By (1.2) we see that: 

‖𝑥𝑛+𝑝 − 𝑥𝑛‖ ≤ 𝑀𝑛[𝑀𝑝−1 ‖𝑥1 − 𝑥0‖ +𝑀
𝑝−2‖𝑥1 − 𝑥0‖ +⋯+ ‖𝑥1 − 𝑥0‖], 

or  

‖𝑥𝑛+𝑝 − 𝑥𝑛‖ ≤ 𝑀𝑛[𝑀𝑝−1  + 𝑀𝑝−2 +⋯+𝑀 + 1]‖𝑥1 − 𝑥0‖ 

                                              ≤ 𝑀𝑛 1

1−𝑀
‖𝑥1 − 𝑥0‖. 

As 𝑛,𝑚 = 𝑛 + 𝑝 → ∞, we see that  

‖𝑥𝑛+𝑝 − 𝑥𝑛‖ → 0, 

that is (𝑥𝑛) is a Cauchy sequence in the Banach space 𝑋. 

Hence, (𝑥𝑛) converges to a limit 𝑥∗ ∈ 𝑋. 

Since 𝑇 is continuous, we have 
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𝑇𝑥∗ = 𝑇 ( lim
𝑛→∞

𝑥𝑛) = lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑥𝑛+1 = 𝑥∗. 

Thus 𝑥∗ is a fixed point of 𝑇. 

Now, we prove the uniqueness of the fixed point. 

Let 𝑥∗ and 𝑦∗ be two fixed points, 𝑇𝑥∗ = 𝑥∗ and 𝑇𝑦∗ = 𝑦∗, we also have  

‖𝑇𝑥∗ − 𝑇𝑦∗‖ ≤ 𝑀 ‖𝑥∗ − 𝑦∗‖, 

as T is a contraction. 

But 

‖𝑇𝑥∗ − 𝑇𝑦∗‖ = ‖𝑥∗ − 𝑦∗‖. 

Thus 

‖𝑥∗ − 𝑦∗‖ ≤ 𝑀‖𝑥∗ − 𝑦∗‖, 

or 

(1 − 𝑀)‖𝑥∗ − 𝑦∗‖ ≤ 0, 

since 𝑀 < 1, we have 

‖𝑥∗ − 𝑦∗‖ = 0 ⟹ 𝑥∗ = 𝑦∗. 

This proves that the fixed point of 𝑇 is unique. 

∎ 

In general, the condition that 𝑀 is strictly less than one is needed for uniqueness and 

the existence of a fixed point. For example, if 𝑋 = {0,1} is the discrete metric space 

with metric determined by 𝑑(0,1) = 1, then 𝑇 defined by 𝑇(0) = 1 and 𝑇(1) = 0 

satisfies (1.1) with 𝑀 = 1, but 𝑇 does not have any fixed point. 

It may happen that 𝑋 is not complete in any metric for which one can prove that 𝑇 is a 

contraction. This can be an indication that the solution of the fixed point problem does 

not belong to 𝑋. 

 

 

1.2 Integral Equations 

Definition (1.4):  

An integral equation is an equation containing an unknown function under an integral 

operator and can be written as [13]: 
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                  𝛼(𝑥) 𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐹(𝜑(𝑡))𝑑𝑡
𝑏(𝑥)

𝑎(𝑥)
,                               (1.3) 

where 𝑓(𝑥), 𝛼(𝑥), 𝑎(𝑥) and 𝑏(𝑥) are given functions, 𝑘(𝑥, 𝑡) is called the kernel, 𝜆 is 

a parameter and 𝐹(𝜑(𝑡)) is nonlinear function. 

 A linear Fredholm integral equation of the second kind for an unknown function 

𝜑: [𝑎, 𝑏] → ℝ is an equation of the form [13]: 

                                       𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜑(𝑡)𝑑𝑡
𝑏

𝑎
                                (1.4) 

 A Fredholm integral equation of the first kind is an equation of the form [13]: 

 

                                     𝑓(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜑(𝑡)𝑑𝑡
𝑏

𝑎
                                   (1.5) 

 

 

1.3 Theorems 

1.3.1   Linear Fredholm Integral Equations of the Second Kind 

Theorem (1.5): 

Let 𝑘(𝑥, 𝑡) be defined in  

𝐴 = {(𝑥, 𝑡): 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑎 ≤ 𝑡 ≤ 𝑏} 

 and  

𝑘: [𝑎, 𝑏] × [𝑎, 𝑏] → ℝ 

such that 

∫ ∫ |𝑘(𝑥, 𝑡)|
2𝑏

𝑎
𝑑𝑥

𝑏

𝑎
𝑑𝑡 < ∞ and 𝑓(𝑥) ∈ 𝐿2[𝑎, 𝑏]. 

Then the integral equation (1.4) has a unique solution 𝜑(𝑥) ∈ 𝐿2[𝑎, 𝑏] for sufficiently 

small value of the parameter 𝜆. 

Proof: 

Let 𝑋 = 𝐿2 and consider the mapping 𝑇: 𝐿2[𝑎, 𝑏] → 𝐿2[𝑎, 𝑏] 

𝑇𝜑 = ℎ 

where 

ℎ(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜑(𝑡)𝑑𝑡
𝑏

𝑎
. 

This definition is valid for each 𝜑 ∈ 𝐿2[𝑎, 𝑏] and ℎ ∈ 𝐿2[𝑎, 𝑏]. 
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Since 𝑓 ∈ 𝐿2[𝑎, 𝑏] and 𝜆 ∈ ℝ it is sufficient to show that 

∫ 𝑘(𝑥, 𝑡) 𝜑(𝑡)𝑑𝑡
𝑏

𝑎
∈ 𝐿2[𝑎, 𝑏]. 

Let 

𝜓(𝑥) = ∫ 𝑘(𝑥, 𝑡) 𝜑(𝑡)𝑑𝑡
𝑏

𝑎
, 

then by the Cauchy-Schwartz inequality we have: 

|𝜓(𝑥)| = |∫ 𝑘(𝑥, 𝑡) 𝜑(𝑡)𝑑𝑡
𝑏

𝑎
| ≤ ∫ |𝑘(𝑥, 𝑡) 𝜑(𝑡)|𝑑𝑡

𝑏

𝑎
  

                                                  ≤ (∫ |𝑘(𝑥, 𝑡)|
2
 𝑑𝑡

𝑏

𝑎
)
1/2

(∫ |𝜑(𝑡)|
2
 𝑑𝑡

𝑏

𝑎
)
1/2

  . 

Therefore, 

|𝜓(𝑥)|2 ≤ ∫ |𝑘(𝑥, 𝑡)|
2
 𝑑𝑡

𝑏

𝑎
∫ |𝜑(𝑡)|

2
 𝑑𝑡

𝑏

𝑎
,  

or                            

∫ |𝜓(𝑥)|2 𝑑𝑥
𝑏

𝑎
≤ ∫ (∫ |𝑘(𝑥, 𝑡)|

2
 𝑑𝑡

𝑏

𝑎
)  𝑑𝑥

𝑏

𝑎
∫ |𝜑(𝑡)|

2
 𝑑𝑡

𝑏

𝑎
. 

By the hypotheses,  

∫ (∫ |𝑘(𝑥, 𝑡)|
2
 𝑑𝑡

𝑏

𝑎
)  𝑑𝑥

𝑏

𝑎
< ∞ and 𝜑 ∈ 𝐿2[𝑎, 𝑏]. 

We have, 𝜓(𝑥) ∈ 𝐿2[𝑎, 𝑏]. 

Now, we show that 𝑇 is a contraction, for any 𝜑1, 𝜑2 ∈ 𝐿2[𝑎, 𝑏], we have 

‖𝑇𝜑1 − 𝑇𝜑2‖ = ‖ℎ1 − ℎ2‖, 

where 

ℎ1(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜑1(𝑡)𝑑𝑡
𝑏

𝑎
  

and  

ℎ2(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜑2(𝑡)𝑑𝑡
𝑏

𝑎
. 

Thus 

‖ℎ1 − ℎ2‖ = ‖𝜆 ∫ 𝑘(𝑥, 𝑡) [𝜑1(𝑡) − 𝜑2(𝑡)]𝑑𝑡
𝑏

𝑎
‖  

                  = |𝜆| (∫ |∫ 𝑘(𝑥, 𝑡) [𝜑1(𝑡) − 𝜑2(𝑡)]𝑑𝑡
𝑏

𝑎
|
2

𝑑𝑥
𝑏

𝑎
)
1/2
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                   ≤ |𝜆| (∫ ∫ |𝑘(𝑥, 𝑡)|
2𝑏

𝑎
𝑑𝑥

𝑏

𝑎
𝑑𝑡)

1/2

(∫ |𝜑1(𝑡) − 𝜑2(𝑡)|
2
𝑑𝑡

𝑏

𝑎
)
1/2

.  

 

 

Hence 

‖𝑇𝜑1 − 𝑇𝜑2‖ ≤ |𝜆| (∫ ∫ |𝑘(𝑥, 𝑡)|
2𝑏

𝑎
𝑑𝑥

𝑏

𝑎
𝑑𝑡)

1/2
‖𝜑1 − 𝜑2‖ ≤ 𝐶 ‖𝜑1 − 𝜑2‖, 

where  

𝐶 = |𝜆| (∫ ∫ |𝑘(𝑥, 𝑡)|
2𝑏

𝑎
𝑑𝑥

𝑏

𝑎
𝑑𝑡)

1/2

. 

If we choose 𝐶 < 1, that is 

|𝜆| <
1

(∫ ∫ |𝑘(𝑥, 𝑡)|
2𝑏

𝑎
𝑑𝑥

𝑏

𝑎
𝑑𝑡)

1/2
 . 

Thus, 

 𝑇 is a contraction and by Theorem (1.3), 𝑇 has a unique fixed point, that is, 

𝑇𝜑∗ = 𝜑∗,   𝜑∗ ∈ 𝐿2[𝑎, 𝑏]. 

∎ 

 

1.3.2 Nonlinear Fredholm Integral Equations of the Second Kind 

The same technique can be applied to the nonlinear integral equation [13]: 

                             𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡, 𝜑(𝑡))𝑑𝑡
𝑏

𝑎
,                                      (1.6) 

where 𝐾 and  𝑓 are continuous functions, and for all 𝑥, 𝑡 ∈ [𝑎, 𝑏] and 𝑦 ∈ ℝ 

        |𝐾(𝑥, 𝑡, 𝑧1) − 𝐾(𝑥, 𝑡, 𝑧2)| ≤ 𝑀|𝑧1 − 𝑧2|, where 𝑀 is constant.                (1.7) 

The integral equation (1.6) can be written as a fixed point equation 𝑇𝜑 = 𝜑, where 

the map 𝑇 is defined by 

𝑇𝜑 = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡, 𝜑(𝑡))𝑑𝑡
𝑏

𝑎
, 

where  

𝑇: 𝒞([𝑎, 𝑏]) → 𝒞([𝑎, 𝑏]). 

