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INTRODUCTION

The last century witnessed a revolution in physical sciences that caused a profound
change in the concepts and tools of applied mathematics. The theory of integral
equations was one of these tools that have emerged and played — and still playing —a
major role in studying the behavior of solutions of various types of boundary value
problems. As a result, an intensive amount of research has been carried on this area,
and the majority of it was devoted to the Fredholm integral equations, because they
offer a powerful tool in solving a wide spectrum of problems related to physics and
other areas.

The theory has been developed by Fredholm in 1900, then flourished by the hands of
Hilbert, Frechet, Riesz, Lebesgue, and other famous mathematicians. Today, the
theory occupies a prominent place in the mathematical research, and attracts an
increasing number of researches from different disciplines. This research project is a
humble attempt to make a contribution to this theory and its applications.

The project consists of four chapters. The first chapter introduces important theorems,
such as Banach contraction principle and existence and uniqueness theorem of linear
and nonlinear Fredholm integral equations in the spaces C([a,b]) and Lo.

The second chapter deals with the Adomian decomposition method (ADM), and how
to use it to find solutions of the linear and nonlinear Fredholm integral equations of
second kind. Then we discuss the convergence analysis of the ADM for them.

In the third and fourth chapters, Fredholm integral equations of the first kind and
Schlémilch’s integral equation are transformed in such a manner that the ADM can be
applied. We use the regularization method combined with the ADM to handle all
forms of this type of integral equations. We also present theorems concerning the
convergence of the ADM.




Chapter 1

Existence and Uniqueness Theorems
for the Fredholm Integral Equation
of the Second Kind




1.1 Fixed-Point Theorem and its Applications

Theorems concerning the existence and properties of fixed points are known as fixed-
point theorems [6,11]. Such theorems are the most important tools for proving the
existence and uniqueness of the solution to various mathematical models (differential
integral and partial differential equation, etc.) representing phenomena arising in
different fields, such as steady-state temperature distribution, chemical reaction,
neutron transept theory, economic theories, epidemics and flow of fluids.

In this chapter, we state and prove the Banach contraction principle which is one of
the simplest and most useful methods for the contraction of solution of linear and
nonlinear integral equation.

Definition (1.1)
Let T be a mapping of a normed space X into itself.

T-X-X,

then T is called a contraction mapping if there exists a constant M, 0 < M < 1 such
that

ITx — Tyl < M ||lx —yll, Vx,y € X. (1.1)

Definition (1.2)
Let X be a Banach space and T: X — X, then a point x € X such that

Tx =x
is called a fixed point of T.

Theorem (1.3): Banach contraction principle
Let X be a Banach space and T: X — X is a contraction mapping, then it has a unique
fixed pointx* € X, i.e.Tx* = x".

Proof:
We first show the existence of the fixed point.

Let x, be an arbitrary point in X and we define
x1 =Txg, X0 =Txq, .., Xy = Txp_q .
Thus,
xy = Txy = T(Txy) = T?x,,

X3 = sz = T(szo) = T3x0,




Xp = Txp 1 =T(T" 1xy) = T"x,
Ifm>n,saym=n+p, p=123,..
then
Py = 2all = TP = Tl = IT(T™Px0) = T(T™ o) |
< M ||T™P 1x, — T 1x,||.

Continuing this process (n — 1) times, we have:

||xn+p — xn” < M™||TPxy — x|, n=0,1, .... (1.2)
However,
ITPxo — xoll =IITPxg — TP g + TP xg — TP 2xy + TP %x5 — -+ + Txg — Xo|
< ITPxo — TP x|l + ITP  xg — TP 2x0 || + -+ + (I Txg — o]l
Since
TPxq =TFP 1xy, TP 1xq = TP 2xy, ..., Txg = x4,
we have

ITPxo — xoll < ITP oy = TP x| + ITP 2% — TP 2 x|l 4 -+ + [l — Xl
By (1.2) we see that:
||xn+p - xn” < MMMP™1 ey — xoll + MP72 |l — xoll 4 -+ + [l — %111,
or
||xn+p — xn” < M [MP~Y + MP72 4+ ..+ M + 1]]|x; — x0]l
< M = 1ba = xoll.
Asn,m =n+ p — oo, we see that
%4 = x| = 0,
that is (x,) is a Cauchy sequence in the Banach space X.
Hence, (x,,) convergesto a limit x* € X.

Since T is continuous, we have




Tx* =T (lim x,) = lim Tx, = lim x,,; = x".
N0 n—->00 n—->00
Thus x* is a fixed point of T
Now, we prove the uniqueness of the fixed point.
Let x* and y™* be two fixed points, Tx* = x* and Ty* = y*, we also have
ITx* =Ty*ll < M ||lx* = y~]|,

as T is a contraction.

But
ITx* —Ty*|l = llx* —y~II.
Thus
lx* — y*ll < Mllx™ — v,
or

1 -MIx* -yl <0,
since M < 1, we have
Ix* —y*ll =0=x" =y~
This proves that the fixed point of T is unique.
|

In general, the condition that M is strictly less than one is needed for uniqueness and
the existence of a fixed point. For example, if X = {0,1} is the discrete metric space
with metric determined by d(0,1) = 1, then T defined by T(0) =1 and T(1) =0
satisfies (1.1) with M = 1, but T does not have any fixed point.

It may happen that X is not complete in any metric for which one can prove that T is a
contraction. This can be an indication that the solution of the fixed point problem does
not belong to X.

