
Kingdom of Saudi Arabia
Imam Mohammed Ibn Saud Islamic

University
College of Science  

Department of Mathematics and Statistics

Master of Science in Mathematics

Research Project Report

(MAT699)

Title

Derivation on a prime rings

By

Munirah Alsarami

Supervised By

Prof. Dr. Ahmad Alkhalaf

Academic Year: 1444 (2022-2023)

 



Contents

Abstract i

Acknowledgement ii

Introduction iii

1 Basic Property of Algebraic Structures 1
1.1 Deinitions and Examples . . . . . . . . . . . . . . . . . . . . . 1
1.2 Prime and Semi-prime Rings . . . . . . . . . . . . . . . . . . . 7
1.3 Lie and Jordan Rings . . . . . . . . . . . . . . . . . . . . . . . 8

2 Derivation on Prime Rings 12
2.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . 12
2.2 Some Properties of Derivation . . . . . . . . . . . . . . . . . . 20
2.3 Commutatively of Prime Ring . . . . . . . . . . . . . . . . . . 29

3 (✓,�)�Derivation on Prime Ring 32
3.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . 33
3.2 Some Results of (✓,�)�derivation. . . . . . . . . . . . . . . . 39
3.3 Commutatively of Prime Ring . . . . . . . . . . . . . . . . . . 43

4 Reverse Derivation of Prime Ring 47
4.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . 47
4.2 Properties of Reverse Derivations . . . . . . . . . . . . . . . . 52
4.3 Commutatively of Prime Ring . . . . . . . . . . . . . . . . . . 57

Bibliography 60



Abstract

In this research project, we present a derivations on prime rings, Jordan

derivations on prime rings, (✓,�)�derivations on prime rings and reverse

derivations. based on the work of several authors.

Throughout the research project R will denote an associative ring with

unity 1 and Z is called the center, R is called prime if aRb = {0}, where
x, y 2 R implies that a = 0 or b = 0. As usual [x, y] (resp. x � y) will denote
the Lie product (resp. Jordan product) if xy�yx, (resp. xy+yx) 8 x, y 2 R.

An additive mapping d : R ! R is called a derivation (resp. Jordan deriva-

tion ) of a ring R if d(ab) = d(a)b+ad(b), (resp. d(a2) = d(a)a+ad(a)) for all

a, b 2 R. Suppose that ✓,� are endomorphisms of R. An additive mapping

d : R ! R is called a (✓,�)�derivation if d(xy) = d(x)✓(y)+�(x)d(y), holds

for all x, y 2 R. An additive mapping d : R ! R is called a reverse derivation

if d(xy) = d(y)x+ yd(x) for all x, y 2 R.

The main purpose of our research project, we get some results concerning

the relationship between the commutativity of a prime ring and the exis-

tence of certain specific types of derivations, (✓,�)�derivations and revers

derivations of a prime ring R.
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Introduction

Ring theory is one of the most important concepts in abstract algebra,

bringing together several branches of the subject and creating a powerful ma-

chine for the study of problems of considerable historical and mathematical

importance.

Rings with derivations are not a popular kind of subject that undergoes

tremendous revolutions. However, this has been studied by many authors

in the last 50 years, specially the relationships between derivations and the

structure of rings.

Many mathematicians of recent years studied derivations and commu-

tativity in rings with keen interest and their investigations throw light on

the study of di↵erent types of derivations like reverse derivations, Jordan

derivations, Jordan left derivations, generalized Jordan triple derivations,

generalized Jordan triple left derivations on rings. Among these mathemati-

cians E.C. Posner, I.N. Herstein, H.E. Bell, M.N. Daif, W.S. Martindale, L.O.

Chung, T.K. Lee, P.H. Lee, A. Laradji, A.B. Thaheem, Q. Deng, N. Argac,

M. Bresar , J. Vukman, M.Ashraf, A. Ali, M.A. Choudhary, C. Lanski, N.R.

Rehman, A. Nakajima, E.Albas, A.H. Majeed, M.J. Atteya, M. Samman, C.

Haetinger, N. Alyamani and R.K. Sharma are the ones whose contributions

to this field are outstanding.

This research project is an attempt to present the derivations on prime

rings. And in a manner suitable for everybody who have some basic knowl-
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edge in ring theory. In this work, we present certain properties of derivations,

(✓,�)�derivations and reverse derivations in prime rings. We study the prop-

erties of derivations, (✓,�)�derivations and revers derivations in prime rings

with ideals and prove the commutativity of these prime rings.

Throughout the present research project, R will denote an associative ring

with unity 1 having at least two elements. The symbol Z stand for the center

of R. Recall that a ring R is called prime if aRb = 0 with a, b 2 R implies

a = 0 or b = 0. Equivalently, the product of any two nonzero ideals of R is

nonzero. A ring R is called semi-prime if aRa = 0 with a 2 R implies a = 0.

Equivalently, it has no nonzero nilpotent ideals. For any x, y 2 R, using

its associative multiplication one can induce two new products viz. The Lie

product [x, y] = xy�yx and the Jordan product x�y = xy+yx. We use the

identities [xy, z] = x[y, z]+[x, z]y, [x, yz] = [x, y]z+y[x, z], [z, x+y] = [z, x]+

[z, y], [x+ y, z] = [x, z] + [y, z], x � (yz) = (x � y)z� y[x, z] = y(x � z)+ [x, y]z

and (xy) � z = x(y � z)� [x, z]y = (x � z)y + x[y, z] for all x, y, z 2 R. Sup-

pose that ✓,� : R ! R be two homomorphisms. Define (✓,�)�Lie product

[ , ]✓,� on R as follows [x, y]✓,� = x✓(y) � �(y)x, for all x, y 2 R. Also, we

use the identities [xy, z]✓,� = x[y, z]✓,� + [x,�(z)]y = x[y, ✓(z)] + [x, z]✓,�y ,

[x, yz]✓,� = [x, y]✓,�✓(z) + �(y)[x, z]✓,�, [z, x + y]✓,� = [z, x]✓,� + [z, y]✓,� and

[x + y, z]✓,� = [x, z]✓,� + [y, z]✓,� for all z, x, y 2 R. An additive mapping

d : R ! R is called a derivation (resp. Jordan derivation ) of a ring R

if d(ab) = d(a)b + ad(b), (resp. d(a2) = d(a)a + ad(a)) for all a, b 2 R.

Obviously every derivation is a Jordan derivation. But the converse need

not true in general. Recall that [a, xy] = x[a, y] + [a, x]y. For a fixed

a 2 R, define Ia : R ! R by Ia(x) = [a, x] for all x 2 R. The function

Ia so defined can be easily checked to be additive and Ia(xy) = [a, xy] =

x[a, y] + [a, x]y = xIa(y) + Ia(x)y, for all x, y 2 R. Thus, Ia is a derivation

which is called inner derivation of R. It is obvious to see that every inner

derivation on a ring R is a derivation. But one can find plenty of exam-
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ples of derivations which are not inner. An additive mapping d : R ! R is

called (✓,�)�derivation of a ring R, (resp. Jordan (✓,�)�derivation ), where

✓,� : R ! R are two mappings of R, if d(xy) = d(x)✓(y) + �(x)d(y), (resp.

d(x2) = d(x)✓(x)+�(x)d(x)) holds for all x, y 2 R. Recall that ✓,� : R ! R

be two homomorphism. Recall that [r, xy]✓,� = [r, x]✓,�✓(y) + �(x)[r, y]✓,�.

For a fixed r 2 R, define Ir : R ! R by Ir(x) = [r, x]✓,�, for all x 2
R. The function Ir so defined can be easily checked to be additive and

Ir(xy) = [r, xy]✓,� = [r, x]✓,�✓(y)+�(x)[r, y]✓,� = Ir(x)✓(y)+�(x)Ir(y), for all

x, y 2 R. Thus, Ir is (✓,�)�derivation which is called (✓,�)�inner derivation

of R. It is obvious to see that every (✓,�)�inner derivation on a ring R

is a (✓,�)�derivation. An additive mapping d : R ! R is called a reverse

derivation if d(xy) = d(y)x+yd(x) for all x, y 2 R, on the other hand we said

that d is a homomorphism (resp. anti-homomorphism) if d(xy) = d(x)d(y),

(resp. d(xy) = d(y)d(x)) for all x, y 2 R.

This research project consists of four chapters, in section one of each

chapter we state some definitions which are basic in our study and we present

some remarks, elementary properties and examples to explain our objective of

each chapter. In the other sections, we present some of results and properties

as following

The first chapter (Basic Property of Algebraic Structures) is de-

voted to present the necessary background.

Chapter 2, (Derivation on Prime Rings) contains some results on

derivations in prime rings. In section 2.2, we prove Posner’s First Theorem

which are of great importance in the rest of our work, namely (2.2.1) in a

prime ring of characteristics not 2, if the composition of two derivations is a

derivation, then one of them is zero. Also, we consider the following Theorem

(2.2.2) for a derivation d : R ! R, and let U is a non-zero right ideal of R. If

d acts as a homomorphism or an anti-homomorphism on U , then d = 0 on R.

In section 2.3, for R is a prime ring with charR 6= 2 . We prove the following

v
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Theorem (2.3.1) for d be a non-zero derivation on R. If [d(x), d(y)] = 0 for

all x, y 2 R, then R is commutative.

Chapter 3, ((✓,�)�Derivation on Prime Ring) we discuss (✓,�)�
derivation on prime rings. It contains some results on (✓,�)�derivations in

prime rings. In section 3.2, for (✓,�)�derivation d : R ! R, we prove the fol-

lowing results (3.2.1) if d is a homomorphism on R then d = 0. (3.2.2) if d is a

an anti-homomorphism on R then d = 0. In section 3.3, for (✓,�)�derivation

d : R ! R, we prove the following Theorem (3.3.3) if d(xy) = d(yx), for all

x, y 2 R then R is commutative.

