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Abstract

The purpose of this project is to study the boundary value problem for the

fourth-order beam equation:

u(4)(x) + f(x)u(x) = g(x), 0 < x < 1, (1)

subject to various boundary conditions:

The first set of BC :u(0) = u′(0) = u′′(1) = u′′′(1) = 0 (2)

which corresponds to a beam clamped at x = 0 and free at x = 1, or

the second set of BC :u(1) = u′(1) = u′′(0) = u′′′(0) = 0 (3)

that corresponds to a beam clamped at x = 1 and free at x = 0, where f and g

are continuous functions on [0,1].

The existence and uniqueness solution in a Hilbert space are proved. The proof is

based on a priori estimate and the density of the range of the operator generated by

the studied problem. Also, we investigate the application of the contraction mapping

theorem for proving the existence and uniqueness theorems for the classical solution

of the above problems and extend our study to the nonlinear fourth-order differential

equations.
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Introduction

Linear differential equations subject to some boundary conditions arise in the

mathematical description of some physical systems. For example, mathematical

models of deflection of beams. These beams, which appear in many structure, deflect

under their own weight or under the influence of some external forces. For example,

if a load is applied to the beam in a vertical plane containing the axis of symmetry,

the beam undergoes a distortion, and the curve connecting the centroids of all cross

sections is called the deflection curve or elastic curve. In elasticity it is shown that

the deflection of the curve, say u(x) measured from the x-axis, approximates the

shape of the beam and satisfies the linear fourth-order differential equation [10]:

u(4) + f(x)u = 0, (4)

on an interval, say [0, 1], with some boundary conditions. Boundary conditions

associated with these types of differential equations depend on how the ends of the

beams are supported.

In [1,2,3], the authors considered the following linear boundary value problem:

u(4) + f(x)u = g(x), 0 < x < 1, (5)

subject to

u(0) = u(1) = u′′(0) = u′′(1) = 0, (6)

where f and g are continuous functions on [0, 1]. An interesting result on the

existence and uniqueness theorem can be found in [1]. The reader will find in my

project more details about the existence and uniqueness theorems of this type of

problems.
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This project consists of four chapters and the structure of it is:

In the first chapter, we will present some known notions and results in the form of

definitions, examples and properties of a normed, Hilbert and Banach spaces. Also,

linear operators are discussed in this chapter.

In the second chapter, we consider the beam equation (5) under various boundary

conditions

The first set of BC :u(0) = u′(0) = u′′(1) = u′′′(1) = 0, (7)

or

the second set of BC :u(1) = u′(1) = u′′(0) = u′′′(0) = 0 (8)

and establish a sufficient condition on f(x) that guarantees a unique solution in

a Hilbert space by using an a priori estimate and then prove some results on the

existence and uniqueness theorems. The proof is based on an a priori estimate and

the density of the range of the linear operator generated by the studied problem.

In the third chapter, we will investigate the application of the fixed-point theorem

for proving the existence and uniqueness of the classical solution to equation (5)

subject to the boundary conditions (7) or (8). The fourth chapter is devoted to

study the boundary value problem for nonlinear fourth-order differential equation:

u(4) + f(x)u = g(x, u, u′′), 0 < x < 1, (9)

subject to

u(0) = u(1) = u′′(0) = u′′(1) = 0. (10)

Section 1 deals with the proof of a priori estimate. In section 2, some results on the

uniqueness solution is given.
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Chapter 1

Preliminaries
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In this chapter, we will give some definitions and fundamental theorems on met-

ric, Hilbert, Banach spaces and linear operators which are tremendous importance

in this project. For more details, we refer to [4, 5].

1.1 Basic definitions and properties

1.1.1 Metric and Normed spaces

Definition 1. [Metric space] A metric d on a set X is a real valued function

d : X ×X −→ R+ such that for all x, y, z ∈ X :

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ d(x, y) + d(y, z).

A metric space (X, d) is a set X with a metric d defined on X ×X.

Example 1. Define d : R× R −→ R+ by

d(x, y) = |x − y|.

Then d is a metric on R.

Theorem 1.1.1. Let A be a nonempty subset of a metric space (X, d).

A is closed if and only if for any un ∈ A such that lim
n→∞

un = u, then u ∈ A.