1.2 Integral Equations

Definition (1.4):
An integral equation is an equation containing an unknown function under an integral
operator and can be written as [13]:




() () = F(x) + A [ k(1) F(o(0))dt, (13)

a(x)

where f(x), a(x), a(x) and b(x) are given functions, k(x, t) is called the kernel, A is
a parameter and F(¢(t)) is nonlinear function.

e A linear Fredholm integral equation of the second kind for an unknown function
@:[a, b] = R is an equation of the form [13]:

9(x) = f(x) + [, k(x,t) p(t)dt (1.4)

o A Fredholm integral equation of the first kind is an equation of the form [13]:

f@) =[] k(x,0) o)t (L5)

1.3 Theorems

1.3.1 Linear Fredholm Integral Equations of the Second Kind
Theorem (1.5):
Let k(x, t) be defined in

A={(x,t):a<x<b,a<t<b}
and
k:[a,b] X [a,b] = R
such that
J2 [21kCx, ©)17 dx de < o0 and f(x) € Ly[a, b].

Then the integral equation (1.4) has a unique solution ¢(x) € L,[a, b] for sufficiently
small value of the parameter A.

Proof:
Let X = L, and consider the mapping T: L,[a, b] = L,[a, b]

To=h
where
h(x) = f() + A [, k(x,t) p(t)dt.

This definition is valid for each ¢ € L,[a, b] and h € L,]a, b].




Since f € Ly[a, b] and A € R it is sufficient to show that
[2 k(x,t) @(t)dt € Ly[a,b].
Let
b
W) = [, k(x, 0) p(t)dt,
then by the Cauchy-Schwartz inequality we have:

WOl = |f; k(e ©) p(0)dt]| < [ 1k (e 0) p(0)]dt

< ([ikCe o a)” (Plo@P @)

Therefore,
12 < [1kCx O dt [Cle) dt,
or
ol dx < f7 ([ kG 01 dt) dx [ e dt.
By the hypotheses,

12 (f2 1, O dr) dx < o0 and € Ly[a, b].
We have, ¥ (x) € Ly[a, b].
Now, we show that T is a contraction, for any ¢4, ¢, € L,[a, b], we have

ITo1 =Tl = llhy = hell,

where

() = F(0) + A [, k(x,t) @1 ()dt
and

hy(X) = () + 2 [ k(x,8) 9y (t)dt.
Thus

llhy = hall = ||2 [ k(x, ©) [02(8) — po(®)]dt |

1/2
= (12|12 kG0 Ta (0 = o]t ax)




<121 (J2 S, 0P dxae) ” ([lou(® - ga(012de)

Hence

1Ty = Toall < 121 ([ [21kCe 01 dxdt) " llgy — a1l < C llos = @2l
where
b b 1/2
c=1(J; falk(x,t)lzdxdt) .

If we choose C < 1, that is

1

(2] < 77
(2 f21kGe, 0 dac )

Thus,

T is a contraction and by Theorem (1.3), T has a unique fixed point, that is,

To* = @*, @* € Ly[a,b].

|
1.3.2 Nonlinear Fredholm Integral Equations of the Second Kind
The same technique can be applied to the nonlinear integral equation [13]:
b
() = f(x) + [, K, t,p(1))dt, (1.6)

where K and f are continuous functions, and for all x,t € [a,b] and y € R
|K(x,t,z;) — K(x,t,z,)| < M|z, — z,|, where M is constant. (1.7)

The integral equation (1.6) can be written as a fixed point equation T = ¢, where
the map T is defined by

To = f(x) + A f, K(x,t, p(t))dt,
where
T:C([a, b]) = C([a, b]).

We can prove in the same manner that T is a contraction.




We have for any ¢4, ¢, € C([a, b]),
170y = Tall,, = Iy = hall,, = |2 (K (2. £.0:(®) = K (£, 02(0)) de ||
<12l sup LK (et 01(8) — K (3,8, 05(6)) |t
asxs

b
< || sup falepl_(ledt < [AIMOb - a)lles — @l -

asxs<b

Hence,
ITo1 —To:llo < Cllo1 — @2l
where
C =AM - a).
Consequently, the mapping T is a contraction if
1Al < 1/M(b — a). (1.8)
Hence, T has a unique fixed point, that is
Te* = ¢" ¢" € C([a,b]).
Thus we have proved.

Theorem (1.6):
If A satisfies (1.8) and K satisfies (1.7), then the integral equation (1.6) has a unique
solution ¢ (x) € C([a, b]).




Chapter 2

ADM for Solving the Fredholm
Integral Equation of the Second

Kind
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2.1 The Adomian Decomposition Method (ADM)

The Adomian decomposition method has been receiving much attention in recent
years in applied mathematics in general, and in the area of series solutions in
particular. The method was proved to be powerful, effective, and can easily handle a
wide class of linear or nonlinear, ordinary or partial differential equations, and linear
and nonlinear integral equations. The ADM demonstrates fast convergence of the
solution and therefore provides several significant advantages. The method will be
successfully used to handle most types of ordinary differential equations that appear
in several physical models and scientific applications [1,2,3,7,8,9,10,12].

The ADM consists of decomposing the unknown function u(x) of any equation into a
sum of an infinite number of components defined by the decomposition series

u(x) = Xn=o tn (%),

where the components uy, 14, u,, ... are to be determined in a recursive manner. The
ADM concerns itself with finding the components individually. The determination of
these components can be achieved in an easy way through a recursive relation that
usually involves simple integrals.

2.1.1 Solving Linear Ordinary Differential Equations by the ADM
We first consider the linear differential equation written in an operator form as

Lu+Ru=g, (2.1)

where L is the highest order derivative which is assumed to be invertible (L~ exists),
R is other linear differential operator and g is a source term.

We next apply the inverse operator L~ to both sides of equation (2.1) and use the
given condition to obtain

u=f—L"(Ru), (2.2)

where the function f represents the term arising from integrating the source term g
and from using the given conditions that are assumed to be prescribed. As indicated
before, ADM defines the solution u by an infinite series of components given by

U = Y=o Un, (2.3)

11




where the components u, U4, u,, ... are usually recurrently determined.