We can prove in the same manner that 𝑇 is a contraction.  
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We have for any 𝜑1, 𝜑2 ∈ 𝒞([𝑎, 𝑏]),   

‖𝑇𝜑1 − 𝑇𝜑2‖∞ = ‖ℎ1 − ℎ2‖∞ = ‖𝜆 ∫ (𝐾(𝑥, 𝑡, 𝜑1(𝑡)) − 𝐾(𝑥, 𝑡, 𝜑2(𝑡))) 𝑑𝑡
𝑏

𝑎
‖
∞

  

                           ≤ |𝜆| sup
𝑎≤𝑥≤𝑏

∫ |𝐾(𝑥, 𝑡, 𝜑1(𝑡)) − 𝐾(𝑥, 𝑡, 𝜑2(𝑡))|𝑑𝑡
𝑏

𝑎
   

                           ≤ |𝜆| sup
𝑎≤𝑥≤𝑏

∫ 𝑀|𝜑1 − 𝜑2|𝑑𝑡
𝑏

𝑎
 ≤ |𝜆| 𝑀(𝑏 − 𝑎)‖𝜑1 − 𝜑2‖∞  . 

Hence, 

‖𝑇𝜑1 − 𝑇𝜑2‖∞ ≤ 𝐶 ‖𝜑1 − 𝜑2‖∞, 

where  

𝐶 = |𝜆| 𝑀(𝑏 − 𝑎). 

Consequently, the mapping 𝑇 is a contraction if 

                                                    |𝜆| < 1 𝑀(𝑏 − 𝑎)⁄ .                                               (1.8) 

Hence, 𝑇 has a unique fixed point, that is  

𝑇𝜑∗ = 𝜑∗, 𝜑∗ ∈ 𝒞([𝑎, 𝑏]). 

Thus we have proved. 

Theorem (1.6): 

If 𝜆 satisfies (1.8) and 𝐾 satisfies (1.7), then the integral equation (1.6) has a unique 

solution 𝜑(𝑥) ∈ 𝒞([𝑎, 𝑏]). 
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2.1 The Adomian Decomposition Method (ADM) 

The Adomian decomposition method has been receiving much attention in recent 

years in applied mathematics in general, and in the area of series solutions in 

particular. The method was proved to be powerful, effective, and can easily handle a 

wide class of linear or nonlinear, ordinary or partial differential equations, and linear 

and nonlinear integral equations. The ADM demonstrates fast convergence of the 

solution and therefore provides several significant advantages. The method will be 

successfully used to handle most types of ordinary differential equations that appear 

in several physical models and scientific applications [1,2,3,7,8,9,10,12]. 

The ADM consists of decomposing the unknown function 𝑢(𝑥) of any equation into a 

sum of an infinite number of components defined by the decomposition series 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)
∞
𝑛=0 , 

where the components 𝑢0, 𝑢1, 𝑢2, … are to be determined in a recursive manner. The 

ADM concerns itself with finding the components individually. The determination of 

these components can be achieved in an easy way through a recursive relation that 

usually involves simple integrals. 

 

2.1.1 Solving Linear Ordinary Differential Equations by the ADM 

We first consider the linear differential equation written in an operator form as 

                                                        𝐿𝑢 + 𝑅𝑢 = 𝑔,                                                  (2.1) 

where 𝐿 is the highest order derivative which is assumed to be invertible (𝐿−1 exists), 

𝑅 is other linear differential operator and 𝑔 is a source term.  

We next apply the inverse operator 𝐿−1 to both sides of equation (2.1) and use the 

given condition to obtain 

                                                𝑢 = 𝑓 − 𝐿−1 (𝑅𝑢),                                                  (2.2) 

where the function 𝑓 represents the term arising from integrating the source term 𝑔 

and from using the given conditions that are assumed to be prescribed. As indicated 

before, ADM defines the solution 𝑢 by an infinite series of components given by 

                                                         𝑢 = ∑ 𝑢𝑛
∞
𝑛=0 ,                                                  (2.3) 



12 
 

where the components 𝑢0, 𝑢1, 𝑢2, … are usually recurrently determined. 

Substituting equation (2.3) into both sides of equation (2.2) leads to 

∑ 𝑢𝑛
∞
𝑛=0 = 𝑓 − 𝐿−1 (𝑅 ∑ 𝑢𝑛

∞
𝑛=0 ),  

which can be rewritten as 

𝑢0 + 𝑢1 + 𝑢2 +⋯ = 𝑓 − 𝐿−1 (𝑅(𝑢0 + 𝑢1 + 𝑢2 +⋯)). 

To construct the recursive relation needed for the determination of the components 

𝑢0, 𝑢1, 𝑢2, … , it is important to note that the ADM suggests that the zeroth component 

𝑢0 is usually defined by the function 𝑓 described above, i.e. by all terms, that are not 

included under the inverse operator 𝐿−1, which arise from the initial data and from 

integrating the inhomogeneous term. Accordingly, the formal recursive relation is 

defined by 

                                    { 
𝑢0 = 𝑓,                                             

𝑢n+1 = −𝐿
−1 (𝑅(𝑢n)),   𝑛 ≥ 0,

                                     (2.4) 

or equivalently 

                                   

{
 
 
 

 
 
 

 

𝑢0 = 𝑓,                                                

𝑢1 = −𝐿−1 (𝑅(𝑢0)),                        

𝑢2 = −𝐿
−1 (𝑅(𝑢1)),                        
.                           
.                           
.                           

𝑢n = −𝐿
−1 (𝑅(𝑢n−1)),   𝑛 ≥ 0.   

                                   (2.5) 

Consequently, the solution can be obtained in a series form. 

Example 1.  

Use ADM to solve the following equation [12] 

                                           𝑢′(𝑥) = 𝑢(𝑥), 𝑢(0) = 𝐴.                                             (2.6) 

In an operator form equation (2.6) becomes 

                                                           𝐿𝑢 = 𝑢,                                                          (2.7) 

where the differential operator L is given by 

𝐿 =
𝑑

𝑑𝑥
 , 

and therefore the inverse operator 𝐿−1 is defined by 
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𝐿−1(. ) = ∫(. ) 𝑑𝑥

𝑥

0

. 

Applying 𝐿−1 to both sides of equation (2.7) and using the initial condition, we obtain 

𝑢(𝑥) − 𝑢(0)  =  𝐿−1(𝑢),           

or equivalently 

                                              𝑢(𝑥)  =  𝐴 + 𝐿−1(𝑢).                                                  (2.8) 

Substituting equation (2.3) into both sides of equation (2.8) gives 

                                          ∑ 𝑢𝑛
∞
𝑛=0 =  𝐴 + 𝐿−1(∑ 𝑢𝑛

∞
𝑛=0 ).                                      (2.9) 

In view of equation (2.9), we obtain the following recursive relation 

                              { 
 𝑢0(𝑥) =  𝐴                                          

𝑢𝑛+1(𝑥) =  𝐿
−1(𝑢𝑛(𝑥)),   𝑛 ≥ 0.

                                       (2.10) 

or 

                              

{
 
 
 

 
 
 

 

  𝑢0(𝑥) =  𝐴,                                        

𝑢1(𝑥) =  𝐿
−1(𝑢0(𝑥)) = 𝐴𝑥,        

𝑢2(𝑥) =  𝐿
−1(𝑢1(𝑥)) = 𝐴𝑥

2 2⁄ ,

𝑢3(𝑥) =  𝐿
−1(𝑢2(𝑥)) =

𝐴𝑥3
3!⁄ ,

.

.

.

                                     (2.11) 

Consequently, the solution is given by 

𝑢(𝑥) = 𝐴 + 𝐴𝑥 + 𝐴𝑥2 2⁄ +⋯ 

                                                      = 𝐴 (1 + 𝑥 + 𝑥2 2⁄ +⋯) 

                                                      = 𝐴𝑒𝑥. 

 

2.1.2 Solving the Nonlinear Ordinary Differential Equations by the ADM 

To apply the ADM for solving nonlinear ordinary differential equations, we consider 

the equation 

                                         𝐿𝑢 + 𝑅𝑢 + 𝐹𝑢 = 𝑔,                                                     (2.12) 

where the differential operator 𝐿 may be considered as the highest order derivative in 

the equation, 𝑅 is the remainder of the differential operator, 𝐹𝑢 is the nonlinear term 

such as 𝑢2, 𝑢3, sin 𝑢 , 𝑒𝑢,etc. , and 𝑔 is an inhomogeneous term. 
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We next apply the inverse operator 𝐿−1 to both sides of equation (2.12) and use the 

given condition to obtain 

                                  𝑢 = 𝑓 − 𝐿−1 (𝑅𝑢) − 𝐿−1 (𝐹𝑢),                                          (2.13) 

where the function 𝑓 represents the terms arising from integrating the source term 𝑔 

and from using the given conditions that are assumed to be prescribed. 

The nonlinear term can be expressed by an infinite series of the so-called Adomian 

polynomials 𝐴𝑛 given in the form 

                                        𝐹𝑢 = ∑ 𝐴𝑛
∞
𝑛=0 ,                                                        (2.14) 

where 𝐴𝑛 are the Adomian polynomials for the nonlinear term 𝐹𝑢, and can be 

evaluated by using the following expression [1,2,3,7,8,9,10,12] 

                     𝐴𝑛 =
1

𝑛!
[
𝑑𝑛

𝑑𝛼𝑛
𝐹(∑ 𝛼𝑖𝑢𝑖

∞
𝑖=0 )]

𝛼=0
     , 𝑛 = 0,1,2, … .                    (2.15) 

where 𝛼 is parameter and 𝐹 ∈ 𝒞∞([𝑎, 𝑏]). 

Substituting equation (2.3) and equation (2.14) into equation (2.13), we obtain: 

∑ 𝑢𝑛
∞
𝑛=0 = 𝑓 − 𝐿−1 (𝑅 ∑ 𝑢𝑛

∞
𝑛=0 ) − 𝐿−1 (∑ 𝐴𝑛

∞
𝑛=0 ).  