Definition 2. [Normed space] Let X be a vector space. A norm on X is a real

valued function ‖ · ‖ : X −→ R+ such that for all x, y ∈ X :

1. ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0;

2. ‖αx‖ = | α | ‖x‖, α ∈ R;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A normed space (X, ‖ · ‖) is a set X with a norm ‖ · ‖ defined on X.
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Remark 1. Every normed space is a metric space with the metric

d(x, y) = ‖x− y‖ for all x, y ∈ X.

Definition 3. Let (X, ‖ · ‖) be a normed space.

1. A sequence {un} in X is called a Cauchy sequence if

∀ε > 0,∃N > 0 : ‖un − um‖ < ε for all n,m ≥ N.

2. A sequence {un} in X converges to u ∈ X if

∀ ε > 0,∃N > 0 : ‖un − u‖ < ε for all n ≥ N.

Theorem 1.1.2. Let (X, ‖.‖) be a normed space

1. The limit of a convergent sequence is unique.

2. Every Cauchy sequence is bounded.

3. Every convergent sequence is a Cauchy sequence. But the converse needs not

be true in every metric space.

Definition 4. A metric space X is called complete if every Cauchy sequence in X

converges to a point in X. A normed vector space which is complete is called a

Banach space.

Remark 2. Every Banach space is a normed space but the converse, in general is

not true.

Example 2. The vector space X = C[a, b] is a normed space with respect to the

following norms:

1.

‖f‖1 =

∫ b

a

|f(x)| dx.

2.

‖f‖2 =

(∫ b

a

|f(x)|2 dx
)1/2

.
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3.

‖f‖∞ = sup
a≤x≤b

|f(x)|.

1.1.2 Operators

Definition 5. Let X and Y be two normed spaces. A mapping T : X −→ Y is

called an operator and the value of T at x ∈ X is denoted by T (x) or Tx.

1. T is called a linear operator if

(a) T (x+ y) = T (x) + T (y), ∀x, y ∈ X,

(b) T (αx) = αT (x), ∀x ∈ X and α ∈ R.

2. T is a bounded if ∃ k > 0 : ‖Tx‖ ≤ k‖x‖,∀x ∈ X.

3. T is continuous at x0 ∈ X if ∀ ε > 0 ∃ δ > 0 such that ‖x − x0‖ < δ

implies ‖Tx − Tx0‖ < ε.

4. T is uniformly continuous if ∀ ε > 0 ∃ δ > 0 for any x, y ∈ X such that

‖x − y‖ < δ implies ‖Tx − Ty‖ < ε.

5. ‖T‖ = sup

{
‖Tx‖
‖x‖

: x 6= 0

}
= sup { ‖Tx‖ : ‖x‖ = 1} is called supremum

norm.

6. Let T be a linear operator. The null space N (T ) of T is the subspace of X

defined by

N (T ) = {x ∈ X : Tx = 0}.

Note: The null space of T is sometimes called the kernel of T .

7. Let T be a linear operator. The range space R(T ) of T is the subspace of Y

defined by

R(T ) = {Tx : x ∈ X}.

Remark 3. In the previous definition, when Y = R, if T satisfies (1), then it is

called a linear functional.
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Example 3. Let X = C[a, b] and T : X −→ R be an operator defined by

Tf =

∫ b

a

f(t) dt.

Then T is a linear functional.

Definition 6. Let X and Y be Banach spaces. An operator T : D(T ) ⊂ X −→ Y

is said to be a closed operator if for any sequence {un} ⊂ D(T ), lim
n→∞

un = u and

lim
n→∞

T (un) = w imply u ∈ D(T ) and w = T (u).

Theorem 1.1.3. Let X and Y be normed spaces and T : X −→ Y be a linear

operator. Then the following statements are equivalent

1. T is continuous.

2. T is bounded.

Example 4. Let P [0, 1] be the space of C[0, 1] equipped with supremum norm.

Define the operator T : P [0, 1] −→ C[0, 1] by

Tf =
df

dt
.

Then we have

(a) T is linear.

(b) T is closed.

(c) T is not continuous.

Indeed,

(a) If f, g are in P [0, 1], and α ∈ R, then

• T (f + g) =
d(f + g)

dt
=

df

dt
+
dg

dt
= T (f) + T (g).