Substituting equation (2.3) into both sides of equation (2.2) leads to

Zn=oUn = f = L7 (R X5o Un),

which can be rewritten as
uO +u1 +u2 + = f_L_l (R(uo +u1 +u2 + ))

To construct the recursive relation needed for the determination of the components
Ug, Ug, Uy, ..., IT IS important to note that the ADM suggests that the zeroth component
U, is usually defined by the function f described above, i.e. by all terms, that are not
included under the inverse operator L™, which arise from the initial data and from

integrating the inhomogeneous term. Accordingly, the formal recursive relation is
defined by

uy = f,
{ Upyp = —L71 (R(un)), n=>0, (2.4)

or equivalently

(Up =f,

u, =—L71 (R(uo)).
u, = =L (R(uy)),

< .

(2.5)
\ u, = gt (R(uy-1)), n =0,
Consequently, the solution can be obtained in a series form.
Example 1.
Use ADM to solve the following equation [12]
u'(x) = ulx),u(0) = A. (2.6)
In an operator form equation (2.6) becomes
Lu = u, (2.7)

where the differential operator L is given by

d

L=—,
dx

and therefore the inverse operator L™? is defined by

12




L) = fx(.)dx.

Applying L~ to both sides of equation (2.7) and using the initial condition, we obtain
u(x) —u(0) = L™ 1(w),
or equivalently
u(x) = A+ L (). (2.8)

Substituting equation (2.3) into both sides of equation (2.8) gives

Yheoln = A+ LT (X0 Un). (2.9)
In view of equation (2.9), we obtain the following recursive relation
uy(x) = A
_ 2.10
{ Uns1(x) = L (uy(x)), n=0. (2.10)

or

( up(x) = A,
u (%) = Ly (x)) = Ax,
u, (%) = LY (wy (x)) = Ax?/2,

us(x) = L (up(x)) = Ax3/3!, (2.11)

\

Consequently, the solution is given by

u(x) = A+ Ax + Ax?%/2 + -+
=A1+x+x2/2+-)

= Ae*.

2.1.2 Solving the Nonlinear Ordinary Differential Equations by the ADM
To apply the ADM for solving nonlinear ordinary differential equations, we consider
the equation

Lu+Ru+Fu=g, (2.12)

where the differential operator L may be considered as the highest order derivative in
the equation, R is the remainder of the differential operator, Fu is the nonlinear term
such as u?,u3,sinu,e*etc. , and g is an inhomogeneous term.

13




We next apply the inverse operator L=t to both sides of equation (2.12) and use the
given condition to obtain

u=f—L"1Ru) - L (Fu), (2.13)

where the function f represents the terms arising from integrating the source term g
and from using the given conditions that are assumed to be prescribed.

The nonlinear term can be expressed by an infinite series of the so-called Adomian
polynomials A4,, given in the form

Fu =¥y An, (2.14)

where A, are the Adomian polynomials for the nonlinear term Fu, and can be
evaluated by using the following expression [1,2,3,7,8,9,10,12]

Ap = % %F(Zﬁio “iui)] ,n=012,... (2.15)

a=0
where « is parameter and F € C*([a, b]).

Substituting equation (2.3) and equation (2.14) into equation (2.13), we obtain:

nmoUn = f = LM (REg-oun) — L7 (B0 An).

The various components u,, of the solution u can be easily determined by using the
recursive relation

{uo:f'

Uper = —L1 (Rup) — L (4y), n >0, (216)

Having determined the components u,, n = 0, the solution u in a series form follows
immediately.

2.1.3 Adomian Polynomials [1,2,3,7,8,9,10,12]
In this section, we will calculate polynomials for several forms of nonlinearity that
may arise in nonlinear ordinary equations.

1. Fu=u?
The Adomian polynomials are given by

Ao = up?,
{ Ay = 2uguy,

Ay = 2uguy + uq?,
kA3 = 2ugus + 2uqu,.

(2.17)

2. Fu=sinu

14




The Adomian polynomials for this form of nonlinearity are given by

( Ao = sinuy,
A1 = uqcosuy,

A, = uycosuy — %ulzsinuo, (2.18)
! . -
kAg = U3C0SUy — U U, SINUY — 71Uy * COSUp.
3. Fu=e*
The Adomian polynomials are given by
( AO = uol
I Al = uleuo,
4 A, = (uz + %ulz) eto, (2.19)
1
L Az = (uz + wup + 5wy ’)et.
4, Fu=Ilnuu>0
The A,, polynomials for logarithmic nonlinearity are given by
r AO = ln uo,
e
A = o
3 A, = % _ 21;122 (2.20)
0 0
Uz Uiz u,3
kAg B u_o B up?2 3up*’
Example 2.
Solve the first order nonlinear ordinary differential equation [12]
u +u?=0,u(0)=1 (2.21)
In an operator form, equation (2.21) can be written as
Lu = —u?, (2.22)

where L is a first order differential operator.
Applying L™ to both sides of equation (2.22) and using the initial condition give
u(x) =1-L1(w?). (2.23)
The ADM suggests that the solution u(x) be expressed by the decomposition series
u(x) = Yo un (%), (2.24)

and the nonlinear terms u? be equated to

15




u? =Y A, (2.25)
Substituting equation (2.24) and equation (2.25) into equation (2.23) yields
Ymmoun(x) = 1= L7 X0 Ap). (2.26)

The Adomian polynomials A4,, for the nonlinear term u? were determined before,
where we found

Ay = ug?,
Ar = Zugty, , (2.27)
AZ = ZuOuZ + ul )
A3 = 2u0u3 + Zuluz,
and so on.
Comparing the two sides of (2.26), we obtain
(( Uy = 1,
u1 = _L_lAO = _L_luoz = —X,
uz = _L_lAl = _L_l(zuoul) == xz,
{ u3 = _L_lAZ = _L_l(zuouz + ulz) == _x3, (228)
\
Consequently, the solution is given by
u(x) =1—-x+x*—x3+--
1
T 14x
2.2 Linear Fredholm Integral Equations of the Second Kind
Consider the linear Fredholm integral equation of the second kind [13]
o) = f(x) + 2 [, k(x,t) p(t)dt,a < x < b. (2.29)

Following the ADM, the unknown solution of ¢(x) is assumed to be the
decomposition

@(x) = Xnzo Pn(X). (2.30)

We begin by choosing the initial component ¢, (x) to be the function f(x) and where
the remaining components ¢,, (x) we will be determined recursively by using ADM.