Chapter 4, (Reverse Derivation of Prime Ring) is devoted to present

some results on reverse derivation in prime rings. In section 4.2, we prove

that result(4.2.1) if a reverse derivation d acts as homomorphism or an anti-

homomorphism on a non-zero right ideal U of a prime ring R, then d = 0.

In section 4.3, for R is a prime ring with charR 6= 2 and U is a non-zero

right ideal of R. We prove the following Theorems (4.3.2) let d be a non-zero

reverse derivation of R. If [d(x), x] = 0 for all x 2 U , then R is commutative.

(4.3.3) let d be a non-zero reverse derivation of R. If [d(x), d(y)] = 0 for all

x, y 2 U , then R is commutative.

Finally, let us say that the research project is partially based on work

of several authors, One more time, the interested readers can consult the

innumerable references cited in the end.
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Chapter 1

Basic Property of Algebraic

Structures

In this chapter includes some basic notions and important terminology

which we shall need for the development of the susequent chapters of our

research project. Also, we will present examples and necessary remarks are

given at proper places to make the exposition self contained as much as

possible.

1.1 Deinitions and Examples

Definition 1.1.1.

1. A ring R is a set together with two binary operations (usually denoted as

addition (+) and multiplication (·) ) satisfying the following conditions:

i. (R,+) is an abelian group,

ii. associative multiplication: (a · b) · c = a · (b · c) for all a, b, c 2 R,

iii. the distributive laws hold in R : for all a, b, c 2 R

(a+ b) · c = (a · c) + (b · c) and a · (b · c) = (a · b) + (a · c).

1



Chapter 1. Basic Property of Algebraic Structures

2. If a · b = b · a for all a, b 2 R, then R is called a commutative ring.

3. If R contains an element 1 such that 1 · a = a · 1 = a for all a 2 R,

then R is called a ring with unity 1.

We shall usually with simply ab rather than a ·b for a, b 2 R. The additive

identity of R will always be denoted by 0 and the additive inverse of the ring

element a will be denoted by �a.

Examples 1.1.1.

1. (Z,+, ·) is a commutative ring with unity under usual addition and

multiplication, where Z is the set of all integers,

2. (E,+, ·) is a commutative ring under usual addition and multiplication,

where E is the set of all even numbers,

3. (Mn(Z),+, ·) is a ring with unity In ( In be an identity matrix) under

addition and multiplication of matrices, where Mn(Z) is the set of all

n⇥ n matrices with entries in Z.

Definition 1.1.2.

A subset S of a ring R is a subring of R if S is itself a ring with the same

operations of R.

Theorem 1.1.1.

A non-empty subset S of a ring R is a subring if S is closed under subtraction

and multiplication that is, if a 2 S and b 2 S imply that a� b and ab are in

S.

Examples 1.1.2.

1. If R is a ring, then it contains two trivial subrings, R and {0},

2. the set of all integers Z is a subring of the ring R the set of all real

numbers,

2



Chapter 1. Basic Property of Algebraic Structures

3. the set of all even numbers E is a subring of the ring Z.

Definition 1.1.3.

The characteristic of a ring R is the least positive integer n such that nx = 0

for all x in R, and denoted by charR. If no such integer exists, we say that

charR=0.

Examples 1.1.3.

1. char Z is 0,

2. char Zn is n, where Zn is the set of all congruence classes modulo n.

Definition 1.1.4.

A ring R is said to be n-torsion free, where n 6= 0 is an integer, if whenever

nx = 0, x 2 R then x = 0.

Definition 1.1.5.

The center Z of a ring R is the set of all those elements of R which commute

with each element of R that is,

Z = {x 2 R | xr = rx, for all r 2 R},

Examples 1.1.4.

1. The center of any commutative ring is itself,

2. the center of a ring Mn(Z) is the set of all diagonal matrices whose

entries in Z.

Definition 1.1.6.

Let A be a non-empty subset of ring R. The centralizer of A in R is the set

CR(A) = {r 2 R | ar = ra, for all a 2 A}.

Example 1.1.1.

Let Z be the set of all integers and E be the set of all even numbers. Then,

CZ(E) is Z

3



Chapter 1. Basic Property of Algebraic Structures

Definition 1.1.7.

A ring homomorphismq f from a ring R to a ring S is a mapping from R to

S that preserves the two ring operations; that is, for all a, b in R,

f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b).

Remark 1.1.1. (Types of homomorphisms)

A homomorphism f : R ! S of rings R and S is called

• a monomorphism, if f is injective ,

• an epimorphism, if f is surjective,

• an isomorphism, if f is bijective ,

• an endomorphism, if R = S,

• an automorphism, if R = S and f is an isomorphism.

Examples 1.1.5.

1. Let R[x] denote the ring of all polynomials with real coe�cients. The

mapping f(x) ! f(1) is a ring homomorphism from R[x] onto R,

2. the mapping f : Z ! Z2 defined in by sending an even integer to 0 and

an odd integer to 1 is a ring homomorphism.

Definition 1.1.8.

If f is a homomorphism from the ring R to the ring S, then the kernel of f

is the following set

kerf ={x 2 R | f(x) = 0}.

Definition 1.1.9.

The subring I of a ring R is an ideal (two-sided) of R if x 2 I and r 2 R

imply that xr and rx are in I.

4



Chapter 1. Basic Property of Algebraic Structures

Remark 1.1.2.

• A right ideal of R is a subring I of R such that xr 2 I for all x 2 I,

r 2 R,

• a left ideal of R is a subring I of R such that rx 2 I for all x 2 I,

r 2 R,

• the subrings I = {0} and I = R are always ideals of a ring R. These

ideals are called trivial,

• if R is a ring with unity 1 and I is an ideal of R that contains 1, then

it can be shown that I = R.

Example 1.1.2.

For a fixed integer n, nZ = {nx | x 2 Z} is an ideal of Z.

Definition 1.1.10.

Let a is a fixed element of the commutative ring R with unity, the ideal

(a) = {ar | r 2 R}, which consists of all multiples of a by elements r of R,

is called the principal ideal generated by a in R.

Remark 1.1.3.

In the ring Z of all integers, every ideal is a principal ideal

Definition 1.1.11.

An ideal P of a commutative ring R is a prime ideal if P 6= R and if ab 2 P ,

where a, b 2 R implies either a 2 P or b 2 P .

Example 1.1.3.

An ideal (10) is a prime ideal of E.

Definition 1.1.12.

An ideal M of a ring R is called a maximal ideal if M 6= R and the only

ideals containing M are M and R.

5



Chapter 1. Basic Property of Algebraic Structures

Remark 1.1.4.

• If M 6= R is a maximal ideal of R then for every ideal A of R, M ✓
A ✓ R holds only when either A = M or A = R,

• every maximal ideal in a commutative ring with unity 1 is prime. How-

ever, the converse of this statement is not valid

The following example shows that unity in the ring is essential for the

validity of the above statement.

Example 1.1.4.

The ideal (4) in E is maximal, but certainly not prime. Indeed,

2 · 2 2 (4). but 2 /2 (4)

Definition 1.1.13.

A ring R in which the set R⇤ of non-zero elements is a group with respect to

the multiplication in R is called a division ring. Equivalently, R is a division

ring if every non-zero element of R has a multiplicative inverse in R.

Examples 1.1.6.

The rings Q,R and C are some examples of division rings.

Definition 1.1.14.

A non-zero ring R is said to be a simple ring if R has no (two-sided) ideals

other than {0} and R.

Examples 1.1.7.

1. Division rings are simple,

2. matrix rings over division rings are simple.

Definition 1.1.15.

A zero divisor is a non-zero element x of a commutative ring R such that

there is a non-zero element y 2 R with xy = 0.

6



Chapter 1. Basic Property of Algebraic Structures

Definition 1.1.16.

An integral domain is a commutative ring with unity and no zero divisors.

Example 1.1.5.

The ring Zp of all integers modulo p where p is a prime, is an integral

domain.

Definition 1.1.17.

A field is a commutative ring with unity in which every non-zero element has

a multiplicative inverse.

Definition 1.1.18.

An element a of a ring R is said to be a nilpotent element if an = 0 for some

positive integer n.

Example 1.1.6.

Let M2(Z) be a ring and let A =

"
0 0

0 1

#
2 M2(Z).

Indeed, A · A = A2 = 0.

Then, A is a nilpotent element of M2(Z).

Definition 1.1.19.

An ideal I of a ring R is said to be a nil ideal if every element of I is nilpotent.

Definition 1.1.20.

An ideal I of a ring R is said to be a nilpotent if there exists a positive integer

n such that In = {0}.

Remark 1.1.5.

Every nilpotent ideal is a nil ideal.

1.2 Prime and Semi-prime Rings

Definition 1.2.1.

A ring R is called prime if a, b 2 R such that aRb = {0} implies that a = 0

or b = 0.

7



Chapter 1. Basic Property of Algebraic Structures

The definition 1.2.1 just given is equivalent to:

A ring R is called prime if whenever, I1 6= {0} and I2 6= {0} are ideals of R,

then I1I2 6= {0}.

Examples 1.2.1.

1. Any integral domain is a prime ring,

2. any simple ring is a prime ring,

3. any matrix ring over an integral domain is a prime ring. In particular,

the ring M2(Z) is a prime ring.

Definition 1.2.2.

A ring R is called semi-prime if a 2 R such that aRa = {0} implies that

a = 0.

The definition 1.2.2 just given is equivalent to:

I2 = {0} implise that I = {0} for every ideal I of R.

Some Properties of Prime and Semi-prime Ring

1. A commutative ring is a prime ring if and only if it is an integral

domain,

2. a ring is prime if and only if its zero ideal is a prime ideal,

3. the ring of matrices over a prime ring is again a prime ring,

4. the class of semi-prime rings includes prime rings.