• T (α f) =
d(α f)

dt
= α

df

dt
= αT (f).
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(b) We have lim
n→∞

fn(t) = f(t) and lim
n→∞

Tfn(t) = g(t) uniformly. Then we get

∫ t

0

g(s) ds =

∫ t

0

lim
n→∞

dfn(s)

ds
ds = lim

n→∞

∫ t

0

dfn(s)

ds
ds

= lim
n→∞

[fn(t) − fn(0)] = f(t) − f(0).

Hence

∫ t

0

g(s) ds = f(t) − f(0) and g =
df

dt
.

(c) The function fn(t) =
tn

n
is continuous on [0, 1], since it is a polynomial.

We have lim
n→∞

fn(t) = lim
n→∞

tn

n
= 0 for all t ∈ [0, 1] and lim

n→∞
T (fn(t)) =

lim
n→∞

tn−1 = 1 when t = 1. Hence lim
n→∞

T (fn(t)) 6= 0.

Remark 4. A closed linear operator need not be bounded.

1.2 Hilbert Space

Definition 7. An inner product on a vector space X is a mapping of X×X into the

scalar field R or C; that is with every pair of vectors x and y, there is an associated

scalar which is written 〈x, y〉 where it is called the inner product of x and y, such

that for all vectors x, y, z and scalar α we have

1. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉;

2. 〈αx, y〉 = α 〈x, y〉;

3. 〈x, y〉 = 〈y, x〉;

4. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

(X, 〈·, ·〉) is called the inner product space or pre-Hilbert space.

Remark 5. In view of definition (7), we have

1. 〈x, y〉 = 〈y, x〉 in R.

2. For x = y, and in view of (3), 〈x, x〉 = 〈x, x〉 implies 〈x, x〉 is a real number.

6



3. The conditions (1) - (2) imply the following formulas

(a) 〈αx+ β y, z〉 = α 〈x, z〉+ β 〈y, z〉.

(b) 〈x, α y〉 = ᾱ 〈x, y〉.

(c) 〈x, α y + β z〉 = ᾱ 〈x, y〉+ β̄ 〈x, z〉.

Theorem 1.2.1. [Cauchy-Schwarz inequality] Let X be an inner product space

and x, y ∈ X. Then, ∣∣ 〈x, y〉 ∣∣2 ≤ 〈 x, x〉 〈y, y〉.
Theorem 1.2.2. Every inner-product space X is a normed space with respect to the

norm

‖x‖ = (〈x, x〉)
1
2 , ∀x ∈ X.

Proof.

Let x , y ∈ X and α ∈ R

1. ‖x‖ = (〈x, x〉)
1
2 ≥ 0, ∀x ∈ X, then 〈x, x〉 ≥ 0 and ‖x‖ = (〈x, x〉)

1
2 = 0 if

and only if x = 0.

2. ‖αx‖ = (〈αx, α x〉)
1
2 = (|α|2 〈x, x〉)

1
2 = |α| ‖x‖.

3. We have

‖x+ y‖2 = 〈x+ y, x+ y〉

= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

= ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2

= ‖x‖2 + 2Re〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2 |〈x, y〉|+ ‖y‖2.

Using Cauchy-Schwarz inequality we get

‖x+ y‖2 ≤ ‖x‖2 + 2 ‖x‖‖y‖+ ‖y‖2

≤ (‖x‖+ ‖y‖)2 .

7



Therefore ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 8. An inner product space X is called a Hilbert space if the normed

space induced by the inner product is complete.

Theorem 1.2.3. [Parallelogram law] For any two elements x and y belong to

any inner product space, we have

‖x+ y‖2 + ‖x− y‖2 = 2 (‖x‖2 + ‖y‖2).

Theorem 1.2.4. A Banach space is a Hilbert space if and only if its norm satisfies

the parallelogram law.

Definition 9. Let X be an inner product space and x, y ∈ X.

1. The two vectors x and y are called orthogonal, denoted by x ⊥ y, if 〈x, y〉 = 0.

2. x is orthogonal to the subset A of X and we write x ⊥ A if 〈x, y〉 = 0 for each

y ∈ A.