The various components 𝑢𝑛 of the solution 𝑢 can be easily determined by using the 

recursive relation  

                             {
 𝑢0 = 𝑓,                                                              

 𝑢n+1 = −𝐿
−1 (𝑅𝑢n) − 𝐿

−1 (𝐴n),   𝑛 ≥ 0.
                          (2.16) 

Having determined the components 𝑢n, 𝑛 ≥ 0, the solution 𝑢 in a series form follows 

immediately. 

 

2.1.3 Adomian Polynomials [1,2,3,7,8,9,10,12] 

In this section, we will calculate polynomials for several forms of nonlinearity that 

may arise in nonlinear ordinary equations. 

1. 𝐹𝑢 = 𝑢2 

The Adomian polynomials are given by 

 

                             

{
 

 
 

𝐴0 = 𝑢0
2,                      

𝐴1 = 2𝑢0𝑢1,                  

𝐴2 = 2𝑢0𝑢2 +  𝑢1
2,    

𝐴3 = 2𝑢0𝑢3 + 2𝑢1𝑢2.  

                                             (2.17) 

 

2. 𝐹𝑢 = 𝑠𝑖𝑛𝑢 
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The Adomian polynomials for this form of nonlinearity are given by 

 

                             

{
 
 

 
 

 

𝐴0 = 𝑠𝑖𝑛𝑢0,                                                          
𝐴1 = 𝑢1𝑐𝑜𝑠𝑢0,                                                      

𝐴2 = 𝑢2𝑐𝑜𝑠𝑢0 −
1

2!
𝑢1

2𝑠𝑖𝑛𝑢0,                           

𝐴3 = 𝑢3𝑐𝑜𝑠𝑢0 − 𝑢1𝑢2𝑠𝑖𝑛𝑢0 −
1

3!
𝑢1

3𝑐𝑜𝑠𝑢0.  

          (2.18) 

 

 

3. 𝐹𝑢 = 𝑒𝑢 

The Adomian polynomials are given by 

 

                             

{
 
 

 
 

  

𝐴0 = 𝑒𝑢0 ,                                       
𝐴1 = 𝑢1𝑒

𝑢0 ,                                   

𝐴2 = (𝑢2 +
1

2!
𝑢1

2) 𝑒𝑢0 ,              

𝐴3 = (𝑢3 + 𝑢1𝑢2 +
1

3!
𝑢1

3)𝑒𝑢0 .  

                              (2.19) 

 

4. 𝐹𝑢 = 𝑙𝑛 𝑢, 𝑢 > 0 

The 𝐴𝑛 polynomials for logarithmic nonlinearity are given by 

                                         

{
 
 

 
 

 

𝐴0 = 𝑙𝑛 𝑢0,                           

𝐴1 =
𝑢1

𝑢0
,                                 

𝐴2 =
𝑢2

𝑢0
−

𝑢1
2

2𝑢02
,                    

𝐴3 =
𝑢3

𝑢0
−
𝑢1𝑢2

𝑢02
+

𝑢1
3

3𝑢0
3.         

                                       (2.20) 

Example 2.  

Solve the first order nonlinear ordinary differential equation [12] 

                                            𝑢′ + 𝑢2 = 0, 𝑢(0) = 1                                              (2.21) 

In an operator form, equation (2.21) can be written as 

                                                            𝐿𝑢 = −𝑢2,                                                 (2.22) 

where 𝐿 is a first order differential operator. 

Applying 𝐿−1 to both sides of equation (2.22) and using the initial condition give 

                                                 𝑢(𝑥) = 1 − 𝐿−1(𝑢2).                                             (2.23) 

The ADM suggests that the solution 𝑢(𝑥) be expressed by the decomposition series 

                                             𝑢(𝑥) = ∑ 𝑢𝑛(𝑥),
∞
𝑛=0                                                 (2.24) 

and the nonlinear terms 𝑢2 be equated to 
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                                                    𝑢2 = ∑ 𝐴𝑛
∞
𝑛=0 .                                                    (2.25) 

Substituting equation (2.24) and equation (2.25) into equation (2.23) yields 

                                       ∑ 𝑢𝑛(𝑥)
∞
𝑛=0 = 1 − 𝐿−1(∑ 𝐴𝑛

∞
𝑛=0 ).                                  (2.26)  

The Adomian polynomials 𝐴𝑛 for the nonlinear term 𝑢2 were determined before, 

where we found 

                                 

{
 

 
  

𝐴0 = 𝑢0
2,                    

𝐴1 = 2𝑢0𝑢1,                

𝐴2 = 2𝑢0𝑢2 +  𝑢1
2,   

𝐴3 = 2𝑢0𝑢3 + 2𝑢1𝑢2,

                                                     (2.27) 

and so on. 

Comparing the two sides of (2.26), we obtain 

                             

{
  
 

  
 

  

𝑢0 = 1,                                                                       

𝑢1 = −𝐿−1𝐴0 = −𝐿
−1𝑢0

2 = −𝑥,                        

𝑢2 = −𝐿−1𝐴1 = −𝐿
−1(2𝑢0𝑢1) = 𝑥

2,                

𝑢3 = −𝐿
−1𝐴2 = −𝐿−1(2𝑢0𝑢2 +  𝑢1

2) = −𝑥3,
.
.
.

                  (2.28) 

Consequently, the solution is given by 

𝑢(𝑥) = 1 − 𝑥 + 𝑥2 − 𝑥3 +⋯ 

                                                      =
1

1+𝑥
 . 

 

 

2.2 Linear Fredholm Integral Equations of the Second Kind 

Consider the linear Fredholm integral equation of the second kind [13] 

                  𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜑(𝑡)𝑑𝑡
𝑏

𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏.                             (2.29) 

Following the ADM, the unknown solution of  𝜑(𝑥) is assumed to be the 

decomposition 

                                     𝜑(𝑥) = ∑ 𝜑𝑛(𝑥)
∞
𝑛=0 .                                                          (2.30) 

We begin by choosing the initial component 𝜑0(𝑥) to be the function 𝑓(𝑥) and where 

the remaining components 𝜑𝑛(𝑥) we will be determined recursively by using ADM. 

Therefore, this iterative method can be stated as follows 
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                            { 
 𝜑0(𝑥) = 𝑓(𝑥),                                                   

𝜑𝑛+1(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜑𝑛(𝑡)𝑑𝑡
𝑏

𝑎
,   𝑛 ≥ 0.

                          (2.31) 

Now, by assuming the first (𝑛 + 1) terms of equation (2.30), we obtain the 𝑛-th 

approximation to the solution as 

                                         𝜙𝑛(𝑥) = ∑ 𝜑𝑖(𝑥)
𝑛−1
𝑖=0 ,                                                    (2.32) 

or 

                                  𝜙𝑛(𝑥) = 𝜑0(𝑥) + ∑ 𝜑𝑖(𝑥)
𝑛−1
𝑖=1 .                                            (2.33) 

By substitution of the recursive scheme equation (2.31) into equation (2.33), we 

conclude that the ADM for equation (2.29) can be converted into an equivalent 

problem, which we state as follows. 

Lemma (2.1): 

The ADM for equation (2.29) is equivalent to the following problem: 

Find the sequence 𝜙𝑛 such that  

𝜙𝑛 = 𝜑0 + 𝜑1 +⋯+ 𝜑𝑛−1 with 𝜙0 = 0, 

and satisfies 

                { 
𝜑0(𝑥) = 𝑓(𝑥),                                                                   

𝜙𝑛(𝑥) = 𝜑0(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜙𝑛−1(𝑡)
𝑏

𝑎
𝑑𝑡,   𝑛 ≥ 1.

                        (2.34) 

 

2.2.1 Convergence Analysis of the ADM 

In this section, we will discuss the result concerning the convergence analysis of the 

ADM for equation (2.29). 

Theorem (2.2): 

A sufficient condition for 𝜙𝑛 to be convergent is that 

|𝜆| sup
𝑎≤𝑥≤𝑏

∫ |𝑘(𝑥, 𝑡)| 
𝑏

𝑎
𝑑𝑡 < 1. 

The sequence 𝜙𝑛 defined by (2.34) is convergent and has a limit 𝜙 solution of  

𝜙(𝑥) = 𝜑0(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜙(𝑡)
𝑏

𝑎
𝑑𝑡. 

Proof: 

We first show that 𝜙𝑛 is a Cauchy sequence. 

‖𝜙𝑛+2 − 𝜙𝑛+1‖∞ = sup
𝑎≤𝑥≤𝑏

|𝜆 ∫ 𝑘(𝑥, 𝑡) 
𝑏

𝑎
[𝜙𝑛+1(𝑡) − 𝜙𝑛(𝑡)]𝑑𝑡|  
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                              ≤ |𝜆| sup
𝑎≤𝑥≤𝑏

∫ |𝑘(𝑥, 𝑡)| 
𝑏

𝑎
|𝜙𝑛+1(𝑡) − 𝜙𝑛(𝑡)| 𝑑𝑡  

                              ≤ 𝐶 ‖𝜙𝑛+1 − 𝜙𝑛‖∞,   

where 

                             𝐶 = |𝜆| sup
𝑎≤𝑥≤𝑏

∫ |𝑘(𝑥, 𝑡)| 
𝑏

𝑎
𝑑𝑡  < 1. 

If 𝑚 > 𝑛,𝑚 = 𝑛 + 𝑝, 𝑝 = 1,2, …: 

‖𝜙𝑛+𝑝 − 𝜙𝑛‖∞ ≤ ‖𝜙𝑛+𝑝 − 𝜙𝑛+𝑝−1‖∞ + ‖𝜙𝑛+𝑝−1 − 𝜙𝑛+𝑝−2‖∞…+
‖𝜙𝑛+1 − 𝜙𝑛‖∞ 

                          ≤ 𝐶𝑛(1 + 𝐶 + 𝐶2 +⋯+ 𝐶𝑝−2 + 𝐶𝑝−1)‖𝜙1 − 𝜙0‖∞ 

                          ≤ 𝐶𝑛
1

1−𝐶
‖𝜙1 − 𝜙0‖∞. 

As 𝑛,𝑚 = 𝑛 + 𝑝 → ∞, we see that: 

‖𝜙𝑛+𝑝 − 𝜙𝑛‖∞ → 0. 

Hence, 𝜙𝑛 is a Cauchy sequence in the complete space 𝒞([𝑎, 𝑏]), that is  

lim
𝑛→∞

𝜙𝑛(𝑥) = 𝜙(𝑥). 