1.3 Lie and Jordan Rings

Definition 1.3.1.

Let R be an associative ring, we can induce on R using its operations two

structures as follows

8



Chapter 1. Basic Property of Algebraic Structures

1. For all x, y 2 R, the Lie product [x, y] = xy � yx,

2. for all x, y 2 R, the Jordan product x � y = xy + yx.

Lemma 1.3.1.

Let R be a ring the following identities hold, for all x, y, z 2 R.

1. [x, yz] = y[x, z] + [x, y]z,

2. [xy, z] = x[y, z] + [x, z]y,

3. [x+ y, z] = [x, z] + [y, z],

4. [x, y + z] = [x, y] + [x, z],

5. [[x, y], z] + [[y, z], x] + [z, x], y] = 0, This is known as Jacobi identity,

6. [x, x] = 0,

7. x � (yz) = (x � y)z � y[x, z] = y(x � z) + [x, y]z,

8. (xy) � z = x(y � z)� [x, z]y = (x � z)y + x[y, z].

Now we can prove some identities easily as follows

Proof. We shall prove (1), and (2) is similar

[x, yz] = x(yz)� (yz)x

= yxz � (yz)x+ x(yz)� yxz

= y(xz)� y(zx) + (xy)z � (yx)z

= y(xz � zx) + (xy � yx)z

= y[x, z] + [x, y]z.

9



Chapter 1. Basic Property of Algebraic Structures

Now, we will prove (3), and (4) is similar

[x+ y, z] = (x+ y)z � z(x+ y)

= xz + yz � zx� zy

= xz � zx+ yz � zy

= [x, z] + [y, z].

Finally, we will prove (7), and (8) is similar

x � (yz) = x(yz) + (yz)x

= x(yz) + yxz � yxz + (yz)x

= (xy + yx)z � y(xz � zx) (i)

= (x � y)z � y[x, z].

And,

x � (yz) = x(yz) + (yz)x

= (yz)x+ yxz + x(yz)� yxz

= y(zx+ xz) + (yx� xy)z (ii)

= y(z � x)z + [y, x]z.

Therefore, from i and ii we get

x � (yz) = (x � y)z � y[x, z] = y(x � z) + [x, y]z.

Definition 1.3.2.

Let R be a ring. We can define on R, the Lie operation by defining the

product in this ring to be [a, b] = ab � ba for all a, b 2 R, then R is called a

Lie ring

10



Chapter 1. Basic Property of Algebraic Structures

Definition 1.3.3.

Let R be a ring. We can define on R, the Jordan operation by defining the

product in this ring to be a � b = ab + ba for all a, b 2 R, then R is called a

Jordan ring.

Definition 1.3.4.

An additive subgroup A of R is called a Lie subring of R if whenever a, b 2 A

then [a, b] is also in A.

Definition 1.3.5.

An additive subgroup A of R is called a Jordan subring of R if whenever

a, b 2 A then (a � b) is also in A.

Definition 1.3.6.

An additive subgroup U of R is called a Lie ideal of R if whenever u 2 U and

r 2 R, then [u, r] is also in U .

Definition 1.3.7.

An additive subgroup U of R is called a Jordan ideal of R if whenever u 2 U

and r 2 R, then (u � r) is also in U .

11



Chapter 2

Derivation on Prime Rings

Throughout the present chapter R will denote an associative ring with

unity 1, Z = {x 2 R | xr = rx, for all r 2 R} is called the center of

R. Recall that R is prime if aRb = {0} implies that a = 0 or b = 0. As

usual [x, y] = xy � yx will denote the Lie product, and the Jordan product

x � y = xy + yx. An additive subgroup U of R is said to be a Lie ideal of R

if [u, r] 2 U for all u 2 U , r 2 R. An additive mapping d : R ! R is called

a derivation (resp. Jordan derivation) of a ring R if d(ab) = d(a)b + ad(b),

(resp. d(a2) = d(a)a + ad(a)) for all a, b 2 R. Obviously every derivation is

a Jordan derivation. But the converse need not true in general.

2.1 Definitions and Examples

Definition 2.1.1.

Let R be a ring. An additive mapping d : R ! R is called a derivation if

d(xy) = d(x)y + xd(y), for all x, y 2 R.

Definition 2.1.2.

Let R be a ring. An additive mapping d : R ! R is called a Jordan derivation

if d(x2) = d(x)x+ xd(x), for all x 2 R.

12



Chapter 2. Derivation on Prime Rings

Example 2.1.1.

Let R be a ring of 2⇥ 2 matrices with respect to usual addition and multi-

plication in matrices, where

R =

⇢"
0 a

0 b

#
| a, b 2 Z

�
✓ M2(Z).

Let d : R ! R be a map defined by d

 "
0 a

0 b

#!
=

"
0 a

0 0

#
, for all

"
0 a

0 b

#
2 R. Then, d is a derivation of R.

Suppose that, A =

"
0 a1

0 b1

#
2 R and B =

"
0 a2

0 b2

#
2 R, where a1, a2, b1,

b2 2 Z.
Then, we will prove that d(A+B) = d(A) + d(B), 8A,B 2 R.

Indeed,

d(A+B) = d

 "
0 a1

0 b1

#
+

"
0 a2

0 b2

#!

= d

 "
0 a1 + a2

0 b1 + b2

#!

=

"
0 a1 + a2

0 0

#

=

"
0 a1

0 0

#
+

"
0 a2

0 0

#

= d

 "
0 a1

0 b1

#!
+ d

 "
0 a2

0 b2

#!

= d(A) + d(B).

13
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Thus, d is an additive mapping.

Now, we will prove that

d(AB) = d(A)B + Ad(B), 8A,B 2 R.

Indeed

d(AB) = d

 "
0 a1

0 b1

#"
0 a2

0 b2

#!

= d

 "
0 a1b2

0 b1b2

#!
(2.1)

=

"
0 a1b2

0 0

#

and,

d(A)B + Ad(B) = d

 "
0 a1

0 b1

#!"
0 a2

0 b2

#
+

"
0 a1

0 b1

#
d

 "
0 a2

0 b2

#!

=

"
0 a1

0 0

#"
0 a2

0 b2

#
+

"
0 a1

0 b1

#"
0 a2

0 0

#

=

"
0 a1b2

0 0

#
. (2.2)

From 2.1 and 2.2 we get

d(AB) = d(A)B + Ad(B), 8A,B 2 R.

Therefore, d is a derivation of R.

Remark 2.1.1.

Obviously, every derivation is a Jordan derivation. But the converse need

not true in general.

14
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Now, we can prove that the converse need not true, in the following

example

Example 2.1.2.

Let R =

⇢"
a b

c d

#
| c2 = 0 and a, b, c, d 2 C

�
✓ M2(C) be a ring of 2⇥ 2

matrices with respect to usual addition and multiplication in matrices. Let

the mapping d : R ! R defined by

d

 "
a b

c d

#!
=

"
0 c

0 0

#
, for every

"
a b

c d

#
2 R.

Then, d is a Jordan derivation of R.

Assume that, C =

"
a1 b1

c1 d1

#
2 R and D =

"
a2 b2

c2 d2

#
2 R, where a1, b1, c1, d1, a2, b2, c2,

d2 2 C.
Then, we shall prove that d(C +D) = d(C) + d(D), 8C,D 2 R.

Indeed,

d(C +D) = d

 "
a1 b1

c1 d1

#
+

"
a2 b2

c2 d2

#!

= d

 "
a1 + a2 b1 + b2

c1 + c2 d1 + d2

#!

=

"
0 c1 + c2

0 0

#

=

"
0 c1

0 0

#
+

"
0 c2

0 0

#

= d

 "
a1 b1

c1 d1

#!
+ d

 "
a2 b2

c2 d2

#!

= d(C) + d(D).

15
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Thus, d is an additive mapping.

Now, let X=

"
a b

c d

#
2 R, we will prove that d(X2) = d(X)X+Xd(X), 8X 2

R. Indeed,

d(X2) = d

 "
a b

c d

#"
a b

c d

#!

= d

 "
a2 + bc ab+ bd

ca+ dc cd+ d2

#!
(2.3)

=

"
0 ca+ dc

0 0

#

=

"
0 (a+ d)c

0 0

#

and,

d(X)X +Xd(X) = d

 "
a b

c d

#!"
a b

c d

#
+

"
a b

c d

#
d

 "
a b

c d

#!

=

"
0 c

0 0

#"
a b

c d

#
+

"
a b

c d

#"
0 c

0 0

#

=

"
c2 cd

0 0

#
+

"
0 ac

0 c2

#
(2.4)

=

"
0 cd

0 0

#
+

"
0 ac

0 0

#
(Since, c2 = 0)

=

"
0 cd+ ac

0 0

#

=

"
0 (a+ d)c

0 0

#
.

16
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From 2.3 and 2.4 we get

d(X2) = d(X)X +Xd(X), 8X 2 R.

Hence, d is a Jordan derivation of R.

But, we will show that d is not a derivation i.e.,

d(AB) 6= d(A)B + Ad(B), for some A,B 2 R

such that

A =

"
a 0

0 0

#
2 R and B =

"
0 0

1 0

#
2 R, where a 2 C.

Since,

d(X2) = d

 "
a 0

0 0

#"
0 0

1 0

#!

= d

 "
0 0

0 0

#!

=

"
0 0

0 0

#
(2.5)

and,

d(A)B + Ad(B) = d

 "
a 0

0 0

#!"
0 0

1 0

#
+

"
a 0

0 0

#
d

 "
0 0

1 0

#!

=

"
0 0

0 0

#"
0 0

1 0

#
+

"
a 0

0 0

#"
0 1

0 0

#

=

"
0 a

0 0

#
(2.6)

From 2.5 and 2.6 we get

d(AB) 6= d(A)B + Ad(B), for some A,B 2 R.