3. The set A⊥ = {x ∈ X : 〈x, y〉 = 0 for each y ∈ A }.

Theorem 1.2.5. Let X be any closed subspace of a Hilbert space H. Then

H = X ⊕ Y, with Y = X⊥.

Theorem 1.2.6. Let X be an inner product space and x, y ∈ X. If x ⊥ y, then

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

1.2.1 Operators in Hilbert spaces

Definition 10. Let X be a Hilbert space and T : X −→ X be a bounded linear

operator on X. Then the adjoint operator T ∗ is defined by

〈Tx, y〉 = 〈x, T ∗y〉,∀x, y ∈ X.

8



Theorem 1.2.7. Let T , S be bounded linear operators on a Hilbert space into itself

and α scalar.

Then we have

1. I∗ = I, where I is the identity operator.

2. (T + S)∗ = T ∗ + S∗.

3. (αT )∗ = ᾱ T ∗.

4. (T S)∗ = S∗ T ∗.

5. T ∗∗ = T.

6. ‖T ∗‖ = ‖T‖.

7. ‖T ∗T‖ = ‖T‖2.

8. If T is invertible so is T ∗ and (T ∗)−1 = (T−1)∗.

1.3 Notation and useful results

Throughout this project, we will denote by

• L2[0, 1] the space of square-integrable functions, i.e.,

L2[0, 1] =

{
f : [0, 1] −→ R :

∫ 1

0

|f(x)|2dx <∞
}
.

• C[0, 1] the space of all continuous functions defined on [0, 1].

• Cn[0, 1], n ≥ 1, the space of all continuous functions defined on [0, 1] and

having continuous derivatives of orders less than or equal to n.

Proposition 1.3.1. [ε−inequality]

2uv ≤ εu2 +
1

ε
v2, u, v ≥ 0, ε > 0.

9



Lemma 1.3.2. Let I be an open interval of R and let f be a continuous function

on I. If ∫
I

f(x)g(x)dx = 0, ∀g ∈ C∞0 (I),

where C∞0 (I) is the space of all functions with compact support in I having contin-

uous derivatives of any order, then f = 0 on I.

10



Chapter 2

An Existence and uniqueness

theorem for the solution of the

BVP for fourth-order equation
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2.1 Introduction

Consider the linear boundary value problem for fourth-order differential equation

[1, 2, 3]:

u(4) + f(x)u = g(x), 0 < x < 1, (2.1)

subject to

u(0) = u(1) = u′′(0) = u′′ (1) = 0, (2.2)

where f and g are continuous functions on [0, 1]. This problem is used in differ-

ent areas of physics, engineering and mathematics such as plate deflection theory.

The analytical solution for problem (2.1) with (2.2) is given by Timoshenko and

Woinowsky-Krieger [3] provided the functions f and g are continuous.

In [1], the author established a sufficient condition sup
0≤x≤ 1

| f(x) |< π4 that guaran-

tees a unique solution for problem (2.1) with (2.2). Also, the existence and unique-

ness theorem for the positivity (or negativity ) solution is given in [6]. In [7], the

authors established sufficient conditions on f that guarantee a unique solution of

this problem in a Hilbert space by using an a priori estimate. Accurate analytic

solutions in series forms are obtained by a new variation of the Duan-Rach modified

Adomian decomposition method (DRMA). Also, a comparison of the two approxi-

mate solutions by the ADM with the Green function approach is presented in [7].

In this chapter, we consider the beam equation (2.1) under various boundary

conditions:

The first set of BC :u(0) = u′(0) = u′′(1) = u′′′(1) = 0, (2.3)

which corresponds to a beam clamped at x = 0 and free at x = 1, or

the second set of BC :u(1) = u′(1) = u′′(0) = u′′′(0) = 0, (2.4)

that corresponds to a beam clamped at x = 1 and free at x = 0.

We first establish a sufficient condition on f that guarantees a unique solution

in a Hilbert space by using a priori estimate and then prove some results on the

12



existence and uniqueness theorem.

2.2 A priori Estimate

Now we shall give some lemmas which we want to use later on.