Therefore, this iterative method can be stated as follows

16




{ Po(x) = f(x),
(2.31)

Pri1(X) = 2 [, k(x,8) @ (O)dt, n > 0.

Now, by assuming the first (n + 1) terms of equation (2.30), we obtain the n-th
approximation to the solution as

b () = Xi50 9i(x), (2.32)

or

Pn(x) = @o(x) + ZIZ1 i (). (2.33)

By substitution of the recursive scheme equation (2.31) into equation (2.33), we
conclude that the ADM for equation (2.29) can be converted into an equivalent
problem, which we state as follows.

Lemma (2.1):
The ADM for equation (2.29) is equivalent to the following problem:

Find the sequence ¢,, such that
bn = @0+ @1+ -+ @1 With g =0,

and satisfies

{ Po(x) = f(x), (2.3

$n(0) = o) + 1 [ k(x,8) Py (D) dt, n 2 1.

2.2.1 Convergence Analysis of the ADM
In this section, we will discuss the result concerning the convergence analysis of the
ADM for equation (2.29).

Theorem (2.2):
A sufficient condition for ¢,, to be convergent is that

21 sup [ lk(x,0)] dt < 1.

asxs<b

The sequence ¢,, defined by (2.34) is convergent and has a limit ¢ solution of

$(x) = 9o(x) + A [ k(x,t) p(8) dt.

Proof:
We first show that ¢,, is a Cauchy sequence.

ALD k(60 [Prsr (D) — dp(D]dt

”¢n+2_'¢n+1”oo = Ssup

asxs<b

17




<121 sup [ kGO [dnar(t) — da(®)] dt

asxs<b

< Clln+1 = Pnll,,,

where

C =12l sup [ lk(x ) dt < 1.

asxs<b

Ifm>nm=n+pp=12..
”¢n+p - ¢n”m < ||¢n+p - ¢n+p—1”oo + ||¢n+p—1 - d)n+1o—2”oo ot ||¢n+1 - ¢n||oo
SC'"A4+CH+C*+ -+ CP 2+ P Dlpy — Poll,
1
< Cn;”‘lh — doll .-
Asn,m =n+ p — oo, we see that:

||¢n+p - ('bn”oo - 0.
Hence, ¢,, is a Cauchy sequence in the complete space C([a, b]), that is
lim ¢, () = $(x).

It remains to show that ¢(x) is a solution of the Fredholm integral equation of the
second kind:

|6 = F =21 kG v e de|| <116 = pall + |21, kG ) [dna(6)

~pOdtlle + || ¢ —f = 21 kCe 1) s (D) de|
As n — oo, we get

$(0) = f(0) + A J, k(x,t) p(t) dt .

Therefore, ¢ is a solution of the Fredholm integral equation.

|
Example 3:
Solve the following Fredholm integral equation

px)=e*—1+ fol t (t)dt. (2.35)

The ADM assumes that the solution ¢(x) has a series form given by (2.30).
Substituting the decomposition series (2.30) into both sides of equation (2.35) gives

18




@o(x) + @1(x) + @ (x) + -

e — 1+ [1t[po(t) + @1 () + @y (L) + -
Therefore, we obtain

((Po(x) = e*—1,

| .00 = [ too(O)dt = [} t [ef — 1]dt =1,
{l 9200 = Jy t gy (@)t = [ t[1/2]de =

| @3(x) = folt @, (t)dt = folt [1/4]dt =

)

L

R N

)

and so on. Using equation (2.30) gives the series solution

p(x) = ex_1+(%+i+§+...)_

Since % + i + % + -+ is a geometric series, that its sum is given by

S

1/2
/ 1

“1-1/2
Thus

p(x) = e*.

2.3 Nonlinear Fredholm Integral Equation of the Second Kind

Consider the nonlinear Fredholm integral equation of the second kind [13]

p(x) = () + A [ k(x,0) F(p(D)dt. (2:36)
The same procedure can be applied to resolve this nonlinear Fredholm integral
equation.

Proceeding as before, we substitute the expansion (2.30) into (2.36) yields

S0 on(X) = F(0) + A [ k(x, ) F(S50 0n(t))dt. (2.37)
We define F () by

F(q)) = Z?Lozo An((pOI P1, ) (pn)'

(2.38)
where A,, are the Adomian polynomials [12] and depend on ¢, ¢4,

vy P
Thus,

S0 0n(X) = FOO) + A [ k(x,t) T2 An(t) dt. (2.39)
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We get the scheme

{‘Po(x) = f(x),
(2.40)

Pni1 () = 2 [ k(x,0) A, ()t ,n> 0.

Modified ADM:
A modified recurrence relation is usually used, where f(x) is decomposed into two
components f; (x) and f,(x), such that

fx) = fi(x) + f2(x).
In this case the modified recurrence relation becomes in the form
Po(x) = f1(x),

01(0) = f,(0) + A [ k(x, 1) Ap()dt, (2.41)
Pni1(¥) = A [, k(x, ) A,(O)dt ,n > 1.

As before, we conclude that the ADM for equation (2.36) can be converted to be the
following problem.

Lemma (2.3):
The ADM for equation (2.36) is equivalent to the following problem:

Find the sequence ¢,, such that

Pn = Qo+ @1+ -+ @p_q With ¢q = 0,

and satisfies

{%(x) = f(x),

Pu(0) = 9o() + A [ kG0 O) F($noa (D) dt, n 21 (242

2.3.1 Convergence Analysis of the ADM
In this section, we will discuss the result concerning the convergence analysis of the
ADM for equation (2.36).