17
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Therefore, d is not a derivation of R.

Definition 2.1.3.

Let R be a ring. For some fixed r 2 R, the mapping Ir : R ! R given by

Ir(x) = [r, x], for all x 2 R

is called an inner derivation.

Now, we can show that every inner derivation is a derivation by the

following lemma

Lemma 2.1.1.

Every inner derivation is derivation.

Proof. Let Ir : R ! R be an inner derivation, for some fixed r 2 R, then

Ir(x) = [r, x], 8x 2 R. (2.7)

Firstly, we will show that

Ir(x+ y) = Ir(x) + Ir(y), 8x, y 2 R.

Since,

Ir(x+ y) = [r, x+ y]

= [r, x] + [r, y] (By lemma 1.3.1)

= Ir(x) + Ir(y)

Thus, Ir is an additive mapping.

18
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Now, replacing x by xy, in 2.7 where y 2 R, we get

Ir(xy) = [r, xy]

= [r, x]y + x[r, y] (By lemma 1.3.1)

= Ir(x)y + xIr(y), 8x, y 2 R.

That is Ir is a derivation.

Remark 2.1.2.

The converse of lemma 2.1.1 is not necessary true as the following example

Example 2.1.3.

Let R =

⇢"
0 a

0 b

#
| a,b 2 Z

�
✓ M2(Z) be a ring of 2⇥ 2 matrices with

respect to usual addition and multiplication in matrices. Let the mapping

d : R ! R defined by

d

 "
0 a

0 b

#!
=

"
0 a

0 0

#
, for every

"
0 a

0 b

#
2 R.

Then, d is a derivation of R.(see example 2.1.1 ) But, now we can see that

d is not inner derivation.

Let A =

"
0 2

0 d

#
2 R and B =

"
0 b

0 1

#
2 R, where b, d 2 Z.

19
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Indeed,

d(AB) = d

 "
0 2

0 d

#"
0 b

0 1

#!

= d

 "
0 2

0 d

#!

=

"
0 2

0 0

#
(2.8)

and,

IA(B) = [A,B] = AB � BA (By definitions 1.3.1 and 2.1.3 )

=

"
0 2

0 d

#"
0 b

0 1

#
�
"
0 b

0 1

#"
0 2

0 d

#

=

"
0 2

0 d

#
�
"
0 bd

0 d

#

=

"
0 2� bd

0 0

#
.

(2.9)

From 2.8 and 2.9 we get

d(AB) 6= IA(B), for some A,B 2 R.

Therefore, d is not an inner derivation of R.

2.2 Some Properties of Derivation

In this section, we will prove Posner’s First Theorem that are easily con-

jectured, namely (2.2.1). In a prime ring of characteristics not 2, if the

composition of two derivations is a derivation, then one of them is zero.

For a derivation d : R ! R, and let U be a non-zero right ideal of R.

we consider the following Theorem (2.2.2). If d acts as a homomorphism
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or an anti-homomorphism on U , then d = 0 on R. Furthermore, an ad-

ditive mapping d is a homomorphism or anti-homomorphism respectively

d(xy) = d(x)d(y) or d(xy) = d(y)d(x), for all x, y 2 U .

The following lemma which is necessary for developing the proof of Pos-

ner’s First Theorem

Lemma 2.2.1.

Let d be a derivation of a prime ring R and r be an element of R. If rd(x) = 0

for all x 2 R then either r = 0 or d is zero.

Proof. Let R be a prime ring , and let d be a derivation of R. By assumpition,

we have

rd(x) = 0, 8x 2 R. (2.10)

Replacing x by xy in 2.10, y 2 R and then, from definition 2.1.1 of derivation

we get

0 = rd(xy) = r[d(x)y + xd(y)] = rd(x)y + rxd(y)

That’s mean

rd(x)y + rxd(y) = 0, 8x, y 2 R. (2.11)

Using 2.10 then, 2.11 becomes

rxd(y) = 0, 8x 2 R

indeed,

rRd(y) = {0}

Hence, by the definition 1.2.1 of a prime ring, we have either r = 0 or

d(y) = 0. If d is not zero, that is, there exist some y in R such that d(y) 6= 0

therefore, r = 0.

Now we introduce the Posner’s First Theorem
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Theorem 2.2.1. (Posner’s First Theorem)

Let R be a prime ring with characteristic not 2 and d,d0 derivations of R such

that the composition dd0 is also a derivation then, one at least of d,d0 is zero.

Proof. Let R be a prime ring with charR 6= 2. If dd0 is a derivation on R.

Then, by the definition 2.1.1 of a derivation dd0, we have

(dd0)(xy) = (dd0)(x)y + x(dd0)(y), 8x, y 2 R. (2.12)

On the other side, d and d0 are derivations on R. Then, by the definition

2.1.1 of a derivations d and d0, we have

(dd0)(xy) = d(d0(xy))

= d(d0(x)y + xd0(y))

= d(d0(x)y) + d(xd0(y))

= d(d0(x))y + d0(x)d(y) + d(x)d0(y) + xd(d0(y))

= (dd0)(x)y + d0(x)d(y) + d(x)d0(y) + x(dd0)(y).

(2.13)

Now, from 2.12 and 2.13, we get

d0(x)d(y) + d(x)d0(y) = 0, 8x, y 2 R. (2.14)

Replacing x by xd(z) in 2.14, we get

d0(xd(z))d(y) + d(xd(z))d0(y) = 0, 8x, y, z 2 R. (2.15)

Using the definition 2.1.1 of a derivations d and d0 then, 2.15 becomes

[d0(x)d(z) + xd0(d(z))]d(y) + [d(x)d(z) + xd(d(z))]d0(y) = 0, 8x, y, z 2 R.
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That means

d0(x)d(z)d(y) + xd0(d(z))d(y) + d(x)d(z)d0(y) + xd(d(z))d0(y) = 0,

8x, y, z 2 R.
(2.16)

In 2.14, replace x by d(z) then, we get

d0(d(z))d(y) + d(d(z))d0(y) = 0, 8y, z 2 R.

Multiplying the last equation by x then, becomes

x[d0(d(z))d(y) + d(d(z))d0(y)] = 0, 8x, y, z 2 R. (2.17)

Comparing between 2.16 and 2.17, we have

d0(x)d(z)d(y) + d(x)d(z)d0(y) = 0, 8x, y, z 2 R. (2.18)

Replacing x by z in 2.14 we get

d(z)d0(y) = �d0(z)d(y), 8y, z 2 R.

Hence, 2.18 becomes

d0(x)d(z)d(y)� d(x)d0(z)d(y) = 0, 8x, y, z 2 R.

That’s mean

(d0(x)d(z)� d(x)d0(z))d(y) = 0, 8x, y, z 2 R. (2.19)

Now, by using lemma 2.2.1 on 2.19, we get

d0(x)d(z)� d(x)d0(z) = 0, 8x, z 2 R. (2.20)
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unless d is zero, 8y 2 R.

Then, by replacing between y and z in 2.14, tell us that

d0(x)d(z) + d(x)d0(z) = 0, 8x, z 2 R. (2.21)

Adding 2.20 and 2.21, we get

2d0(x)d(z) = 0, 8x, z 2 R.

Since, charR 6= 2 then

d0(x)d(z) = 0, 8x, z 2 R. (2.22)

Again, by using lemma 2.2.1 on 2.22, we get

d is zero or d0(x) = 0, 8x 2 R.

Therefore, d is zero or d0 is zero.

Theorem 2.2.2.

Let R be a prime ring and U a non-zero right ideal of R. If d is a derivation

of R which acts as a homomarphism or an anti-homomorphism on U, then

d = 0 on R.

Proof. Since d acts a as homomarphism on U , then we have

xd(y) + d(x)y = d(xy) = d(x)d(y), 8x, y 2 U. (2.23)

Subsituting x2 for x in 2.23, we get

x2d(y) + d(x2)y = d(x2)d(y)

24



Chapter 2. Derivation on Prime Rings

or

x2d(y) + xd(x)y + d(x)xy = xd(x)d(y) + d(x)xd(y) (By definition 2.1.2)

or

x(xd(y) + d(x)y) + d(x)xy = xd(x)d(y) + d(x)xd(y)

Recalling 2.23, we conclude that

xd(x)d(y) + d(x)xy � xd(x)d(y)� d(x)xd(y) = 0

or

d(x)x(y � d(y)) = 0, for all x, y 2 U. (2.24)

Replacing y by yr, r 2 R, we have

d(x)x(yr � d(yr)) = 0

implies that,

d(x)x(y � d(y))r � d(x)xyd(r) = 0. (By definition 2.1.1)

Which together with 2.24, gives

d(x)xyd(r) = 0.

Now, replacing y by ys, s 2 R, yields

d(x)xysd(r) = 0
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or equivalently,

d(x)xyRd(r) = {0}, 8x, y 2 U and r 2 R. (2.25)

Assume that d(R) 6= {0}. Then from 2.25, we have

d(x)xy = 0. 8x, y 2 U. (2.26)

Thus from 2.24, we have

d(x)xd(y) = 0, 8x, y 2 U. (2.27)

Note that

d(x(xy)) = d(x)d(xy).

That is

xd(xy) + d(x)xy = d(x)d(xy), 8x, y 2 U

or

x2d(y) + xd(x)y + d(x)xy = d(x)xd(y) + d(x)d(x)y.