It remains to show that 𝜙(𝑥) is a solution of the Fredholm integral equation of the 

second kind: 

‖𝜙 − 𝑓 − 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜙(𝑡)
𝑏

𝑎
𝑑𝑡‖

∞
≤ ‖𝜙 − 𝜙𝑛‖∞ + ‖𝜆 ∫ 𝑘(𝑥, 𝑡) [𝜙𝑛−1(𝑡)

𝑏

𝑎
   

                                            −𝜙(𝑡)] 𝑑𝑡‖∞ + ‖𝜙𝑛 − 𝑓 −  𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜙𝑛−1(𝑡)
𝑏

𝑎
𝑑𝑡‖

∞
.  

As 𝑛 → ∞, we get 

𝜙(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝜙(𝑡)
𝑏

𝑎
𝑑𝑡 . 

Therefore, 𝜙 is a solution of the Fredholm integral equation. 

∎ 

Example 3:  

Solve the following Fredholm integral equation 

                                     𝜑(𝑥) =  𝑒𝑥 − 1 + ∫ 𝑡 𝜑(𝑡)𝑑𝑡
1

0
.                                        (2.35) 

The ADM assumes that the solution 𝜑(𝑥) has a series form given by (2.30). 

Substituting the decomposition series (2.30) into both sides of equation (2.35) gives 
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𝜑0(𝑥) + 𝜑1(𝑥) + 𝜑2(𝑥) + ⋯ =  𝑒𝑥 − 1 + ∫ 𝑡 [𝜑0(𝑡) + 𝜑1(𝑡) + 𝜑2(𝑡) + ⋯ ]𝑑𝑡
1

0
.  

Therefore, we obtain  

{
 
 

 
 

  

𝜑0(𝑥) =  𝑒𝑥 − 1,                                                   

𝜑1(𝑥) = ∫ 𝑡 𝜑0(𝑡)𝑑𝑡
1

0
= ∫ 𝑡 [ 𝑒𝑡 − 1]𝑑𝑡

1

0
=

1

2
,

𝜑2(𝑥) = ∫ 𝑡 𝜑1(𝑡)𝑑𝑡
1

0
= ∫ 𝑡 [1/2]𝑑𝑡

1

0
=

1

4
,      

𝜑3(𝑥) = ∫ 𝑡 𝜑2(𝑡)𝑑𝑡
1

0
= ∫ 𝑡 [1/4]𝑑𝑡

1

0
=

1

8
,     

  

and so on. Using equation (2.30) gives the series solution 

𝜑(𝑥) =  𝑒𝑥 − 1 + (
1

2
+
1

4
+
1

8
+⋯).          

Since 
1

2
+
1

4
+
1

8
+⋯ is a geometric series, that its sum is given by 

𝑆 =
1/2

1 − 1/2
= 1. 

Thus 

𝜑(𝑥) =  𝑒𝑥. 

 

 

2.3 Nonlinear Fredholm Integral Equation of the Second Kind 

Consider the nonlinear Fredholm integral equation of the second kind [13] 

                             𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐹(𝜑(𝑡))𝑑𝑡
𝑏

𝑎
.                                 (2.36) 

The same procedure can be applied to resolve this nonlinear Fredholm integral 

equation. 

Proceeding as before, we substitute the expansion (2.30) into (2.36) yields 

                    ∑ 𝜑𝑛(𝑥)
∞
𝑛=0 = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐹(∑ 𝜑𝑛(𝑡)

∞
𝑛=0 )𝑑𝑡

𝑏

𝑎
.                    (2.37) 

We define 𝐹(𝜑) by  

                            𝐹(𝜑) = ∑ 𝐴𝑛(𝜑0, 𝜑1, … , 𝜑𝑛),
∞
𝑛=0                                         (2.38) 

where 𝐴𝑛 are the Adomian polynomials [12] and depend on 𝜑0, 𝜑1, … , 𝜑𝑛. 

Thus, 

           ∑ 𝜑𝑛(𝑥)
∞
𝑛=0 = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)  ∑ 𝐴𝑛(𝑡)

∞
𝑛=0 𝑑𝑡

𝑏

𝑎
.                                  (2.39) 
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We get the scheme  

                          {
𝜑0(𝑥) = 𝑓(𝑥),                                                 

𝜑𝑛+1(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐴𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥ 0.

                             (2.40) 

Modified ADM:  

A modified recurrence relation is usually used, where 𝑓(𝑥) is decomposed into two 

components 𝑓1(𝑥) and 𝑓2(𝑥), such that 

𝑓(𝑥)  =  𝑓1(𝑥) + 𝑓2(𝑥). 

In this case the modified recurrence relation becomes in the form 

                         { 

𝜑0(𝑥) = 𝑓1(𝑥),                                                

𝜑1(𝑥) = 𝑓2(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐴0(𝑡)𝑑𝑡
𝑏

𝑎
,     

𝜑𝑛+1(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐴𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥ 1.

                            (2.41)  

As before, we conclude that the ADM for equation (2.36) can be converted to be the 

following problem. 

Lemma (2.3): 

The ADM for equation (2.36) is equivalent to the following problem: 

Find the sequence 𝜙𝑛 such that  

𝜙𝑛 = 𝜑0 + 𝜑1 +⋯+ 𝜑𝑛−1 with 𝜙0 = 0, 

and satisfies 

                   { 
𝜑0(𝑥) = 𝑓(𝑥),                                                                          

𝜙𝑛(𝑥) = 𝜑0(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐹(𝜙𝑛−1(𝑡))
𝑏

𝑎
𝑑𝑡,   𝑛 ≥ 1.

               (2.42) 

 

2.3.1 Convergence Analysis of the ADM 

In this section, we will discuss the result concerning the convergence analysis of the 

ADM for equation (2.36). 

Theorem (2.4): 

Let us assume that the operator 𝐹(𝜙) satisfies Lipchitz condition. The sequence 𝜙𝑛 

defined by (2.42) is convergent and has a limit 𝜙 solution of  

𝜙(𝑥) = 𝜑0(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐹(𝜙(𝑡))
𝑏

𝑎
𝑑𝑡. 

Proof: 

We will show that 𝜙𝑛 is a Cauchy sequence. 
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‖𝜙𝑛+2 − 𝜙𝑛+1‖∞ = sup
𝑎≤𝑥≤𝑏

|𝜆 ∫ 𝑘(𝑥, 𝑡) 
𝑏

𝑎
[𝐹(𝜙𝑛+1(𝑡)) − 𝐹(𝜙𝑛(𝑡))]𝑑𝑡|  

                              ≤ |𝜆| sup
𝑎≤𝑥≤𝑏

∫ |𝑘(𝑥, 𝑡)| 
𝑏

𝑎
|𝐹(𝜙𝑛+1(𝑡)) − 𝐹(𝜙𝑛(𝑡))| 𝑑𝑡  

                              ≤ |𝜆| sup
𝑎≤𝑥≤𝑏

∫ |𝑘(𝑥, 𝑡)| 
𝑏

𝑎
𝑀 |𝜙𝑛+1(𝑡) − 𝜙𝑛(𝑡)| 𝑑𝑡 

                              ≤ 𝐶 ‖𝜙𝑛+1 − 𝜙𝑛‖∞,   

where  

                             𝐶 = |𝜆| 𝑀 sup
𝑎≤𝑥≤𝑏

∫ |𝑘(𝑥, 𝑡)| 
𝑏

𝑎
𝑑𝑡  < 1. 

If 𝑚 > 𝑛,𝑚 = 𝑛 + 𝑝, 𝑝 = 1,2, …: 

‖𝜙𝑛+𝑝 − 𝜙𝑛‖∞ ≤ ‖𝜙𝑛+𝑝 − 𝜙𝑛+𝑝−1‖∞ +⋯+
‖𝜙𝑛+1 − 𝜙𝑛‖∞ 

                          ≤ 𝐶𝑛(1 + 𝐶 + 𝐶2 +⋯+ 𝐶𝑝−2 + 𝐶𝑝−1)‖𝜙1 − 𝜙0‖∞ 

                          ≤ 𝐶𝑛
1

1−𝐶
‖𝜙1 − 𝜙0‖∞. 

As 𝑛,𝑚 = 𝑛 + 𝑝 → ∞, we see that: 

‖𝜙𝑛+𝑝 − 𝜙𝑛‖∞ → 0. 

Hence, 𝜙𝑛 is a Cauchy sequence in the complete space 𝒞([𝑎, 𝑏]), that is  

lim
𝑛→∞

𝜙𝑛(𝑥) = 𝜙(𝑥). 

It remains to show that 𝜙(𝑥) is a solution of the Fredholm integral equation of the 

second kind: 

‖𝜙 − 𝑓 − 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐹(𝜙(𝑡))
𝑏

𝑎
𝑑𝑡‖

∞
≤ ‖𝜙 − 𝜙𝑛‖∞ + ‖𝜆 ∫ 𝑘(𝑥, 𝑡) [𝐹(𝜙𝑛−1(𝑡))

𝑏

𝑎
  

− 𝐹(𝜙(𝑡))] 𝑑𝑡‖∞ + ‖𝜙𝑛 − 𝑓 − 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐹(𝜙𝑛−1(𝑡))
𝑏

𝑎
𝑑𝑡‖

∞
. 

As 𝑛 → ∞, we get 

𝜙(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡) 𝐹(𝜙(𝑡))
𝑏

𝑎
𝑑𝑡.  

Therefore, 𝜙 is a solution of the Fredholm integral equation. 

∎ 

Example 4:  

Use the ADM to solve the nonlinear Fredholm integral equation 
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                                   𝜑(𝑥) = 𝑥2 −
1

12
+
1

2
∫ 𝑡 𝜑2(𝑡)𝑑𝑡
1

0
.                                       (2.43) 

Substituting the series (2.30) and (2.38) into (2.43), we find 

∑ 𝜑𝑛(𝑥)
∞
𝑛=0 = 𝑥2 −

1

12
+
1

2
∫ 𝑡 ∑ 𝐴𝑛(𝑡)

∞
𝑛=0 𝑑𝑡

1

0
, 

where 𝐴𝑛 are the Adomian polynomials for 𝜑2 as shown previous. Using the 

modified ADM, we set 

{
  
 

  
 

 

𝜑0(𝑥) = 𝑥2,                                                  

𝜑1(𝑥) = −
1

12
+
1

2
∫ 𝑡 𝐴0(𝑡)𝑑𝑡
1

0
= 0,        

.

.

.