The solution of (2.1) with (2.3) or (2.1) with (2.4) will be considered as a solution

of the functional equation

Lu = g, u ∈ U, (2.5)

where L : D(L) ⊂ U −→ L2[0, 1] :

Lu = u(4) + f(x)u. (2.6)

Here U is a normed space defined as

U = {u : u,
diu

dxi
∈ L2[0, 1], i = 1, 2, 3, 4}, (2.7)

with respect to the norm

‖u‖2U =

∫ 1

0

[
u2 +

(
du

dx

)2

+

(
d2u

dx2

)2

+

(
d3u

dx3

)2

+

(
d4u

dx4

)2]
dx < ∞ (2.8)

and D(L) is the domain of the operator L which consists of all function u ∈ U

satisfying the boundary conditions (2.3) or (2.4).

We recall that the inner product is defined on L2[0, 1] as follows:

〈u, v〉 =

∫ 1

0

u(x)v(x)dx.

Lemma 2.2.1. The set U defined in (2.7) is a Hilbert space with respect to the inner

product 〈u, v〉U = 〈u, v〉+
4∑

i=1

〈u(i), v(i)〉 and its induced norm ‖.‖.

Proof.

First, we will prove that U is a subspace of L2[0, 1]. Let α, β ∈ R and u, v ∈ U ,

we will show that αu +β v ∈ U . Indeed, we have u, v, u(i) and v(i) ∈ L2[0, 1] for i =

13



1, 2, 3, 4. Since L2[0, 1] is a vector space, then αu + β v ∈ L2[0, 1] and αu(i) +

β v(i) ∈ L2[0, 1] for i = 1, 2, 3, 4, then αu + β v ∈ U. Hence U is a subspace of

L2[0, 1].

Now, we will prove that 〈· , ·〉U is an inner product on U . Let u, v, w ∈ U and

α ∈ R, then

1.

〈u+ v, w〉U = 〈u,w 〉 + 〈u′, w′ 〉+ 〈u′′, w′′ 〉+ 〈u′′′, w′′′ 〉+ 〈u(4), w(4) 〉

+ 〈v, w 〉 + 〈v′, w′ 〉+ 〈v′′, w′′ 〉+ 〈v′′′, w′′′ 〉+ 〈v(4), w(4) 〉

= 〈u, w〉U + 〈v, w〉U .

2.

〈u, v〉U = 〈u, v 〉+ 〈u′, v′ 〉+ 〈u′′, v′′ 〉+ 〈u′′′, v′′′ 〉+ 〈u(4), v(4) 〉

= 〈v, u 〉+ 〈v′, u′ 〉+ 〈v′′, u′′ 〉+ 〈 v′′′, u′′′ 〉+ 〈 v(4), u(4) 〉

= 〈v, u〉U

3.

〈αu, v〉U = 〈αu, v 〉+ 〈αu′, v′ 〉+ 〈αu′′, v′′ 〉+ 〈αu′′′, v′′′ 〉+ 〈αu(4), v(4) 〉

= α 〈u, v 〉+ α 〈u′, v′ 〉+ α 〈u′′, v′′ 〉+ α 〈u′′′, v′′′ 〉+ α 〈u(4), v(4) 〉

= α 〈u, v〉U

4.

〈u, u〉U = 〈u, u〉+ 〈u′, u′ 〉+ 〈u′′, u′′〉+ 〈u′′′, u′′′〉+ 〈u(4), u(4)〉

≥ 0.

Then 〈u, u〉U ≥ 0 and 〈u, u〉U = 0 if and only if 〈u, u〉L2 = 〈u(i), u(i)〉L2 = 0 for i =

1, 2, 3, 4 if and only if u = 0. Hence U is an inner product space.

14



Now, let {un}∞n=1 be a Cauchy sequence in U, that is for every ε > 0 there ex-

ists a natural number N ∈ N such that for all n, m ≥ N , we have

‖un − um‖2U = ‖un − um‖2L2 +
4∑

i=1

‖u(i)n − u(i)m ‖2L2 < ε. (2.9)

Then {un}∞n=1 and {u(i)n }∞n=1, i = 1, 2, 3, 4 are Cauchy sequences in L2[0, 1]. Since

L2[0, 1] is a Hilbert space, there exist u, vi ∈ L2[0, 1], i = 1, 2, 3, 4 such that

lim
n→∞

un = u and lim
n→∞

u(i)n = vi in L2[0, 1]. Take ϕ ∈ C1 [0 , 1] with ϕ(0) = ϕ(1) =

0, then we have∫ 1

0

u′n ϕ(x) dx = −
∫ 1

0

un ϕ
′(x) dx, where ϕ(0) = ϕ(1) = 0. (2.10)