In view of 2.26, and 2.27, this reduces to

x2d(y) = (d(x)d(x)� xd(x))y, 8x, y 2 U. (2.28)

Since d(x2) = (d(x))2 8x 2 U , we have

(d(x))2 � xd(x) = d(x)x (By definition 2.1.2)
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hence, 2.26 and 2.28 yield

x2d(y) = 0, 8x, y 2 U. (2.29)

Let r be an element of R and replacing y by yr in 2.29, gives

x2yd(R) = {0} (By definition 2.1.1)

from which we conclude that

x2yRd(R) = {0}

and hence, x2y = 0, for all x, y 2 U. In particular x3 = 0, for all x 2 U. Since

R is prime ring, then it has no nil right ideals, so we have a contradiction.

Thus d(R) = (0) i.e., d = 0.

Now, since d acts as an anti-homomarphism on U , then we have

xd(y) + d(x)y = d(xy) = d(y)d(x), 8x, y 2 U. (2.30)

In 2.30, replacing y by xy, we get

xd(xy) + d(x)xy = d(xy)d(x)

or equivalently,

xd(xy) + d(x)xy = xd(y)d(x) + d(x)yd(x). (By definition 2.1.1) (2.31)

Indeed, the first terms on the two sides of 2.31 are equal, we conclude that

d(x)xy = d(x)yd(x), for all x, y 2 U. (2.32)
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Replacing y by yr, r 2 R in 2.32 gives

d(x)xyr = d(x)yrd(x)

on other hand, right-multiplying 2.32 by r gives

d(x)xyr = d(x)yd(x)r.

Thus, we have

d(x)yrd(x) = d(x)yd(x)r

or

d(x)y[r, d(x)] = 0, 8x, y 2 U and r 2 R. (2.33)

Replacing y by ys, s 2 R in 2.33 gives

d(x)yR[r, d(x)] = {0}, 8x, y 2 U and r 2 R.

Since R is prime, either

d(x)y = 0 or d(x) 2 Z.

Thus either

d(U)U = {0} or d(U) ✓ Z.

For d(U) ✓ Z, d acts as a homomorphism on U and there is nothing to do.

Now assume that d(U)U = {0}, since

xd(y) + d(x)y = d(y)d(x), 8x, y 2 U

we have

xd(y) = d(y)d(x), 8x, y 2 U (2.34)
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Replacing x by xr, we get

xrd(y) = d(y)(xd(r) + d(x)r)

hence,

xrd(y) = d(y)d(x)r, for all x, y 2 U, and r 2 R.

From 2.34, we see that

xd(y)r = d(y)d(x)r,

hence x[r, d(y)] = 0. Replacing x by xs yields

xR[r, d(y)] = {0}, for all x, y 2 U, and r 2 R.

Since R is prime ring, therefore d(U) ✓ Z. so d to be a homomorphism of U .

It follows d = 0. This completes the proof of the Theorem 2.2.2.

2.3 Commutatively of Prime Ring

In this section R is a prime ring with charR 6= 2. We prove the result

(2.3.1) since d is a non-zero derivation on R. If [d(x), d(y)] = 0 for all

x, y 2 R, then R is commutative.

Theorem 2.3.1.

Let R be a prime ring with charR 6= 2 and d be a non-zero derivation on R.

If [d(x), d(y)] = 0, for all x, y 2 R, then R is commutative.

Proof. Let R be a prime ring with charR 6= 2 and d be a non-zero reverse

derivation of R.

Let [d(x), d(y)] = 0, 8x, y 2 R. (2.35)
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Replacing y by xy in 2.35, we get

0 = [d(x), d(xy)] = [d(x), d(x)y + xd(y)] = [d(x), d(x)y] + [d(x), xd(y)]

= d(x)[d(x), y] + [d(x), d(x)]y + [d(x), x]d(y) + x[d(x), d(y)]

= d(x)[d(x), y] + [d(x), x]d(y), 8x, y 2 R. (2.36)

Replacing y by yr in 2.36 for r 2 R, we obtain

0 = d(x)[d(x), yr] + [d(x), x]d(yr)

= d(x)y[d(x), r] + d(x)[d(x), y])r + [d(x), x]d(y)r + [d(x), x]yd(r).

By using 2.36, the above relation reduces to

[d(x), x]yd(r) = 0, 8x, y 2 R. (2.37)

Replacing r by d(z) in 2.37, we get

[d(x), x]yd2(z) = 0, 8x, y, z 2 R.

Since R is prime and d 6= 0, then

[d(x), x] = 0, 8x 2 R. (2.38)

Replacing x by x+ y in 2.38, we get

0 = [d(x+ y), x+ y]

= [d(x), x] + [d(x), y] + [d(y), x] + [d(y), y]

= [d(x), y] + [d(y), x], 8x, y 2 R. (2.39)

Replacing y by yx in 2.39, we have

[d(x), yx] + [d(yx), x] = 0.
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Then, we get

y[d(x), x] + [d(x), y]x+ [d(y)x, x] + [yd(x), x] = 0.

On simplification, we get [y, x]d(x) = 0, for all x, y 2 R.

From Lemma 2.2.1 and Since d 6= 0, then [y, x] = 0, for all x, y 2 R. Hence

R is commutative.
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Chapter 3

(✓,�)�Derivation on Prime Ring

The primary purpose of this chapter is to investigate about (✓,�)� deriva-

tion d which is a ring homomorphism or anti-homomorphism on R. Bell and

Kappe ([5]) proved that if d is a derivation of R which is either an endomor-

phism or anti-endomorphism in semi-prime ring R then d = 0, and if d acts

as a homomorphism or anti-homomorphism on a non-zero right ideal U of

prime ring R, then d = 0 on R. It is our aim in this chapter to extend the

above mentioned results to a more general situation.

In this chapter, R represent an associative ring with unity 1, center Z,

where charR 6= 2 and U is a non-zero left ideal of R. Recall that a ring R is

prime if aRb = 0 implies that a = 0 or b = 0. Let R be a ring and ✓,� be

two mappings of R. We write [x, y], [x, y]✓,� for xy � yx and x✓(y)� �(y)x,

respectively and make extensive use of basic lie product identities [xy, z]✓,� =

x[y, z]✓,� + [x,�(z)]y = x[y, ✓(z)] + [x, z]✓,�y.

Recall that, an additive mapping d : R ! R is called a derivation (resp.

Jordan derivation) of a ring R if d(ab) = d(a)b + ad(b), (resp. d(a2) =

d(a)a + ad(a)) for all a, b 2 R. A derivation Ia is an inner if there exist

an a 2 R such that Ia(x) = [a, x] holds for all x 2 R. And d is called

(✓,�)�derivation if d(xy) = d(x)✓(y) + �(x)d(y), holds for all x, y 2 R.
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3.1 Definitions and Properties

Definition 3.1.1.

Let R be a ring and let ✓,� : R ! R be two mappings. Define (✓,�)�Lie

product [ , ]✓,� on R as follows

[x, y]✓,� = x✓(y)� �(y)x, for all x, y 2 R.

Lemma 3.1.1.

Let R be a ring and let ✓,� : R ! R be two mappings. Then for all

x, y, z 2 R, we have

1. [x+ y, z]✓,� = [x, z]✓,� + [y, z]✓,�.

2. [xy, z]✓,� = x[y, z]✓,� + [x,�(z)]y = x[y, ✓(z)] + [x, z]✓,�(y).

Proof.

1. [x+ y, z]✓,� = (x+ y)✓(z)� �(z)(x+ y)

= x✓(z) + y✓(z)� �(z)x� �(z)y

= [x, z]✓,� + [y, z]✓,�. (By definition 3.1.1)

To prove that 2. [xy, z]✓,� = x[y, z]✓,� + [x,�(z)]y

[xy, z]✓,� = (xy)✓(z)� �(z)(xy)

= (xy)✓(z)� x�(z)y + x�(z)y � �(z)(xy)

= x(y✓(z)� �(z)y) + (x�(z)� �(z)x)y

= x[y, z]✓,� + [x,�(z)]y. (By definitions 3.1.1 and 1.3.1)
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Now, to prove that [xy, z]✓,� = x[y, ✓(z)] + [x, z]✓,�(y)

[xy, z]✓,� = (xy)✓(z)� �(z)(xy)

= (xy)✓(z)� x✓(z)y + x✓(z)y � �(z)(xy)

= x(y✓(z)� ✓(z)y) + (x✓(z)� �(z)x)y

= x[y, ✓(z)] + [x, z]✓,�(y). (By definitions 1.3.1 and 3.1.1)

When ✓,� are two homomorphisms on R, we can get the following

lemma

Lemma 3.1.2.

Let R be a ring and let ✓,� : R ! R be two homomorphisms. Then for all

x, y, z 2 R, we have

1. [x, y + z]✓,� = [x, y]✓,� + [x, z]✓,�,

2. [x, yz]✓,� = [x, y]✓,�✓(z) + �(y)[x, z]✓,�.

Proof.

1. [x, y + z]✓,� = x✓(y + z)� �(y + z)x

= x(✓(y) + ✓(z))� (�(y) + �(z))x (Since, ✓,� are homomorphisms)

= x✓(y) + x✓(z)� �(y)x� �(z)x

= [x, y]✓,� + [x, z]✓,�. (By definition 3.1.1)
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2. [x, yz]✓,� = x✓(yz)� �(yz)x

= x✓(y)✓(z)� �(y)�(z)x (Since, ✓,� are homomorphisms)

= x✓(y)✓(z) + �(y)x✓(z)� �(y)x✓(z)� �(y)�(z)x

= (x✓(y) + �(y)x)✓(z) + �(y)(x✓(z)� �(z)x)

= [x, y]✓,�✓(z) + �(y)[x, z]✓,�. (By definition 3.1.1)

Definition 3.1.2.

Let R be a ring. An additive mapping d : R ! R is called (✓,�)–derivation

where ✓,� : R ! R are two mappings of R, if d(xy) = d(x)✓(y) + �(x)d(y),

holds for all x, y 2 R. And, we say that d is a Jordan (✓,�)�derivation if

d(x2) = d(x)✓(x) + �(x)d(x), holds for all x 2 R.