Theorem (2.4):
Let us assume that the operator F(¢) satisfies Lipchitz condition. The sequence ¢,
defined by (2.42) is convergent and has a limit ¢ solution of

$(x) = po(x) + A [ k(x,£) F(¢(1)) dt.

Proof:
We will show that ¢,, is a Cauchy sequence.
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nrz = Graall, = sup [2f] k(x,6) [F($nea () = F($n(0))]de]

asxs<b

< |2l sup [71kG O] [F(@nea(£)) — F(@n ()] dt

asxs<b

<121 sup [ k(O] M |$nss () — pa(O)] dt

asxs<b
< Cllpnsr — Pl

where

C=IAIM sup [ lk(x0)dt <1.

asx<b

Ifm>nm=n+pp=12..
[#n+p = bnll,, < lPnsp = Prap-all, + -+ 1dnss — ¢ull,,
SC"(1+CH+C*+ 4+ CP2+CP Dl — doll,
< " Il¢1 = oll,,.
Asn,m =n+ p — oo, we see that:
||¢n+p - ¢n”oo - 0.
Hence, ¢,, is a Cauchy sequence in the complete space C([a, b]), that is
lim ¢, (0) = $(x).

It remains to show that ¢(x) is a solution of the Fredholm integral equation of the
second kind:

|6 = F =21, kG &) F(@@) dt || < Nl = pulleo + || A1, KCx,6) [F(n-a())

— F@O)] dtlleo + || = f = 2 [, kCo,O) Fpna () e || .
Asn — oo, we get

$() = f() + 1, k(x,0) F($(D) dt.

Therefore, ¢ is a solution of the Fredholm integral equation.

Example 4:
Use the ADM to solve the nonlinear Fredholm integral equation
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_ L2 _ Y 1 o
() =x% ——+ J, t p*(t)dt. (2.43)
Substituting the series (2.30) and (2.38) into (2.43), we find
S0 on(x) = 22 — =+~ [t T2 An(6) dt,

where A,, are the Adomian polynomials for ¢? as shown previous. Using the
modified ADM, we set

( (pO(x) = le
1
p1(x) = —1_12"‘%[0 t Ap(t)dt =0,

1,1 .
L Pny1(x) = Efo tA,()dt =0, n=>1.
This in turn gives the exact solution

p(x) = x2.
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Chapter 3

Regularization Method and ADM
for Solving the Fredholm Integral
Equation of the First Kind
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3.1 Linear Fredholm integral Equations of the First Kind

Consider the linear Fredholm integral equation of the first kind [13]:

I2 k(x, )p(®)dt = f(x), x € [a,b], (3.1)
where
@ € Ly[a,b] and f(x) € L,[a, b]

and suppose that
b b, o
J, J, kP (x, t) dx dt < oo,

This equation appears in the theory of elasticity and certain problems of the
mechanics of continuous media.

As it was pointed out in Cherruault [5], the general difficulty is how the ADM can be
applied to solve these types of integral equations.

The present chapter is to overcome this general difficulty.

3.1.1 The Reqularization Technique for Linear Fredholm Integral Equations of
the First Kind

In this section, we develop a new iterative procedure using the regularization
technique, where the integral equations of the first kind are recast into a canonical
form from suitable for ADM. More precisely, we consider the approximated integral
equation

e @ () + J k(x, Do (B)dt = f(x), (32)
where ¢ is a fixed positive number.

It can proved that the solution ¢.(x) of (3.2) converges to the solution ¢(x) of
equation (3.1) when € — 0.

Lemma (3.1):

Suppose that the integral operator of equation (3.2) is continuous and coercive in the
Hilbert space H = L,[a, b] where f, ¢, and ¢ are defined, then:

- |lgell is bounded independently of «.
- |l¢e — o|| tends to 0 when & - 0.

Proof:
From equation (3.2), we deduce
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ellgell = || -} k(x, @ (0)dt + £|| = —IIfll +

The coercivity of the integral operator implies:

|5 k.0 ee(odt|| = Bl gell

where f is the coercivity constant,

|12 ket et = 1S ke ). (O dePdx

and
b
lo? =[] 0%, (tdt.

From equations (3.3) and (3.4), we have

e lloell = =[£Il + Bll @l

and therefore

B =l < lIfll. B> e.
So, ||| is bounded independently of .

We now prove the second part.
By using equations (3.1) and (3.2), we have
£@e(x) = — [2 k(x, 0. (Odt + [ k(x,) p(t) dt.
Thus,
£ pe(x) = = [ k(x,0) [pe(t) — @(B)]d.

It follows that

—& (0:(x) — 9(x)) — £ p(x) = [, k(x,t) [pe(t) — p(®)]dit,

Taking the norm of both sides of the above equation, and using the coercivity

property implies

Blloe = ol < lle (9 — 9) + € ol < £ [(0e — @) + lloll.

Finally, we have

(B = llo: — oll <elloll, B —>0,

and therefore ||, — @|| = 0 when & - 0.
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3.1.2 Adomian Decomposition Method
To develop a new iterative method, consider equation (3.2), which is expressed in the
canonical form.

Following the ADM, the unknown solution ¢, (x) is assumed to be the decomposition
series of the form

Pe(x) = Xz Pen (). (3.9)

Therefore, this new iterative method can be stated as follows

Peo(x) = f (),

1 b (3.10)
(pS,TL+1(x) = _;fa k(x, t) qu,n(t)dt, n=0.

By assuming the first n + 1 terms of equation (3.9), we obtain the n-th approximation
to the solution as

¢£,n(x) = ?=_01 (ps,i(x)v (3.11)

or

¢s,n(x) = <ps,0(x) + Z?z_ll (ps,i(x)- (3-12)

By substitution of the recursive scheme (3.10) into (3.12), we conclude that the ADM
for equation (3.2) can be converted into an equivalent problem, which we state as
follows.