𝜑𝑛+1(𝑥) =
1

2
∫ 𝑡 𝐴𝑛(𝑡)𝑑𝑡
1

0
= 0,    𝑛 ≥ 1.

  

This in turn gives the exact solution 

𝜑(𝑥) = 𝑥2. 
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3.1 Linear Fredholm integral Equations of the First Kind 

Consider the linear Fredholm integral equation of the first kind [13]: 

                         ∫ 𝑘(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏],                                      (3.1) 

where 

𝜑 ∈ 𝐿2[𝑎, 𝑏] and 𝑓(𝑥) ∈ 𝐿2[𝑎, 𝑏] 

and suppose that 

 ∫ ∫ 𝑘2(𝑥, 𝑡)
𝑏

𝑎
𝑑𝑥 𝑑𝑡 < ∞

𝑏

𝑎
. 

This equation appears in the theory of elasticity and certain problems of the 

mechanics of continuous media. 

As it was pointed out in Cherruault [5], the general difficulty is how the ADM can be 

applied to solve these types of integral equations. 

The present chapter is to overcome this general difficulty. 

 

3.1.1 The Regularization Technique for Linear Fredholm Integral Equations of 

the First Kind 

In this section, we develop a new iterative procedure using the regularization 

technique, where the integral equations of the first kind are recast into a canonical 

form from suitable for ADM. More precisely, we consider the approximated integral 

equation 

                            𝜀 𝜑𝜀(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝜑𝜀(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥),                                        (3.2) 

where 𝜀 is a fixed positive number.  

It can proved that the solution 𝜑𝜀(𝑥) of (3.2) converges to the solution 𝜑(𝑥) of 

equation (3.1) when 𝜀 → 0. 

Lemma (3.1): 

Suppose that the integral operator of equation (3.2) is continuous and coercive in the 

Hilbert space 𝐻 = 𝐿2[𝑎, 𝑏] where 𝑓, 𝜑𝜀 and 𝜑 are defined, then: 

- ‖𝜑𝜀‖ is bounded independently of 𝜀. 

- ‖𝜑𝜀 − 𝜑‖ tends to 0 when 𝜀 → 0. 

Proof: 

From equation (3.2), we deduce 
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 𝜀 ‖𝜑𝜀‖ = ‖−∫ 𝑘(𝑥, 𝑡)𝜑𝜀(𝑡)𝑑𝑡
𝑏

𝑎
+ 𝑓‖ ≥ −‖𝑓‖ + ‖∫ 𝑘(𝑥, 𝑡)𝜑𝜀(𝑡)𝑑𝑡

𝑏

𝑎
‖.         (3.3) 

The coercivity of the integral operator implies: 

                           ‖∫ 𝑘(𝑥, 𝑡) 𝜑𝜀(𝑡)𝑑𝑡
𝑏

𝑎
‖ ≥ 𝛽‖ 𝜑𝜀‖,                                                (3.4) 

where  𝛽 is the coercivity constant,  

‖∫ 𝑘(𝑥, 𝑡) 𝜑𝜀(𝑡)𝑑𝑡
𝑏

𝑎
‖
2

= ∫ [∫ 𝑘(𝑥, 𝑡)𝜑𝜀(𝑡)𝑑𝑡
𝑏

𝑎
]2𝑑𝑥

𝑏

𝑎
  

and  

‖ 𝜑𝜀‖
2
= ∫  𝜑2

𝜀
(𝑡)𝑑𝑡

𝑏

𝑎
.  

From equations (3.3) and (3.4), we have 

                                    𝜀 ‖𝜑𝜀‖ ≥ −‖𝑓‖ + 𝛽‖ 𝜑𝜀‖                                                    (3.5) 

and therefore 

(𝛽 − 𝜀)‖𝜑𝜀‖ ≤ ‖𝑓‖,  𝛽 ≫ 𝜀. 

So, ‖𝜑𝜀‖ is bounded independently of 𝜀. 

We now prove the second part. 

By using equations (3.1) and (3.2), we have 

                   𝜀 𝜑𝜀(𝑥) = −∫ 𝑘(𝑥, 𝑡)𝜑𝜀(𝑡)𝑑𝑡
𝑏

𝑎
+ ∫ 𝑘(𝑥, 𝑡) 𝜑(𝑡) 𝑑𝑡

𝑏

𝑎
.                      (3.6) 

Thus, 

𝜀 𝜑𝜀(𝑥) = −∫ 𝑘(𝑥, 𝑡) [𝜑𝜀(𝑡) − 𝜑(𝑡)]𝑑𝑡
𝑏

𝑎
. 

It follows that   

           −𝜀 (𝜑𝜀(𝑥) − 𝜑(𝑥)) − 𝜀 𝜑(𝑥) = ∫ 𝑘(𝑥, 𝑡) [𝜑𝜀(𝑡) − 𝜑(𝑡)]𝑑𝑡
𝑏

𝑎
.                  (3.7) 

Taking the norm of both sides of the above equation, and using the coercivity 

property implies 

          𝛽‖𝜑𝜀 − 𝜑‖ ≤ ‖𝜀 (𝜑𝜀 − 𝜑) + 𝜀 𝜑‖ ≤ 𝜀 ‖(𝜑𝜀 − 𝜑)‖ + 𝜀‖𝜑‖.                      (3.8) 

Finally, we have 

(𝛽 − 𝜀)‖𝜑𝜀 − 𝜑‖ ≤𝜀‖𝜑‖,  𝛽 − 𝜀 > 0, 

and therefore ‖𝜑𝜀 − 𝜑‖ → 0 when 𝜀 → 0. 

∎ 
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3.1.2 Adomian Decomposition Method 

To develop a new iterative method, consider equation (3.2), which is expressed in the 

canonical form. 

Following the ADM, the unknown solution 𝜑𝜀(𝑥) is assumed to be the decomposition 

series of the form  

                                  𝜑𝜀(𝑥) = ∑ 𝜑𝜀,𝑛(𝑥)
∞
𝑛=0 .                                                         (3.9) 

Therefore, this new iterative method can be stated as follows 

                      { 
 𝜑𝜀,0(𝑥) =

1

𝜀
𝑓(𝑥),                                                      

𝜑𝜀,𝑛+1(𝑥) = −
1

𝜀
∫ 𝑘(𝑥, 𝑡) 𝜑𝜀,𝑛(𝑡)𝑑𝑡
𝑏

𝑎
,   𝑛 ≥ 0.

                      (3.10) 

By assuming the first 𝑛 + 1 terms of equation (3.9), we obtain the 𝑛-th approximation 

to the solution as 

                                  𝜙𝜀,𝑛(𝑥) = ∑ 𝜑𝜀,𝑖(𝑥)
𝑛−1
𝑖=0 ,                                                    (3.11) 

or 

                                𝜙𝜀,𝑛(𝑥) = 𝜑𝜀,0(𝑥) + ∑ 𝜑𝜀,𝑖(𝑥)
𝑛−1
𝑖=1 .                                    (3.12) 

By substitution of the recursive scheme (3.10) into (3.12), we conclude that the ADM 

for equation (3.2) can be converted into an equivalent problem, which we state as 

follows. 

Lemma (3.2): 

The ADM for equation (3.2) is equivalent to the following problem: 

Find the sequence 𝜙𝜀,𝑛 such that  

𝜙𝜀,𝑛 = 𝜑𝜀,0 + 𝜑𝜀,1 +⋯+ 𝜑𝜀,𝑛−1 with 𝜙𝜀,0 = 0, 

and satisfies 

             { 
  𝜑𝜀,0(𝑥) =

1

𝜀
𝑓(𝑥),                                                                        

𝜙𝜀,𝑛(𝑥) = 𝜑𝜀,0(𝑥) −
1

𝜀
∫ 𝑘(𝑥, 𝑡) 𝜙𝜀,𝑛−1(𝑡)
𝑏

𝑎
𝑑𝑡,   𝑛 ≥ 1.

               (3.13) 

Now, we will discuss the result concerning the convergence analysis of the ADM for 

equation (3.13). 

We first rewrite equation (3.2) in the semi-linear equation 

𝜑𝜀 =
1

𝜀
𝑓 + 𝐴𝜑𝜀 , 
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where  

𝐴𝜑𝜀 = −
1

𝜀
∫ 𝑘(𝑥, 𝑡) 𝜑𝜀(𝑡)
𝑏

𝑎
𝑑𝑡. 

Therefore, 

                                  { 
𝜑𝜀,0 =

1

𝜀
𝑓,                         

𝜑𝜀,𝑛 = 𝐴𝜑𝜀,𝑛−1,   𝑛 ≥ 1.
                                                (3.14) 

Thus, 

                                 { 
𝜑𝜀,0 =

1

𝜀
𝑓,                                        

𝜙𝜀,𝑛 = 𝜑𝜀,0 + 𝐴𝜙𝜀,𝑛−1,   𝑛 ≥ 1.
                                    (3.15) 

 

Theorem (3.3): 

A sufficient condition for 𝜙𝜀,𝑛 to be convergent is that ‖𝐴‖ < 𝛿 < 1. 

Proof: 

We first show that 𝜙𝜀,𝑛 is a Cauchy sequence. 

‖𝜙𝜀,𝑛+2 − 𝜙𝜀,𝑛+1‖ = ‖𝐴 [𝜙𝜀,𝑛+1 − 𝜙𝜀,𝑛]‖  

                                ≤  ||𝐴|| ||𝜙𝜀,𝑛+1 − 𝜙𝜀,𝑛||   

                                < 𝛿 ‖𝜙𝜀,𝑛+1 − 𝜙𝜀,𝑛‖.   

If 𝑚 > 𝑛,𝑚 = 𝑛 + 𝑝, 𝑝 = 1,2, …, 

‖𝜙𝜀,𝑛+𝑝 − 𝜙𝜀,𝑛‖ ≤ ‖𝜙𝜀,𝑛+𝑝 − 𝜙𝜀,𝑛+𝑝−1‖ +⋯+ ‖𝜙𝜀,𝑛+1 −𝜙𝜀,𝑛‖ 

                            < 𝛿𝑛(1 + 𝛿 + 𝛿2 +⋯+ 𝛿𝑝−2 + 𝛿𝑝−1)‖𝜙𝜀,1 − 𝜙𝜀,0‖ 

                            < 𝛿𝑛
1

1−𝛿
‖𝜙𝜀,1 −𝜙𝜀,0‖. 

As 𝑛,𝑚 = 𝑛 + 𝑝 → ∞, we see that: 

‖𝜙𝜀,𝑛+𝑝 − 𝜙𝜀,𝑛‖ → 0. 