It is clear that every derivation is (✓,�)–derivation, but the converse is

not true as the following example, shows

Example 3.1.1.

Let

R =

⇢"
a b

c d

#
| a, b, c, d 2 Z

�
✓ M2(Z)

be a ring of 2⇥ 2 matrices with respect to usual addition and multiplication

in matrices. Let the mapping d : R ! R, defined by

d

 "
a b

c d

#!
=

"
a b

0 0

#
, for all

"
a b

c d

#
2 R.

Also, let ✓,� : R ! R are two mappings of R such that

✓

 "
a b

c d

#!
=

"
0 0

c d

#
,�

 "
a b

c d

#!
=

"
a 0

0 0

#
, for all

"
a b

c d

#
2 R.
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Then, d is (✓,�)�derivation of R.

Suppose that, A =

"
a1 b1

c1 d1

#
2 R and B =

"
a2 b2

c2 d2

#
2 R,

where a1, b1, c1, d1, a2, b2, c2, d2 2 Z.
Now, we prove that

d(A+B) = d(A) + d(B), for all A,B 2 R.

Indeed,

d(A+B) = d

 "
a1 b1

c1 d1

#
+

"
a2 b2

c2 d2

#!

= d

 "
a1 + a2 b1 + b2

c1 + c2 d1 + d2

#!

=

"
a1 + a2 b1 + b2

0 0

#

=

"
a1 b1

0 0

#
+

"
a2 b2

0 0

#

= d

 "
a1 b1

c1 d1

#!
+ d

 "
a2 b2

c2 d2

#!

= d(A) + d(B).

Moreover, let us show that d satisfies

Thus, d is an additive mapping.

d(AB) = d(A)✓(B) + �(A)d(B), for all A,B 2 R.
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Since,

d(AB) = d

 "
a1 b1

c1 d1

#"
a2 b2

c2 d2

#!

= d

 "
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

#!

=

"
a1a2 + b1c2 a1b2 + b1d2

0 0

#
.

(3.1)

And,

d(A)✓(B) + �(A)d(B) = d

 "
a1 b1

c1 d1

#!
✓

 "
a2 b2

c2 d2

#!
+ �

 "
a1 b1

c1 d1

#!
d

 "
a2 b2

c2 d2

#!

=

"
a1 b1

0 0

#"
0 0

c2 d2

#
+

"
a1 0

0 0

#"
a2 b2

0 0

#

=

"
b1c2 b1d2

0 0

#
+

"
a1a2 a1b2

0 0

#

=

"
a1a2 + b1c2 a1b2 + b1d2

0 0

#
.

(3.2)

From 3.1 and 3.2 we get

d(AB) = d(A)✓(B) + �(A)d(B), for all x, y 2 R.

Therefore, d is (✓,�)�derivation of R.

But, now we can see that d is not derivation.
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Indeed,

d(A)B + Ad(B) = d

 "
a1 b1

c1 d1

#!"
a2 b2

c2 d2

#
+

"
a1 b1

c1 d1

#
d

 "
a2 b2

c2 d2

#!

=

"
a1 b1

0 0

#"
a2 b2

c2 d2

#
+

"
a1 b1

c1 d1

#"
a2 b2

0 0

#

=

"
a1a2 + b1c2 a1b2 + b1d2

0 0

#
+

"
a1a2 a1b2

c1a2 c1b2

#

=

"
2a1a2 + b1c2 2a1b2 + b1d2

c1a2 c1b2

#
.

(3.3)

Hence, by 3.1 and 3.3 we get

d(AB) 6= d(A)B + Ad(B) for some A,B 2 R.

Thus, d is not a derivation of R.

Definition 3.1.3.

Let R be a ring and suppose that ✓,� : R ! R are two mappings of R. For

some fixed r 2 R, the mapping Ir : R ! R given by

Ir(x) = [r, x]✓,�, for all x 2 R

is said to be (✓,�)–inner derivation.

Now, we can prove that every (✓,�)–inner derivation is (✓,�)–derivation

by the following lemma

Lemma 3.1.3.

Every (✓,�)–inner derivation is a (✓,�)–derivation, where ✓,� : R ! R are

two homomorphism.

Proof. Let Ir : R ! R be an (✓,�)–inner derivation, for some fixed r 2 R,
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then

Ir(x) = [r, x]✓,�, 8x 2 R. (3.4)

Firstly, we will show that

Ir(x+ y) = Ir(x) + Ir(y), 8x, y 2 R.

Since,

Ir(x+ y) = [r, x+ y]✓,�

= [r, x]✓,� + [r, y]✓,� (By lemma 3.1.2)

= Ir(x) + Ir(y), 8x, y 2 R.

Thus, Ir is an additive mapping.

Now, replacing x by xy, in 3.4 where y 2 R, we get

Ir(xy) = [r, xy]✓,�

= [r, x]✓,�✓(y) + �(x)[r, y]✓,� (By lemma 3.1.2)

= Ir(x)✓(y) + �(x)Ir(y), 8x, y 2 R.

Therefore, Ir is a (✓,�)�derivation.

3.2 Some Results of (✓,�)�derivation.

Throughout the present section R is a prime ring with characteristic not

two. For (✓,�)�derivation d : R ! R, we prove the following results (3.2.1).

If d is a homomorphism on R then d = 0. (3.2.2). If d is a anti-homomorphism

on R then d = 0. On the other hand we said that an additive map d :
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R ! R is a homomorphism or anti-homomorphism respectively d(xy) =

d(x)d(y) or d(xy) = d(y)d(x), for all x, y 2 R.

Theorem 3.2.1.

Let R be a prime ring and ✓,� are automorphisms on R. If d is (✓,�)�
derivation of R which is a homomorphism on R, then d=0.

Proof. Assume R is a prime ring with char R 6= 2. Since, d acts as a homo-

morphism on R, we have

d(xy) = d(x)d(y). (3.5)

And, d acts as (✓,�)�derivation of R, we have

d(xy) = d(x)✓(y) + �(x)d(y). (3.6)

Now, by 3.5 and 3.6, we get

d(x)✓(y) + �(x)d(y) = d(x)d(y). (3.7)

Substituting xr for x in 3.7 where r 2 R, we get

d(xr)✓(y) + �(xr)d(y) = d(xr)d(y).

Since d is an homomorphism on R and � is an automorphism of R, becomes

d(x)d(r)✓(y) + �(x)�(r)d(y) = d(x)d(r)d(y).

Expanding the last equation one obtains,

d(x)d(r)✓(y) + �(x)�(r)d(y) = d(x)d(ry)

= d(x)(d(r)✓(y) + �(r)d(y))

= d(x)d(r)✓(y) + d(x)�(r)d(y)
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or equivalently,

0 = d(x)�(r)d(y)� �(x)�(r)d(y)

= (d(x)� �(x))�(r)d(y).

Indeed, � is an automorphism of R, we get

(d(x)� �(x))Rd(y) = {0}, for all x, y 2 R.

Since, R is a prime ring, we conclude that

d(x) = �(x), for all x 2 R or d = 0. (3.8)

Suppose d(x) = �(x) for all x 2 R. Replacing x by xy, y 2 R in this

equation, we have

d(xy) = �(xy) = �(x)�(y).

On the left hand side, recalling d is a (✓,�)�derivation and 3.8, it follows

d(x)✓(y) + �(x)d(y) = �(x)d(y)

then, we have

d(x)✓(y) = 0 for all x, y 2 R.

Since, R is a prime ring and lemma 2.2.1, we see that d = 0 on R.

Theorem 3.2.2.

Let R be a prime ring and ✓,� are automorphisms on R. If d is (✓,�)�
derivation of R which is an anti-homomorphism on R, then d=0.

Proof. Suppose R is a prime ring with charR 6= 2. Since, d acts as an anti-
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homomorphism on R, we have

d(xy) = d(y)d(x). (3.9)

And, d acts as a (✓,�)�derivation of R, we have

d(xy) = d(x)✓(y) + �(x)d(y). (3.10)

Now, by 3.9 and 3.10, we get

d(x)✓(y) + �(x)d(y) = d(y)d(x). (3.11)

Replacing y by xy in 3.11, becomes

d(x)✓(xy) + �(x)d(xy) = d(xy)d(x).

Recall that ✓ is automorphisms and d is (✓,�)�derivation of R which is

an anti-homomorphism on R, we have

d(x)✓(x)✓(y) + �(x)d(y)d(x) = d(x)✓(y)d(x) + �(x)d(y)d(x)

Indeed, the second terms on the both sides are equal, we conclude that

d(x)✓(x)✓(y)� d(x)✓(y)d(x) = 0, for all x, y 2 R. (3.12)

Substitutrng yr for y in 3.12 where r 2 R, we get

0 = d(x)✓(x)✓(yr)� d(x)✓(yr)d(x)

= d(x)✓(x)✓(y)✓(r)� d(x)✓(y)✓(r)d(x).
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Using 3.12, it gives

0 = d(x)✓(y)d(x)✓(r)� d(x)✓(y)✓(r)d(x)

= d(x)✓(y)(d(x)✓(r)� ✓(r)d(x))

= d(x)✓(y)[d(x), ✓(r)] (By definition 1.3.1)

Since ✓,� are automorphisms of R, we obtain

d(x)R[d(x), ✓(r)] = {0}, for all x, r 2 R

Since R is a prime ring,

d(x) = 0 or [d(x), ✓(r)] = 0

Hence,

d(x) = 0 or d(x) 2 Z, for all x 2 R.

If d(x) = 0 then d(x) 2 Z. So, we can take d(R) ✓ Z which forces d(x)d(y) =

d(y)d(x) 8x, y 2 R. And, so d to be an homomorphism of R. It follows d = 0

from Theorem 3.2.1. This completes the proof of the Theorem 3.2.2.