Lemma (3.2):
The ADM for equation (3.2) is equivalent to the following problem:

Find the sequence ¢, , such that
qbs,n =QeotT Pe1t "t Penq with ¢£,0 =0,
and satisfies

fﬂs,o(x) = if(x);

3.13
ben(¥) = 000 () =2 [Tk (D) Penr(O)dt, 121 519

Now, we will discuss the result concerning the convergence analysis of the ADM for
equation (3.13).

We first rewrite equation (3.2) in the semi-linear equation

1

Qe = Ef + Ay,

26




where

b
Ape = —= [ k(x,t) () dt.

Therefore,
=1
{(Pe,o - Sfﬁ (314)
Pen = A(pe,n—1; n=1.
Thus,
1
{(pE,O - ;f; (315)
¢s,n = Qg T A({bg_n_l, n = 1.

Theorem (3.3):
A sufficient condition for ¢, ,, to be convergent is that [|A]| < 6 < 1.

Proof:
We first show that ¢, ,, is a Cauchy sequence.

||¢s,n+2 - ¢s,n+1|| = ”A [¢s,n+1 - ¢sn]”
< ”A” ||¢£,n+1 - ¢s,n||

<6 ||¢s,n+1 - ¢s,n”-

Ifm>nm=n+pp=12

[0emsr = fenll < [9emsp = emepmall+ -+ [@omss = bunl
<SM(A+ 8482+ +8P2+8PY)||per — Peo|
<" 5| bes — deoll

Asn,m =n+ p — oo, we see that:

l¢ensp = Penll = 0.

Hence ¢, ,, is a Cauchy sequence in the Banach space, that is

lim e () = $c ().

It remains to show that ¢.(x) is a solution of the Fredholm integral equation of the
second kind:

¢s _if_Ad)e

< ||¢£ - ¢s,n” + | q-')e,n - if —A q-')e,n—l”
+||A [¢s,n—1 - ¢)s]”
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As n — oo, we get

e = if + A,

Therefore, ¢, is a solution of the Fredholm integral equation.

3.1.3 Examples
In order to demonstrate the feasibility and efficiency of this method, some examples
with a priori known exact solution are studied in detail.

1. Let
1 .
Jy k(x, e (t)dt = sinmx,
where

1-x)t 0<t<x,
1-tx, x<t<1l

k(x,t) = {

We solve this equation by the above recursive schemes and obtain

%{ Peolx) = ésin X,

Pe1(x) = ——— sinmnx, (3.16)
1
kgog,z (x) = —o Sinmx,
and so on.
So,
1 1 1 .
Pe(x) = (1 = =+ ——=— ) -sinmx.

Consequently,

2

m?e \1 . I .
P (x) = (1+n2£);sm mX = ———sinmx.
Setting € — 0, we obtain
p(x) = lirré @:(x) = m? sin mx,
&>

which is equivalent to the exact solution.

2. Let
[ k(e )@ (£)dt = 2sin 2x,
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where

t(mr—x
%, OStSX,
k(x, 6) = x(mr—t)
—, x<t< T
T

Then the recursive scheme for the approximate equation be expressed as

1 .
(@ o(x) = —-sin 2x,

1
Pe1(x) = — 5.z Sin2x,
1
32¢3

1 .
L Pe3(x) = oot Sin 2x,

(3.17)

Pe2(x) = sin 2x,

and so on.
So,
()_(1 1+1 1_|_)1_2
P =\ T4 T 16e2 bael 2¢ oM AX
Consequently,
()_(45)1_2_ 02
Pl = 1126/ 262 T 120"

Setting € — 0, we obtain

p(x) = lin& @.(x) = 2sin 2x,
E—

which is the exact solution.

3. Let
fol k(x,t)p(t)dt = gcos 3mx,

where

x2+t2+1 0<t<
——x, 0<t<gx,
k(x't)z{xz-lz-tz ;
__t; Stsl.
\ =2 *3 x

We solve the approximate equation by the above recursive schemes and obtain
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1
Peolx) = 55 €os 3mx,

1 cos3mx

(ps,l(x) =—z3

9¢2  9r2

, (3.18)

1 cos3mx

Pe2(x) = 9% o2’

——

and so on.

So,

1 1 1
— e + 92gig2 — --~>—cos 3mx.

pe(0) = (1 \

Consequently,

——— | —cos3ntx = ————cos 37mX.
1+ 9m2¢ 2g

Irle 1 m?
9¢ 1+ 9m

@e(x) = <
Setting € — 0, we obtain

p(x) = lir% @.(x) = m? cos 3mx,
E—

which is the exact solution.

3.2 Nonlinear Fredholm Integral Equations of the First Kind
Consider the nonlinear Fredholm integral equation of the first kind [13]

[7 k(x, OF (p(D)dt = f(x), x € [a, b] (3.19)
In this section, we will use another iterative method that has been used in [4].

We observe that equation (3.19) can be replaced by a suitable expression

9(0) = F() + () — [ k(x, OF (p(£))dt. (3.20)

The reason of this is to express equation (3.20) in the canonical from in order to
employ the ADM.

Substituting the expansion equation

S0 @ (X) = F(0) + Lo 9n(x) = [ k(x, OF (Tiso (D), (3.21)

we define F(@(x)) by
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F((P(x)) = Z?]?:O An((PO, (plﬂ y (pn)a
where A,, are the Adomian polynomials and dependent only on ¢, @4, ..., @,.
Thus
S0 @ () = F(0) + Tisg 0n(0) = [ k(x, 8) T2 Ay d, (3.22)

we get the scheme

x) = f(x),
{900( )=f X (3.23)
Pri1(X) = on(x) — [ k(x, ) A, (t)dt, n=0.
Lemma (3.4):
The ADM for equation (3.20) is equivalent to the following problem:
Find the sequence ¢,, such that
bn = @0+ @1+ -+ @1 With g =0,
and satisfies
(x) = f(x),
{ #ol) =] b (3.24)
Pre1 (1) = 9o () + () — [ k(x,t) F(dn(t))dt, n = 0.