Hence 𝜙𝜀,𝑛 is a Cauchy sequence in the Banach space, that is 

lim
𝑛→∞

𝜙𝜀,𝑛(𝑥) = 𝜙𝜀(𝑥). 

It remains to show that 𝜙𝜀(𝑥) is a solution of the Fredholm integral equation of the 

second kind: 

‖𝜙𝜀 −
1

𝜀
𝑓 − 𝐴𝜙𝜀‖ ≤ ‖𝜙𝜀 − 𝜙𝜀,𝑛‖ + ‖𝜙𝜀,𝑛 −

1

𝜀
𝑓 − 𝐴 𝜙𝜀,𝑛−1‖  

                             +‖𝐴 [𝜙𝜀,𝑛−1 − 𝜙𝜀]‖. 



28 
 

As 𝑛 → ∞, we get 

𝜙𝜀 =
1

𝜀
𝑓 + 𝐴𝜙𝜀. 

Therefore, 𝜙𝜀 is a solution of the Fredholm integral equation. 

∎ 

3.1.3 Examples 

In order to demonstrate the feasibility and efficiency of this method, some examples 

with a priori known exact solution are studied in detail. 

1. Let  

∫ 𝑘(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
1

0
= sin 𝜋𝑥, 

where 

𝑘(𝑥, 𝑡) = { 
(1 − 𝑥)𝑡,   0 ≤ 𝑡 ≤ 𝑥,
(1 − 𝑡)𝑥,   𝑥 ≤ 𝑡 ≤ 1.  

 

We solve this equation by the above recursive schemes and obtain 

                                  

{
 
 

 
 

 

𝜑𝜀,0(𝑥) =
1

𝜀
sin 𝜋𝑥,           

𝜑𝜀,1(𝑥) = −
1

𝜋2𝜀2
 sin 𝜋𝑥 ,

𝜑𝜀,2(𝑥) =
1

𝜋4𝜀3
 sin 𝜋𝑥,     

                                               (3.16) 

and so on. 

So, 

𝜑𝜀(𝑥) = (1 −
1

𝜋2𝜀
+

1

𝜋4𝜀2
−⋯)

1

𝜀
sin 𝜋𝑥. 

Consequently, 

𝜑𝜀(𝑥) = (
𝜋2𝜀

1+𝜋2𝜀
)
1

𝜀
sin 𝜋𝑥 =  

𝜋2

1+𝜋2𝜀
sin 𝜋𝑥. 

Setting 𝜀 → 0, we obtain 

𝜑(𝑥) = lim
𝜀→0

𝜑𝜀(𝑥) = 𝜋2 sin 𝜋𝑥, 

which is equivalent to the exact solution. 

 

2. Let  

∫ 𝑘(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
𝜋

0
=

1

2
sin 2𝑥, 
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where 

𝑘(𝑥, 𝑡) = {
 
𝑡 (𝜋 − 𝑥)

𝜋
,   0 ≤ 𝑡 ≤ 𝑥,

𝑥 (𝜋 − 𝑡)

𝜋
,   𝑥 ≤ 𝑡 ≤ 𝜋.

 

Then the recursive scheme for the approximate equation be expressed as 

                                  

{
 
 

 
 

 

𝜑𝜀,0(𝑥) =
1

2𝜀
sin 2𝑥,        

𝜑𝜀,1(𝑥) = −
1

8𝜀2
 sin 2𝑥 ,

𝜑𝜀,2(𝑥) =
1

32𝜀3
 sin 2𝑥,   

𝜑𝜀,3(𝑥) =
1

128𝜀4
 sin 2𝑥 ,

                                                (3.17) 

and so on. 

So, 

𝜑𝜀(𝑥) = (1 −
1

4𝜀
+

1

16𝜀2
−

1

64𝜀3
+⋯)

1

2𝜀
sin 2𝑥. 

Consequently, 

𝜑𝜀(𝑥) = (
4𝜀

1 + 4𝜀
)
1

2𝜀
sin 2𝑥 =  

2

1 + 4𝜀
sin 2𝑥. 

Setting 𝜀 → 0, we obtain 

𝜑(𝑥) = lim
𝜀→0

𝜑𝜀(𝑥) = 2 sin 2𝑥, 

which is the exact solution. 

 

3. Let  

∫ 𝑘(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
1

0
=

1

9
cos 3𝜋𝑥, 

where 

𝑘(𝑥, 𝑡) =

{
 

   
𝑥2 + 𝑡2

2
+
1

3
− 𝑥,   0 ≤ 𝑡 ≤ 𝑥,

𝑥2 + 𝑡2

2
+
1

3
− 𝑡,   𝑥 ≤ 𝑡 ≤ 1.

 

We solve the approximate equation by the above recursive schemes and obtain 
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{
 
 

 
 

 

𝜑𝜀,0(𝑥) =
1

9𝜀
cos 3𝜋𝑥,    

𝜑𝜀,1(𝑥) = −
1

9𝜀2
cos3𝜋𝑥

9𝜋2
,

𝜑𝜀,2(𝑥) =
1

9𝜀3
cos3𝜋𝑥

92𝜋4
,    

                                                (3.18) 

and so on. 

 

So, 

𝜑𝜀(𝑥) = (1 −
1

9𝜋2𝜀
+

1

92𝜋4𝜀2
−⋯)

1

9𝜀
cos 3𝜋𝑥. 

Consequently, 

𝜑𝜀(𝑥) = (
9𝜋2𝜀

1 + 9𝜋2𝜀
)
1

9𝜀
cos 3𝜋𝑥 =  

𝜋2

1 + 9𝜋2𝜀
cos 3𝜋𝑥. 

 

Setting 𝜀 → 0, we obtain 

𝜑(𝑥) = lim
𝜀→0

𝜑𝜀(𝑥) = 𝜋2 cos 3𝜋𝑥, 

which is the exact solution. 

 

 

3.2 Nonlinear Fredholm Integral Equations of the First Kind 

Consider the nonlinear Fredholm integral equation of the first kind [13] 

                     ∫ 𝑘(𝑥, 𝑡)𝐹(𝜑(𝑡))𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏]                                     (3.19) 

In this section, we will use another iterative method that has been used in [4]. 

We observe that equation (3.19) can be replaced by a suitable expression 

                          𝜑(𝑥) = 𝑓(𝑥) + 𝜑(𝑥) − ∫ 𝑘(𝑥, 𝑡)𝐹(𝜑(𝑡))𝑑𝑡
𝑏

𝑎
.                           (3.20) 

The reason of this is to express equation (3.20) in the canonical from in order to 

employ the ADM. 

Substituting the expansion equation  

   ∑ 𝜑𝑛(𝑥)
∞
𝑛=0 = 𝑓(𝑥) + ∑ 𝜑𝑛(𝑥)

∞
𝑛=0 − ∫ 𝑘(𝑥, 𝑡)𝐹(∑ 𝜑𝑛(𝑡)

∞
𝑛=0 )𝑑𝑡

𝑏

𝑎
,               (3.21) 

we define 𝐹(𝜑(𝑥)) by 
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𝐹(𝜑(𝑥)) = ∑ 𝐴𝑛(𝜑0, 𝜑1, … , 𝜑𝑛)
∞
𝑛=0 , 

where 𝐴𝑛 are the Adomian polynomials and dependent only on 𝜑0, 𝜑1, … , 𝜑𝑛. 

Thus  

           ∑ 𝜑𝑛(𝑥)
∞
𝑛=0 = 𝑓(𝑥) + ∑ 𝜑𝑛(𝑥)

∞
𝑛=0 − ∫ 𝑘(𝑥, 𝑡) ∑ 𝐴𝑛

∞
𝑛=0 𝑑𝑡

𝑏

𝑎
,                  (3.22) 

we get the scheme 

                   { 
𝜑0(𝑥) = 𝑓(𝑥),                                                                

𝜑𝑛+1(𝑥) = 𝜑𝑛(𝑥) − ∫ 𝑘(𝑥, 𝑡) 𝐴𝑛(𝑡)𝑑𝑡
𝑏

𝑎
,   𝑛 ≥ 0.

                        (3.23) 

Lemma (3.4): 

The ADM for equation (3.20) is equivalent to the following problem: 

Find the sequence 𝜙𝑛 such that  

𝜙𝑛 = 𝜑0 + 𝜑1 +⋯+ 𝜑𝑛−1 with 𝜙0 = 0, 

and satisfies 

          { 
𝜑0(𝑥) = 𝑓(𝑥),                                                                                        

𝜙𝑛+1(𝑥) = 𝜑0(𝑥) + 𝜙𝑛(𝑥) − ∫ 𝑘(𝑥, 𝑡) 𝐹(𝜙𝑛(𝑡))
𝑏

𝑎
𝑑𝑡,   𝑛 ≥ 0.

           (3.24) 

Proceeding as before, equation (3.20) can be written in the semi-nonlinear equation 

𝜑 = 𝑓 + (𝐼 − 𝑁)𝜑, 

where  

𝑁𝜑 = ∫ 𝑘(𝑥, 𝑡)𝐹(𝜑(𝑡))𝑑𝑡
𝑏

𝑎
. 

Therefore,  

                       { 
𝜑0 = 𝑓,                                               

𝜙𝑛+1 = 𝜑0 + (𝐼 − 𝑁)𝜙𝑛,   𝑛 ≥ 0.
                                               (3.25) 

Thus. 

Theorem (3.5): 

Let us assume that  

‖𝐼 − 𝑁‖ < 𝛿 < 1, 

then the sequence 𝜙𝑛 defined by (3.25) converges to the solution 𝜙 of the equation 

𝜙 = 𝜑0 + (𝐼 − 𝑁)𝜙. 
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Proof: 

We first show that 𝜙𝑛 is a contractive sequence, we have 

‖𝜙𝑛+2 − 𝜙𝑛+1‖ = ‖(𝐼 − 𝑁)(𝜙𝑛+1 − 𝜙𝑛)‖ 

                           ≤ ‖𝐼 − 𝑁|‖‖𝜙𝑛+1(𝑡) − 𝜙𝑛(𝑡)‖ 

                           < 𝛿‖𝜙𝑛+1(𝑡) − 𝜙𝑛(𝑡)‖. 