3.3 Commutatively of Prime Ring

In this section R is a prime ring with charR 6= 2 and U is a non-zero left

ideal of R. For (✓,�)�derivation d : R ! R, we shall prove the following

Theorem (3.3.1). If d(xy) = d(yx), for all x, y 2 R then R is commutative.

Before proceeding the proof of the main theorem we first state a few

known results which will be used in subsequent discussion.

43



Chapter 3. (✓,�)�Derivation on Prime Ring

Lemma 3.3.1.

Let R be a ring without any non-zero nilpotent ideal. Then any element of

R which commutes with all elements of [R,R] must lie in the center of R.

Proof. Let a be a fixed element of R, which is commute with all elements

of [R,R]. Assume x, y 2 R, then a commutes with [x, y] = xy � yx and a

commutes with [x, xy] = x(xy)� (xy)x = x(xy � yx). Hence, we get

ax(xy � yx) = x(xy � yx)a

= xa(xy � yx) (Since a commutes with [x, y])

or equivalently,

(xa� ax)(xy � yx) = 0, 8x, y 2 R. (3.13)

Replacing y by ya in (xy � yx), we get

x(ya)� (ya)x = x(ya)� yxa+ yxa� (ya)x

= (xy � yx)a+ y(xa� ax). (3.14)

From 3.13, if we replace y by ya, and using 3.14, we have

0 = (xa� ax)(x(ya)� (ya)x)

= (xa� ax)((xy � yx)a+ y(xa� ax))

= (xa� ax)(xy � yx)a+ (xa� ax)y(xa� ax)

= (xa� ax)y(xa� ax)

This results in

(xa� ax)R(xa� ax) = {0}.

But then (xa � ax)R is a nilpotent right ideal so is {0}. Since R has no

nilpotent ideals we get from this xa�ax = 0, that is, a must be in the center
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of R.

Lemma 3.3.2.

Let R be a prime ring, and suppose that a 2 R centralizes a non-zero right

ideal of R. Then a 2 Z

Proof. Suppose that, a centralizes the non-zero right ideal J of R. If x 2 R,

r 2 J then rx 2 J hence, a(rx) = (rx)a. But ar = ra, we thus get that

r(ax � ax) = 0, which is to say, J(ax � xa) = {0}, for all x 2 R. Since

R is prime and J 6= {0}, we conclude that ax = xa, for all x 2 R, hence

a 2 Z.

Lemma 3.3.3. [3]

Let d be a non-zero (✓,�)�derivation, where ✓,� are two homomorphisms on

R, U an ideal of a ring R and a 2 R. if [d(U), a]✓,� = {0}, then a 2 Z.

Now, we will introduce and prove the main theorem in this section

Theorem 3.3.1.

Let R be a prime ring of charR 6= 2. If d is a non-zero (✓,�)�derivation of

R and d(xy)= d(yx), for all x,y 2 R, then R is a commutative ring.

Proof. Let R be a prime ring with charR 6= 2, and d is acts as d(xy) =

d(yx), 8x, y 2 R. Suppose c 2 R such that d(c) = 0, for example c =

[x, y], 8z 2 R we have

d(zc) = d(z)✓(c) + �(z)d(c) = d(z)✓(c), (By definition 3.1.2)

d(cz) = d(c)✓(z) + �(c)d(z) = �(c)d(z). (By definition 3.1.2) (3.15)

By hypothesis, d(cz) = d(zc), 8c, z 2 R, and using 3.15, we get

d(z)✓(c) = �(c)d(z),
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that is,

d(z)✓(c)� �(c)d(z) = 0.

Thus, we have

[d(z), c]✓,� = 0, for all z 2 R. (By definition 3.1.1) (3.16)

This reduces c 2 Z for all c 2 R such that d(c) = 0 by Lemma 3.3.3. In

view of 3.16, we obtain [x, y] 2 Z for all x, y 2 R because of d([x, y]) = 0.

Therefore, R is commutative by Lemma 3.3.1.
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Chapter 4

Reverse Derivation of Prime

Ring

Bresar and Vukman [7] have introduced the notion of a reverse derivation

in rings. Samman and Alyamani [19] have investigated some properties of

reverse derivations in prime or semiprime rings. In this chapter we present

some properties of reverse derivations in prime rings. Throught this chapter

R will denote an associative ring with unity 1 and Z its center.

4.1 Definitions and Examples

In this siction, we will present some definitions and examples that will be

used throughout this chapter.

Definition 4.1.1.

Let R be a ring, an additive mapping d : R ! R is a reverse derivation if

d(xy) = d(y)x+ yd(x), for all x, y 2 R.

Remark 4.1.1.

If R is commutative then both derivation and reverse derivation are same.

We provide some examples to show that it is not the case in general.
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Example 4.1.1.

We consider R =

⇢"
a b

0 0

#
| a, b 2 Z

�
✓ M2(Z) is a ring of 2⇥ 2 matrices

with respect to usual addition and multiplication in matrices. We define the

mapping d : R ! R by

d

 "
a b

0 0

#!
=

"
0 a

0 0

#
, for every

"
a b

0 0

#
2 R.

Let A,B be any elements of R, where A =

"
a1 b1

0 0

#
and B =

"
a2 b2

0 0

#
,

where a1, b1, a2, b2 2 Z.

Firstly, we will prove that

d(A+B) = d(A) + d(B), 8A,B 2 R.

Indeed,

d(A+B) = d

 "
a1 b1

0 0

#
+

"
a2 b2

0 0

#!

= d

 "
a1 + a2 b1 + b2

0 0

#!

=

"
0 a1 + a2

0 0

#

=

"
0 a1

0 0

#
+

"
0 a2

0 0

#

= d

 "
a1 b1

0 0

#!
+ d

 "
a2 b2

0 0

#!

= d(A) + d(B).
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Thus, d is an additive mapping.

Now, we will prove that

d(AB) = d(A)B + Ad(B), 8A,B 2 R.

Since,

d(AB) = d

 "
a1 b1

0 0

#"
a2 b2

0 0

#!

= d

 "
a1a2 a1b2

0 0

#!
(4.1)

=

"
0 a1a2

0 0

#

and,

d(A)B + Ad(B) = d

 "
a1 b1

0 0

#!"
a2 b2

0 0

#
+

"
a1 b1

0 0

#
d

 "
a2 b2

0 0

#!

=

"
0 a1

0 0

#"
a2 b2

0 0

#
+

"
a1 b1

0 0

#"
0 a2

0 0

#

=

"
0 a1a2

0 0

#
. (4.2)

Thus, from 4.1 and 4.2 we conclude that

d(AB) = d(A)B + Ad(B), 8A,B 2 R.

Hence, d is a derivation of R.

Moreover, let us show that d satisfies

d(AB) = d(B)A+Bd(A), 8A,B 2 R.
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Indeed,

d(B)A+Bd(A) = d

 "
a2 b2

0 0

#!"
a1 b1

0 0

#
+

"
a2 b2

0 0

#
d

 "
a1 b1

0 0

#!

=

"
0 a2

0 0

#"
a1 b1

0 0

#
+

"
a2 b2

0 0

#"
0 a1

0 0

#

=

"
0 a2a1

0 0

#
(4.3)

=

"
0 a1a2

0 0

#
.

Finally, from 4.1 and 4.3 we have

d(AB) = d(B)A+Bd(A), 8A,B 2 R.

Therefore, d is also a reverse derivation of R.

Example 4.1.2.

We consider the ring as in the above example. If we define d : R ! R by

d

 "
a b

0 0

#!
=

"
0 b

0 0

#
, for all

"
a b

0 0

#
2 R.

Then, clearly d is an additive mapping i.e.,

d(A+B) = d(A) + d(B), 8A,B 2 R.

Since,

d(A+B) = d

 "
a1 b1

0 0

#
+

"
a2 b2

0 0

#!

= d

 "
a1 + a2 b1 + b2

0 0

#!
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=

"
0 b1 + b2

0 0

#

=

"
0 b1

0 0

#
+

"
0 b2

0 0

#

= d

 "
a1 b1

0 0

#!
+ d

 "
a2 b2

0 0

#!
= d(A) + d(B).

Now, we need to prove that

d(AB) = d(A)B + Ad(B), 8A,B 2 R.

Indeed,

d(AB) = d

 "
a1 b1

0 0

#"
a2 b2

0 0

#!

= d

 "
a1a2 a1b2

0 0

#!
(4.4)

=

"
0 a1b2

0 0

#

and,

d(A)B + Ad(B) = d

 "
a1 b1

0 0

#!"
a2 b2

0 0

#
+

"
a1 b1

0 0

#
d

 "
a2 b2

0 0

#!

=

"
0 b1

0 0

#"
a2 b2

0 0

#
+

"
a1 b1

0 0

#"
0 b2

0 0

#
(4.5)

=

"
0 a1b2

0 0

#
.

From 4.4 and 4.5 we get
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d(AB) = d(A)B + Ad(B), 8A,B 2 R.

Hence, d is a derivation of R.

But, let us show that d is not reverse derivation of R, i.e.,

d(AB) 6= d(B)A+Bd(A), for some A,B 2 R.

Indeed,

d(B)A+Bd(A) = d

 "
a2 b2

0 0

#!"
a1 b1

0 0

#
+

"
a2 b2

0 0

#
d

 "
a1 b1

0 0

#!

=

"
0 b2

0 0

#"
a1 b1

0 0

#
+

"
a2 b2

0 0

#"
0 b1

0 0

#

=

"
0 a2b1

0 0

#
. (4.6)

Finally, from 4.4 and 4.6 we have

d(AB) 6= d(B)A+Bd(A), for some A,B 2 R.

Therefore, d is not a reverse derivation of R.

4.2 Properties of Reverse Derivations

Throughout this section R will denote a ring with unity 1 and Z its center.