Proceeding as before, equation (3.20) can be written in the semi-nonlinear equation

¢=f+U=-N)g,

where
No = f: k(x, O)F (p(t))dt.
Therefore,
<p0 = f;
3.25
{¢n+1=<P0+(1—N)¢n, n = 0. (3.25)
Thus.

Theorem (3.5):
Let us assume that

II-N||<d<1,
then the sequence ¢,, defined by (3.25) converges to the solution ¢ of the equation

¢ =¢o+ U —-N)op.
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Proof:
We first show that ¢,, is a contractive sequence, we have

IPn+z2 = Prrall = 1 = N)(@ns1 — )l
< 7= Nl @n+1(®) = pn (@Ol
< 6llpn+1(0) — P (Ol
Ifm>nm=n+pp=12..,
[#n+p = Gull < Dnp — Prsp-1ll + | Fnip-1 = Prap-2ll + = + lpnss — il
<S"(1+6+6%2+ -+ 6P 2+ 8P|, — doll
< 8" —=ll¢1 — oll.
Asn,m =n+ p — oo, we see that:
[#nsp — #nll - 0.
Hence ¢, ,, is a Cauchy sequence in the Banach space, that is
lim §,(x) = $(x).

It remains to show that ¢(x) is a solution of the Fredholm integral equation of the
second kind:

P — o = U =M@l <l = dull + llpn — 9o = I = N) 4l
HIUT = N)[¢pn-1 = @]l

As n — oo, we get

$=¢o+U—-N)o.

Therefore, ¢ is a solution of the Fredholm integral equation.

u
3.2.1 Integral Equations of the Form fub k(x. t)ex)et)dt = f(x)
Consider the nonlinear integral equation of the form
[7 k(x, @(x)@(t)dt = f(x),x € [a,b]. (3.26)
We write equation (3.26) in the form
P(0) = () + F(x) = [ k(x, D@D dt. (3.27)

We have
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Po(x) = f(x),
{ Pnir(X) = 9 (0) — [ k(x, OA,dt, n > 1, (3.28)
where
An = =0 Pk () Pp—i (O). (3.29)
Example 1:

Consider equation (3.26) witha =0, b =1, k(x,t) =t, f(x) = 3x and

Ay = @o(X)@o(t), A1 = 9o ()1 (t) + 91 (X) o (t), ....

Then, we have
( @o(x) = 3x,
p1(x) =0,

Lo, (x) =0,n=>1.
Thus,
@(x) = X5 o @n(x) = 3x.

Example 2:
Consider equation (3.26) witha = 0, b = g k(x,t) = 2sint and f(x) = cosx and

Ay = 9o ()@ (t), A1 = 9o ()1 (t) + 91 (X)@o(t), ....

Then, we have

( @o(x) = cosx,
p1(x) =0,

\p,(x) =0,n > 1.

Thus,

P(x) = Yoo Pn(x) = cosx.

3.2.2 Integral Equations of the Form fub k(x, t)F(@(t))dt = f(x)
We assume that F is invertible (F~1 exists), then we can set

F(p(x)) = v(x), ¢(x) = F1(v(x)). (3.30)

33




The equation (3.19) becomes

J; ke, yv(0)dt = £(x), (3.31)
which is a linear equation with respect to v.

The problem is then to find ¢ (x) from v(x).

Example 3:
Let

fol 4xt @?(t)dt = x. (3.32)
e The Adomian polynomials for F(¢(t)) = ¢?(t) are

Ag = 9o% A1 = 200901, A1 = 20002 + 9417, ...

We solve this equation by the above recursive scheme and obtain

(po(x) = x,
®1 (.X') = 01
< ) (.X') = O'

k(pn(x) = Oln 2 1-
Thus, the first solution is given by
QD(X) = Z%ozo §0n(X) = X.

o We first set

v(x) = @2(x), (x) = £/ v(x).

The equation (3.32) becomes

1
J dxt v(t)dt = x
0

Then, we get
(Vo(x) = x,
X
vl(x) - _§1
< X
vz (x) - 5}
X
\ V3 x)=-— ﬁ’
and so on.
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Thus,

Another solution is given by
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Chapter 4

Regularization Method and ADM
for Solving Schlomilch’s Integral
Equation
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4.1 Linear Schlomilch’s Integral Equation

The Schlomilch’s integral equation is a related integral equation of the first kind,
which is also found in some problem of mathematical physics such that the derivation
of the electron density profile from the ionospheric for oblique incidence for the
quasi-transverse approximation [14].

The linear Schlomilch integral equation reads:

flx) = % fon/z @(x sin t)dt, (4.1
where f(x) is a continuous differential coefficient for -7 < x < m.

This equation has one solution given by [14]

0() = £(0) +x f;"* f'(x sin t)at, (4.2)
where f' is the derivative of f with respect to the argument £ = x sin t.

We will use the combined regularization-Adomian method [14] to handle the linear
and nonlinear Schlémilch integral equations.

The combined regularization-Adomian method is proved to be reliable and efficient.

4.1.1 The Method of Regularization
The method of regularization converts the linear Schlomilch’s integral equation (4.1)
into the Schlomilch’s integral equation of the second kind in the form

2 = .
epe(x) = f(x) —~ JZ pe(x sint)dt, (4.3)
where ¢ is a small positive parameter, called the regularization parameter.

The same procedure that used that used in the previous chapter can be applied to show
that the solution ¢, of (4.3) converges to the solution ¢(x) of equation (4.1) as € = 0,
that is

lim . (x) = @ (x).