If 𝑚 > 𝑛,𝑚 = 𝑛 + 𝑝, 𝑝 = 1,2, …, 

‖𝜙𝑛+𝑝 − 𝜙𝑛‖ ≤ ‖𝜙𝑛+𝑝 − 𝜙𝑛+𝑝−1‖ + ‖𝜙𝑛+𝑝−1 − 𝜙𝑛+𝑝−2‖ +⋯+ ‖𝜙𝑛+1 − 𝜙𝑛‖ 

                           < 𝛿𝑛(1 + 𝛿 + 𝛿2 +⋯+ 𝛿𝑝−2 + 𝛿𝑝−1)‖𝜙1 − 𝜙0‖ 

                           < 𝛿𝑛
1

1−𝛿
‖𝜙1 − 𝜙0‖. 

As 𝑛,𝑚 = 𝑛 + 𝑝 → ∞, we see that: 

‖𝜙𝑛+𝑝 − 𝜙𝑛‖ → 0. 

Hence 𝜙𝜀,𝑛 is a Cauchy sequence in the Banach space, that is 

lim
𝑛→∞

𝜙𝑛(𝑥) = 𝜙(𝑥). 

It remains to show that 𝜙(𝑥) is a solution of the Fredholm integral equation of the 

second kind: 

‖𝜙 − 𝜑0 − (𝐼 − 𝑁)𝜙‖ ≤ ‖𝜙 − 𝜙𝑛‖ + ‖𝜙𝑛 − 𝜑0 − (𝐼 − 𝑁)𝜙𝑛−1‖ 

                                      +‖(𝐼 − 𝑁)[𝜙𝑛−1 − 𝜙]‖. 

As 𝑛 → ∞, we get 

𝜙 = 𝜑0 + (𝐼 − 𝑁)𝜙. 

Therefore, 𝜙 is a solution of the Fredholm integral equation. 

∎ 

3.2.1 Integral Equations of the Form ∫ 𝒌(𝒙, 𝒕)𝝋(𝒙)𝝋(𝒕)𝒅𝒕
𝒃

𝒂
= 𝒇(𝒙) 

Consider the nonlinear integral equation of the form  

                            ∫ 𝑘(𝑥, 𝑡)𝜑(𝑥)𝜑(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏].                            (3.26) 

We write equation (3.26) in the form  

                    𝜑(𝑥) = 𝜑(𝑥) + 𝑓(𝑥) − ∫ 𝑘(𝑥, 𝑡)𝜑(𝑥)𝜑(𝑡)𝑑𝑡
𝑏

𝑎
.                              (3.27) 

We have  
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                  {
 𝜑0(𝑥) = 𝑓(𝑥),                                                          

𝜑𝑛+1(𝑥) = 𝜑𝑛(𝑥) − ∫ 𝑘(𝑥, 𝑡)𝐴𝑛𝑑𝑡
𝑏

𝑎
, 𝑛 ≥ 1,

                              (3.28) 

where 

                       𝐴𝑛 = ∑ 𝜑𝑘(𝑥)𝜑𝑛−𝑘(𝑡)
𝑛
𝑘=0 .                                                              (3.29) 

Example 1:  

Consider equation (3.26) with 𝑎 = 0, 𝑏 = 1, 𝑘(𝑥, 𝑡) = 𝑡, 𝑓(𝑥) = 3𝑥 and 

𝐴0 = 𝜑0(𝑥)𝜑0(𝑡), 𝐴1 = 𝜑0(𝑥)𝜑1(𝑡) + 𝜑1(𝑥)𝜑0(𝑡), …. 

Then, we have 

{
 
 

 
 

 

𝜑0(𝑥) = 3𝑥,         

𝜑1(𝑥) = 0,            
.           
.            
.            

𝜑𝑛(𝑥) = 0, 𝑛 ≥ 1.

 

Thus, 

𝜑(𝑥) = ∑ 𝜑𝑛(𝑥)
∞
𝑛=0 = 3𝑥. 

Example 2:  

Consider equation (3.26) with 𝑎 = 0, 𝑏 =
𝜋

2
, 𝑘(𝑥, 𝑡) = 2𝑠𝑖𝑛𝑡 and 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 and  

𝐴0 = 𝜑0(𝑥)𝜑0(𝑡), 𝐴1 = 𝜑0(𝑥)𝜑1(𝑡) + 𝜑1(𝑥)𝜑0(𝑡), …. 

 

Then, we have 

{
 
 

 
 

 

𝜑0(𝑥) = 𝑐𝑜𝑠𝑥,      

𝜑1(𝑥) = 0,             
.           
.            
.            

𝜑𝑛(𝑥) = 0, 𝑛 ≥ 1.

 

Thus, 

𝜑(𝑥) = ∑ 𝜑𝑛(𝑥)
∞
𝑛=0 = 𝑐𝑜𝑠𝑥. 

 

3.2.2 Integral Equations of the Form ∫ 𝒌(𝒙, 𝒕)𝑭(𝝋(𝒕))𝒅𝒕
𝒃

𝒂
= 𝒇(𝒙) 

We assume that 𝐹 is invertible (𝐹−1 exists), then we can set 

                               𝐹(𝜑(𝑥)) = 𝑣(𝑥), 𝜑(𝑥) = 𝐹−1(𝑣(𝑥)).                                  (3.30) 
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The equation (3.19) becomes   

                                   ∫ 𝑘(𝑥, 𝑡)𝑣(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑥),                                                  (3.31) 

which is a linear equation with respect to 𝑣. 

The problem is then to find 𝜑(𝑥) from 𝑣(𝑥).  

Example 3:  

Let  

                                ∫ 4𝑥𝑡 𝜑2(𝑡)𝑑𝑡 = 𝑥
1

0
.                                                               (3.32) 

 The Adomian polynomials for 𝐹(𝜑(𝑡)) = 𝜑2(𝑡) are  

𝐴0 = 𝜑0
2, 𝐴1 = 2𝜑0𝜑1, 𝐴1 = 2𝜑0𝜑2 + 𝜑1

2, …. 

We solve this equation by the above recursive scheme and obtain 

{
 
 

 
 

 

𝜑0(𝑥) = 𝑥,             

𝜑1(𝑥) = 0,             

𝜑2(𝑥) = 0,             
.           
.            

𝜑𝑛(𝑥) = 0, 𝑛 ≥ 1.

 

Thus, the first solution is given by 

𝜑(𝑥) = ∑ 𝜑𝑛(𝑥)
∞
𝑛=0 = 𝑥. 

 We first set 

𝑣(𝑥) = 𝜑2(𝑥), 𝜑(𝑥) = ±√𝑣(𝑥). 

The equation (3.32) becomes   

∫ 4𝑥𝑡 𝑣(𝑡)𝑑𝑡 = 𝑥
1

0

 

Then, we get 

{
  
 

  
 

 

𝑣0(𝑥) = 𝑥,       

𝑣1(𝑥) = −
𝑥

3
,   

𝑣2(𝑥) =
𝑥

9
,       

𝑣3(𝑥) = −
𝑥

27
,

 

and so on. 
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Thus, 

𝑣(𝑥) = ∑𝑣𝑛(𝑥)

∞

𝑛=0

=
3

4
𝑥. 

Another solution is given by 

𝜑(𝑥) = ±
√3𝑥

2
 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

 

 

 

 

 

 

 

 

Chapter 4 

 

Regularization Method and ADM 

for Solving Schlömilch’s Integral 
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4.1 Linear Schl𝐨̈milch’s Integral Equation 

The Schlömilch’s integral equation is a related integral equation of the first kind, 

which is also found in some problem of mathematical physics such that the derivation 

of the electron density profile from the ionospheric for oblique incidence for the 

quasi-transverse approximation [14].  

The linear Schlömilch integral equation reads:  

                                         𝑓(𝑥) =
2

𝜋
 ∫ 𝜑(𝑥 𝑠𝑖𝑛 𝑡)𝑑𝑡
𝜋/2

0
,                                         (4.1) 

where 𝑓(𝑥) is a continuous differential coefficient for −𝜋 ≤ 𝑥 ≤ 𝜋. 

This equation has one solution given by [14] 

                                     𝜑(𝑥) = 𝑓(0) + 𝑥 ∫ 𝑓′(𝑥 𝑠𝑖𝑛 𝑡)𝑑𝑡
𝜋/2

0
,                               (4.2) 

where 𝑓′ is the derivative of 𝑓 with respect to the argument 𝜉 = 𝑥 𝑠𝑖𝑛 𝑡. 

We will use the combined regularization-Adomian method [14] to handle the linear 

and nonlinear Schlömilch integral equations. 

The combined regularization-Adomian method is proved to be reliable and efficient. 

 

4.1.1 The Method of Regularization  

The method of regularization converts the linear Schlömilch’s integral equation (4.1) 

into the Schlömilch’s integral equation of the second kind in the form 

                                   𝜀𝜑𝜀(𝑥) = 𝑓(𝑥) −
2

𝜋
 ∫ 𝜑𝜀(𝑥 𝑠𝑖𝑛 𝑡)𝑑𝑡

𝜋

2
0

,                                (4.3)  

where 𝜀 is a small positive parameter, called the regularization parameter. 

The same procedure that used that used in the previous chapter can be applied to show 

that the solution 𝜑𝜀 of (4.3) converges to the solution 𝜑(𝑥) of equation (4.1) as 𝜀 → 0, 

that is  

lim
𝜀→0

𝜑𝜀(𝑥) = 𝜑(𝑥). 

Consequently, we can apply the ADM for solving the Schlömilch’s integral equations 

of the second kind, and obtain the recursive scheme 

                            {
𝜑𝜀,0(𝑥) =

1

𝜀
𝑓(𝑥),                                                    

𝜑𝜀,𝑛+1(𝑥) = −
2

𝜋𝜀
 ∫ 𝜑𝜀,𝑛(𝑥 𝑠𝑖𝑛 𝑡)𝑑𝑡

𝜋

2
0

, 𝑛 ≥ 0.
                     (4.4) 
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4.1.2 Examples 

The scheme that we presented will be illustrated by the following examples. 

Example 1:  

Consider the linear Schlömilch’s integral equation 

                                   1 + 𝑥 =
2

𝜋
∫ 𝜑(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡,  −𝜋 ≤ 𝑥 ≤ 𝜋.                        (4.5) 

Using the regularization method, equation (4.5) becomes  

𝜑𝜀(𝑥) =
1

𝜀
(1 + 𝑥) −

2

𝜀𝜋
∫ 𝜑𝜀(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡. 