We know that an additive mapping d : R ! R is a reverse derivation if

d(xy) = d(y)x+yd(x) for all x, y 2 R. And we said that d is a homomorphism

or anti-homomorphism respectively if d(xy) = d(x)d(y) or d(xy) = d(y)d(x),

for all x, y 2 R.

In this section, we prove the following results (4.2.1) if a reverse deriva-

tion d acts as homomorphism or an anti-homomorphism on a non-zero right

52



Chapter 4. Reverse Derivation of Prime Ring

ideal U of a prime ring R, then d = 0.

Now we consider the following results

Theorem 4.2.1.

Let R be a prime ring and U a non-zero right ideal of R. Suppose d : R ! R

is a reverse derivation of R

1. If d acts as a homomorphism on U, then d = 0 on R.

2. If d acts as an anti-homomorphism on U, then d = 0 on R.

Proof. (1) If d acts as a homomorphism on U , then we have

d(y)d(x) = d(yx) = d(x)y + xd(y), for all x, y 2 U. (4.7)

We replace y = yx in equation 4.7, then

d(yx)d(x) = d(x)yx+ xd(yx), for all x, y 2 U. (4.8)

By multiplying 4.7 with d(x) on right side and using d is a homomorphism

on U , we get

d(yx)d(x) = d(x)yd(x) + xd(y)d(x)

d(yx)d(x) = d(x)yd(x) + xd(yx). (4.9)

By combining equations 4.8 and 4.9, we get

d(x)yx = d(x)yd(x), for all x, y 2 U (4.10)

i.e., x = d(x). So, (d(x)–x)d(x) = 0. Thus

d(x2) = xd(x)

Since d is a reverse derivation, we have d(x)x = 0, for all x 2 U.
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By linearizing x, we obtain

0 = d(x+ y)(x+ y)

= d(x)x+ d(y)x+ d(x)y + d(y)y

= d(x)y + d(y)x, for all x, y 2 U. (4.11)

We replace y by xy in equation 4.11, we have

0 = d(x)xy + d(xy)x

= d(x)xy + d(y)xx+ yd(x)x (By definition 4.1.1 )

= d(y)xx, for all x, y 2 U. (4.12)

If we right multiply by x in equation 4.11, we get

d(x)yx+ d(y)xx = 0, for all x, y 2 U.

From the above equations, we obtain

d(x)yx = 0, for all x, y 2 U.

By substituting y by ys in this equation, we get d(x)ysx = 0, for all x, y 2 U

and s 2 R. Thus for each x 2 U , the primeness of R implies that either

d(x)y = 0 or x = 0. But x 6= 0, implies that

d(x)y = 0, for all x, y 2 U. (4.13)

If we replace x by xr in equation 4.13, we get

d(xr)y = 0, for all x, y 2 U and r 2 R.
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Then, d(r)xy + rd(x)y = 0. So by 4.13, we get

d(r)xy = 0, for all x, y 2 U and r 2 R. (4.14)

Again we replace x by xs in equation 4.14. We have

d(r)xsy = 0, for all x, y 2 U and r, s 2 R

i.e., d(r)xRy = {0}, for all x, y 2 U and r 2 R.

Since R is prime, it follows that

d(r)x = 0, for all x, y 2 U and r 2 R. (4.15)

In equation 4.15, we substitute r by rs, becomes

0 = d(rs)x

= (s)rx+ sd(r)x

= d(s)rx, 8x 2 U and r, s 2 R (4.16)

i.e., d(s)Rx = 0, 8x 2 U and s 2 R.

Since R is prime, either d(s) = 0 or x = 0. But x 6= 0, then d(s) = 0, for all

s 2 R, then d = 0 on R.

(2) Suppose d acts as an anti-homomorphism on U . By our hypothesis,

we have

d(y)d(x) = d(xy) = d(y)x+ yd(x), 8x, y 2 U. (4.17)
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By substituting y by xy in d(y)d(x) ,then

d(xy)d(x) = d(x(xy))

= d((xx)y), 8x, y 2 U.

Thus

d(xy)d(x) = d(y)xx+ yd(xx), 8x, y 2 U. (4.18)

On the other hand, by using definition 4.1.1

d(xy)d(x) = d(y)xd(x) + yd(x)d(x), 8x, y 2 U. (4.19)

By combining equations 4.18 and 4.19. Then

d(y)xd(x) = d(y)xx 8x, y 2 U (4.20)

i.e., d(x) = x, 8x 2 U.

So (d(x)–x) = 0, 8x 2 U.

We right multiply last equation with d(x). Then

(d(x)–x)d(x) = 0, 8x 2 U.

Thus d(x2) = xd(x), 8x 2 U.

Since d is a reverse derivation, we have d(x)x = 0, 8x 2 U.

By linearazing x, we obtain

0 = d(x+ y)(x+ y)

= d(x)x+ d(y)x+ d(x)y + d(y)y

= d(x)y + d(y)x, 8 x, y 2 U. (4.21)
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We replace y by xy in equation 4.21, we have

0 = d(x)xy + d(xy)x

= d(x)xy + d(y)xx+ yd(x)x (By definition 4.1.1 )

= d(y)xx, 8 x, y 2 U.

Hence, we have obtained equation 4.12. The remaining proof is same as in

proof of (1).

4.3 Commutatively of Prime Ring

In this section R is a prime ring with charR 6= 2 and U is a non-zero

right ideal of R. We prove the following results (4.3.2). Let d be a non-zero

reverse derivation of R. If [d(x), x] = 0 for all x 2 U , then R is commutative.

(4.3.3). Let d be a non-zero reverse derivation of R. If [d(x), d(y)] = 0 for all

x, y 2 U , then R is commutative.

The following Theorem which is necessary for developing the proof of

Theorem 4.3.2

Theorem 4.3.1. [20]

Let I be a non-zero right ideal of a prime ring R. If I is commutative, then

R is commutative.

Theorem 4.3.2.

Let R be a prime ring with charR 6= 2, U a non-zero right ideal of R and d

be a non-zero reverse derivation of R. If [d(x), x] = 0 for all x 2 U , then R

is commutative.

Proof. Let R be a prime ring with charR 6= 2, U a non-zero right ideal of R

and d be a non-zero reverse derivation of R. We have

[d(x), x] = 0, 8x 2 U. (4.22)
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By linearizing x in equation 4.22, we obtain

0 = [d(x+ y), x+ y]

= [d(x), x] + [d(x), y] + [d(y), x] + [d(y), y]

= [d(x), y] + [d(y), x], 8x, y 2 U.

Thus,

[d(x), y]� [x, d(y)] = 0, 8x, y 2 U. (4.23)

By substituting y with yx in equation 4.23, we get

0 = [d(x), yx]� [x, d(yx)]

= [d(x), y]x+ y[d(x), x]� [x, d(x)y]� [x, xd(y)]

= [d(x), y]x� [x, d(x)]y � d(x)[x, y]� [x, x]d(y)� x[x, d(y)] (By lemma 1.3.1)

since, [d(x), y] = [x, d(y)] then we get,

d(x)[x, y] = 0, 8x, y 2 U. (4.24)

We replace y by yz in equation 4.24, we have

0 = d(x)[x, yz]

= d(x)[x, y]z + d(x)y[x, z]

= d(x)y[x, z], 8x, y, z 2 U.

Again by substituting y by yr in last equation, we have

d(x)yr[x, z] = 0, 8 x, y, z 2 Uand r 2 R
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or equivalently,

d(x)yR[x, z] = {0}, 8 x, y, z 2 U.

Since R is prime, either d(x)y = 0 or [x, z] = 0. If d(x)y = 0, then d(U)U =

{0}. But d(U)U 6= {0}, since d 6= 0, U 6= {0} and R is prime. Thus [x, z] = 0,

for all x, z 2 U. So U is commutative.

Hence by Theorem 4.3.1, R is commutative.

Theorem 4.3.3.

Let R be a prime ring with charR 6= 2, U be a non-zero right ideal of R and

d be a non-zero reverse derivation of R. If [d(x), d(y)] = 0, for all x, y 2 U ,

then R is commutative.

Proof. Let R be a prime ring with charR 6= 2, U a non-zero right ideal of R

and d be a non-zero reverse derivation of R. We have

[d(x), d(y)] = 0, 8x, y 2 U. (4.25)

By taking y by yx in equation 4.25, we have

0 = [d(x), d(yx)]

= [d(x), d(x)y + xd(y)]

= d(x)[d(x), y] + [d(x), d(x)]y + x[d(x), d(y)] + [d(x), x]d(y), 8x, y 2 U.

We get

d(x)[d(x), y] + [d(x), x]d(y) = 0, 8x, y 2 U. (4.26)

By substituting d(y) with d(z)y in equation 4.26, we have

d(x)[d(x), y] + [d(x), x]d(z)y = 0, 8x, y, z 2 U. (4.27)
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Again we take y by yr, r 2 R in equation 4.27. Then we have

0 = d(x)[d(x), yr] + [d(x), x]d(z)yr

= d(x)y[d(x), r] + d(x)[d(x), y]r + [d(x), x]d(z)yr, 8x, y, z 2 Uand r 2 R.

(4.28)

From equations 4.27 and 4.28, we get

d(x)y[d(x), r] = 0, 8x, y, z 2 U and r 2 R.

d(x)U [d(x), r] = {0}.

Again we replace y by ys, s 2 R in last equation, we get

d(x)UR[d(x), r] = {0}.

Since R is prime we have either d(x)U = {0} or [d(x), r] = 0. Since d 6= 0,

U 6= {0} and R is prime it follows that d(x)U 6= {0}. So [d(x), r] = 0. Then

d(x) 2 Z, center of R. Hence [d(x), x] = 0, for all x 2 U . From Theorem

4.3.2, R is commutative.
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