Consequently, we can apply the ADM for solving the Schlomilch’s integral equations
of the second kind, and obtain the recursive scheme

Peo(x) = < f (%),

5 I . (4.4)
Pen+1(X) = e foz Pen(x sint)dt, n > 0.

37




4.1.2 Examples
The scheme that we presented will be illustrated by the following examples.

Example 1:
Consider the linear Schlomilch’s integral equation

1+x=%f0n/2<p(xsint)dt, -1 <x<T. (4.5)
Using the regularization method, equation (4.5) becomes

(1) =2 (1 +x) == [ g, (x sint) dt.
Then the recursive scheme can be expressed as

( 1
¢£,0(x) = E (1 + X),

0o = = (5 + ),

2
9 4 (m?
(pS,Z(x) = 837_[2 T—i_x ]

8 [m3
k(p£’3(X) = _847_[3 E—i_x ]
and so on.

So,

0e) =21+ = = (Ztx) + o (T4 x) — o (B x) + o

=x(l_i+ 4 8 +...)+§(1_§+l_l+...)_

e &2n  &n?  nd g2 g3

Consequently,

(x) = X 4 1
<pgx—2+€n 14¢

Setting € — 0, we obtain

T
) =limp.(x) ==-x+1,
-0 2
which is the exact solution of the given equation.

Example 2:
Let

x* = %ff/z p(xsint)dt, —-m <x <. (4.6)
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Using the regularization method, equation (4.6) becomes

2 .
Pe(x) = ixz - éfon/ @ (x sin t) dt.

Then the recursive scheme can be expressed as

1

([ peo() ==22,
£

2
X

) ‘Ps,1(x) = _ﬁ'

x2
<Ps,2(x) = 4—83,

2
K (p€,3(x) = _@'

and so on.
So,
1 1 1 1
#e() = x° (;_ 2¢2 T 43 Bt )
Consequently,
2
¢e(x) = 12:(23'

Setting € — 0, we obtain
¢(x) = lim ¢, (x) = 2x2,
E—
which is the exact solution.

Example 3:
Let

1+x%= %fonm(p(x sin3t)dt, —m < x < .

Using the regularization method, equation (4.7) becomes

p:(x) = i(l +x2) — ifonm @ (x sin 3t) dt.

Then the recursive scheme can be expressed as
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1
Peo(x) = P (14 x2),

1 x?
(ps,l(x) = _E 1 +7 ’

1 x?
‘Pe,z(x) ZE 1+I ’

W= (145
(| Pe3™X) = T o7 8 )

and so on.
So,
1 1 1 1 1 1 1 1
#e(x) = %7 (E T 6eZ ' 36e3 2167 ) * E(l T3 toe 27t )
Consequently,
6x? 3

e = e T T3
Setting € — 0, we obtain
p(x) = ling @.(x) = 6x% + 3.
E—

which is the exact solution of the given equation.

4.2 Nonlinear Schlomilch’s Integral Equation

Consider the nonlinear Schlomilch’s integral equation of the form [14]

fG) =2 [ F(p(x sin ), (4.8)

where F(@(x sin t)) is a nonlinear function of ¢(x sint) and f(x) is a continuous
differential coefficient for —m < x < m.

To handle this nonlinear equation, we will follow the same analysis presented earlier
for linear equations.

To achieve this goal, we should first transform this nonlinear equation to a linear
form.

To transform equation (4.8) to a linear form of the first kind, we first use the
transformation
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F(p(xsint)) = v(xsint), (4.9)
such that

@(xsint) = FY(v(x sint)), (4.10)
which will transform equation (4.8) to
flx) = % JEv(xsin t)dt. (4.11)

The method of regularization transforms the linear Schlomilch’s integral equation of
the first kind (4.11) to the Schlomilch’s integral equation of the second kind given by

eve(x) = f(x) — % fog v, (x sin t)dt, (4.12)

where ¢ is a small positive parameter.

Consequently, we can apply the ADM for solving the equation (4.12), and obtain

Ve () = 2 £ (),

, : (4.13)
Vener (X) = —— JEven(x sint)dt, n > 0.
4.2.1 Examples
The scheme that we presented will be illustrated by the following examples.
Example 1:
Consider the nonlinear Schlomilch’s integral equation
526 =2 [ @2(xsint)dt, -t <x<m. (4.14)

Using the transformation v = @2, which transforms the equation (4.14) to a linear
equation given by

5x° = %f:/z v(x sin t) dt. (4.15)
Using the regularization method, equation (4.15) becomes
5 2 /2 .
v (x) = ;x6 — ;f: v (x sin t) dt.

Then the recursive scheme can be expressed as
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§
ve,O(x) = Ex6,
25 x©
Vs,l(x) = —@,
) 125 x®
Ue,z(x) = 256 &3
_ 625x°
\ ves() = = 7006 4
and so on.
So,
()_5 6(1 5+ 25 125 N >
VelX) =X 16¢ ' 2562 4096 ¢3

Consequently,

80 x°

ve(X) =577

Setting € = 0, we obtain
v(x) = lirr& v (x) = 16 x°.
E—

Hence the exact solution is given by

p(x) = +4x3.
Example 2:
Let
35 2 2 .
Tr = Efon/ p*(xsint)dt, -t <x <. (4.16)

Using the transformation v = ¢*, which transforms the equation (4.16) to a linear
equation given by

Epe=l [T v(x sin ) dt. (4.17)

T

Using the regularization method, equation (4.17) becomes
v.(x) = 348 — ifoﬂ/z v.(x sin t) dt.

8¢

Then the recursive scheme can be expressed as
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( 35

vE,O(x) = axS,
1225 8
Ver(¥) = =105 27
) 42875 x®
ve2(X) = 137072 ¢
o - 1500625 8
\ Va3 = T 16777216 &
and so on.
So,
: )_35 3(1 35, 1225
VelX) =g 128¢ ' 16384 ¢2
Consequently,
560 x8
v:() =357 78 %

Setting € = 0, we obtain
v(x) = lin& v (x) = 16 x8.
&>
Hence the exact solution is given by

o(x) = £2x2.
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