Then the recursive scheme can be expressed as 

{
 
 
 
 

 
 
 
 

 

𝜑𝜀,0(𝑥) =
1

𝜀
(1 + 𝑥),               

𝜑𝜀,1(𝑥) = −
2

𝜀2𝜋
(
𝜋

2
+ 𝑥),      

𝜑𝜀,2(𝑥) =
4

𝜀3𝜋2
(
𝜋2

4
+ 𝑥),     

𝜑𝜀,3(𝑥) = −
8

𝜀4𝜋3
(
𝜋3

8
+ 𝑥) ,

 

and so on. 

So, 

 𝜑𝜀(𝑥) =
1

𝜀
(1 + 𝑥) −

2

𝜀2𝜋
(
𝜋

2
+ 𝑥) +

4

𝜀3𝜋2
(
𝜋2

4
+ 𝑥) −

8

𝜀4𝜋3
(
𝜋3

8
+ 𝑥) +⋯ 

        = 𝑥 (
1

𝜀
−

2

𝜀2𝜋
+

4

𝜀3𝜋2
−

8

𝜀4𝜋3
+⋯) +

1

𝜀
(1 −

1

𝜀
+

1

𝜀2
−

1

𝜀3
+⋯). 

Consequently,  

𝜑𝜀(𝑥) =
𝜋𝑥

2 + 𝜀𝜋
+

1

1 + 𝜀
. 

Setting 𝜀 → 0, we obtain  

𝜑(𝑥) = lim
𝜀→0

𝜑𝜀(𝑥) =
𝜋

2
𝑥 + 1, 

which is the exact solution of the given equation. 

Example 2:  

Let  

                          𝑥2 =
2

𝜋
∫ 𝜑(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡,  −𝜋 ≤ 𝑥 ≤ 𝜋.                                 (4.6) 
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Using the regularization method, equation (4.6) becomes  

𝜑𝜀(𝑥) =
1

𝜀
𝑥2 −

2

𝜀𝜋
∫ 𝜑𝜀(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡. 

Then the recursive scheme can be expressed as 

{
 
 
 
 

 
 
 
 

  

𝜑𝜀,0(𝑥) =
1

𝜀
𝑥2,   

𝜑𝜀,1(𝑥) = −
𝑥2

2𝜀2
,

𝜑𝜀,2(𝑥) =
𝑥2

4𝜀3
,    

𝜑𝜀,3(𝑥) = −
𝑥2

8𝜀4
,

 

and so on. 

So, 

𝜑𝜀(𝑥) = 𝑥2 (
1

𝜀
−

1

2𝜀2
+

1

4𝜀3
−

1

8𝜀4
+⋯). 

Consequently,  

𝜑𝜀(𝑥) =
2𝑥2

1 + 2𝜀
. 

Setting 𝜀 → 0, we obtain  

𝜑(𝑥) = lim
𝜀→0

𝜑𝜀(𝑥) = 2𝑥
2, 

which is the exact solution. 

Example 3: 

Let  

                            1 + 𝑥2 =
2

𝜋
∫ 𝜑(𝑥 𝑠𝑖𝑛 3𝑡)
𝜋/6

0
𝑑𝑡,  −𝜋 ≤ 𝑥 ≤ 𝜋.                           (4.7) 

Using the regularization method, equation (4.7) becomes  

𝜑𝜀(𝑥) =
1

𝜀
(1 + 𝑥2) −

2

𝜀𝜋
∫ 𝜑𝜀(𝑥 𝑠𝑖𝑛 3𝑡)
𝜋/6

0
𝑑𝑡. 

Then the recursive scheme can be expressed as 
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{
 
 
 
 

 
 
 
 

  

𝜑𝜀,0(𝑥) =
1

𝜀
(1 + 𝑥2),               

𝜑𝜀,1(𝑥) = −
1

3𝜀2
(1 +

𝑥2

2
),     

𝜑𝜀,2(𝑥) =
1

9𝜀3
(1 +

𝑥2

4
),         

𝜑𝜀,3(𝑥) = −
1

27𝜀4
(1 +

𝑥2

8
),   

 

and so on. 

So, 

𝜑𝜀(𝑥) = 𝑥
2 (
1

𝜀
−

1

6𝜀2
+

1

36𝜀3
−

1

216𝜀4
+⋯) +

1

𝜀
(1 −

1

3𝜀
+

1

9𝜀2
−

1

27𝜀3
+⋯). 

Consequently, 

𝜑𝜀(𝑥) =
6𝑥2

1 + 6𝜀
+

3

1 + 3𝜀
. 

Setting 𝜀 → 0, we obtain  

𝜑(𝑥) = lim
𝜀→0

𝜑𝜀(𝑥) = 6𝑥
2 + 3. 

which is the exact solution of the given equation. 

 

 

4.2 Nonlinear Schl𝐨̈milch’s Integral Equation 

Consider the nonlinear Schlömilch’s integral equation of the form [14] 

                                   𝑓(𝑥) =
2

𝜋
 ∫ 𝐹(𝜑(𝑥 𝑠𝑖𝑛 𝑡))𝑑𝑡
𝜋/2

0
,                                         (4.8) 

where 𝐹(𝜑(𝑥 𝑠𝑖𝑛 𝑡)) is a nonlinear function of 𝜑(𝑥 sin 𝑡) and 𝑓(𝑥) is a continuous 

differential coefficient for −𝜋 ≤ 𝑥 ≤ 𝜋. 

To handle this nonlinear equation, we will follow the same analysis presented earlier 

for linear equations.  

To achieve this goal, we should first transform this nonlinear equation to a linear 

form. 

To transform equation (4.8) to a linear form of the first kind, we first use the 

transformation 
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                                       𝐹(𝜑(𝑥 𝑠𝑖𝑛 𝑡)) =  𝑣(𝑥 𝑠𝑖𝑛 𝑡),                                          (4.9) 

such that 

                                       𝜑(𝑥 𝑠𝑖𝑛 𝑡) = 𝐹−1(𝑣(𝑥 𝑠𝑖𝑛 𝑡)),                                     (4.10) 

which will transform equation (4.8) to 

                                               𝑓(𝑥) =
2

𝜋
 ∫ 𝑣(𝑥 𝑠𝑖𝑛 𝑡)𝑑𝑡

𝜋

2
0

.                                      (4.11) 

The method of regularization transforms the linear Schlömilch’s integral equation of 

the first kind (4.11) to the Schlömilch’s integral equation of the second kind given by 

                                       𝜀𝑣𝜀(𝑥) = 𝑓(𝑥) −
2

𝜋
 ∫ 𝑣𝜀(𝑥 sin 𝑡)𝑑𝑡

𝜋

2
0

,                            (4.12) 

where 𝜀 is a small positive parameter. 

Consequently, we can apply the ADM for solving the equation (4.12), and obtain 

                               {
𝑣𝜀,0(𝑥) =

1

𝜀
𝑓(𝑥),                                                 

𝑣𝜀,𝑛+1(𝑥) = −
2

𝜋𝜀
 ∫ 𝑣𝜀,𝑛(𝑥 𝑠𝑖𝑛 𝑡)𝑑𝑡

𝜋

2
0

, 𝑛 ≥ 0.
.                 (4.13) 

 

4.2.1 Examples 

The scheme that we presented will be illustrated by the following examples. 

Example 1:  

Consider the nonlinear Schlömilch’s integral equation 

                          5𝑥6 =
2

𝜋
∫ 𝜑2(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡,  −𝜋 ≤ 𝑥 ≤ 𝜋.                          (4.14) 

Using the transformation 𝑣 = 𝜑2, which transforms the equation (4.14) to a linear 

equation given by 

                                     5𝑥6 =
2

𝜋
∫ 𝑣(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡.                                         (4.15) 

Using the regularization method, equation (4.15) becomes  

𝑣𝜀(𝑥) =
5

𝜀
𝑥6 −

2

𝜀𝜋
∫ 𝑣𝜀(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡. 

Then the recursive scheme can be expressed as 
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{
 
 
 
 

 
 
 
 

  

𝑣𝜀,0(𝑥) =
5

𝜀
𝑥6,             

𝑣𝜀,1(𝑥) = −
25 𝑥6

16 𝜀2
,      

𝑣𝜀,2(𝑥) =
125 𝑥6

256 𝜀3
,       

𝑣𝜀,3(𝑥) = −
625 𝑥6

4096 𝜀4
,

 

and so on. 

So, 

𝑣𝜀(𝑥) =
5

𝜀
𝑥6 (1 −

5

16 𝜀
+

25

256 𝜀2
−

125

4096 𝜀3
+⋯). 

Consequently,  

𝑣𝜀(𝑥) =
80 𝑥6

5 + 16 𝜀
. 

Setting 𝜀 → 0, we obtain  

𝑣(𝑥) = lim
𝜀→0

𝑣𝜀(𝑥) = 16 𝑥6. 

Hence the exact solution is given by  

𝜑(𝑥) = ±4𝑥3. 

Example 2: 

Let  

                            
35

8
𝑥8 =

2

𝜋
∫ 𝜑4(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡,  −𝜋 ≤ 𝑥 ≤ 𝜋.                      (4.16) 

Using the transformation 𝑣 = 𝜑4, which transforms the equation (4.16) to a linear 

equation given by 

                                       
35

8
𝑥8 =

2

𝜋
∫ 𝑣(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡.                                     (4.17) 

Using the regularization method, equation (4.17) becomes  

𝑣𝜀(𝑥) =
35

8𝜀
𝑥8 −

2

𝜀𝜋
∫ 𝑣𝜀(𝑥 𝑠𝑖𝑛 𝑡)
𝜋/2

0
𝑑𝑡. 

Then the recursive scheme can be expressed as 
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{
 
 
 
 

 
 
 
 

  

𝑣𝜀,0(𝑥) =
35

8 𝜀
𝑥8,                    

𝑣𝜀,1(𝑥) = −
1225 𝑥8

1024  𝜀2
,           

𝑣𝜀,2(𝑥) =
42875 𝑥8

131072 𝜀3
,           

𝑣𝜀,3(𝑥) = −
1500625 𝑥8

16777216 𝜀4
,

 

and so on. 

So, 

𝑣𝜀(𝑥) =
35

8 𝜀
𝑥8 (1 −

35

128 𝜀
+

1225

16384 𝜀2
−⋯). 

Consequently,  

𝑣𝜀(𝑥) =
560 𝑥8

35 + 128 𝜀
. 

Setting 𝜀 → 0, we obtain  

𝑣(𝑥) = lim
𝜀→0

𝑣𝜀(𝑥) = 16 𝑥8. 

Hence the exact solution is given by  

𝜑(𝑥) = ±2𝑥2. 
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