Now, taking the limit∫ 1

0

v1 ϕ(x) dx = −
∫ 1

0

uϕ′(x) dx =

∫ 1

0

u′ ϕ(x) dx. (2.11)

It follows that ∫ 1

0

(v1 − u′)ϕ(x) dx = 0, for any ϕ ∈ C1 [0 , 1]. (2.12)

This implies that v1 = u′. Similarly, for lim
n→∞

u(i)n = u(i) in L2[0, 1] for i = 2, 3, 4.

Consequently, we get lim
n→∞

un = u in U . Hence U is complete. Therefore U is a

Hilbert space.

We also need the following integral inequalities involving the function and its deriva-

tive.

Lemma 2.2.2. [Wirtinger’s Inequalities]

1. Suppose u ∈ C1[a, b] with u(a) = 0 or u(b) = 0. Then

∫ b

a

(u(x))2 dx ≤ 4(b− a)2

π2

∫ b

a

(u′(x))2 dx.
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2. Suppose u ∈ C1[a, b] with u(a) = u(b) = 0. Then

∫ b

a

(u(x))2 dx ≤ (b− a)2

π2

∫ b

a

(u′(x))2 dx.

Proof.

See [8].

Theorem 2.2.3. Let u be a solution of Problem (2.1) with (2.3) and 0 < α1 ≤
f(x) ≤ α2 for all x ∈ [0 , 1], such that α1 = min

0≤x≤1
f(x) >

π

2k
, k >

√
2 and α2 =

max
0≤x≤1

f(x) <
π

2
√

2
. Then for g ∈ L2 [0 , 1], there exists a constant c > 0 such that

the obtained a priori estimate

|| u ||U ≤ c || g ||L2 (2.13)

holds.

Proof.

Let Lu = g, where Lu = u(4) + f(x)u.

Firstly, consider the scalar product 〈Lu, u〉. Employing integration by parts, and

taking into account that u(0) = u′(0) = 0 and u′′(1) = u′′′(1) = 0, we obtain

〈Lu , u〉 =

∫ 1

0

(u′′(x))2 dx+

∫ 1

0

f(x)u2(x) dx. (2.14)

The scalar product 〈Lu, u〉 can be estimated by means of the ε−inequality

| 〈Lu, u〉 |≤ ε1
2

∫ 1

0

(g(x))2 dx +
1

2 ε1

∫ 1

0

(u(x))2 dx. (2.15)

Since f is a positive and continuous function on [0, 1]. Thus 0 < α1 ≤ f(x) ≤ α2

for all x ∈ [0, 1], where α1 = min
0≤x≤1

f(x) and α2 = max
0≤x≤1

f(x). Then

∫ 1

0

(u′′(x))2 dx+ α1

∫ 1

0

(u(x))2 dx ≤ ε1
2

∫ 1

0

(g(x))2 dx+
1

2ε1

∫ 1

0

(u(x))2 dx. (2.16)
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Now, using Wirtinger’s inequalities, we have∫ 1

0

(u′(x))2 dx ≤ 4

π2

∫ 1

0

(u′′(x))2 dx, u′(0) = 0, (2.17)

and ∫ 1

0

(u′′′(x))2 dx ≤ 4

π2

∫ 1

0

(u(4)(x))2 dx, u′′′(1) = 0. (2.18)

From (2.1), we have

u(4) = g(x) − f(x)u, (2.19)

and therefore, it follows that∫ 1

0

(u(4)(x))2 dx ≤ 2 (

∫ 1

0

(g(x))2 dx + α2
2

∫ 1

0

(u(x))2 dx). (2.20)

Applying Wirtinger’s inequality to obtain∫ 1

0

(u(4)(x))2 dx ≤ 2 (

∫ 1

0

(g(x))2 dx +
4α2

2

π2

∫ 1

0

(u′(x))2 dx), u(0) = 0. (2.21)

Adding (2.16), (2.17) and (2.18) to (2.21), we get

(α1 −
1

2ε1
)

∫ 1

0

(u(x))2 dx+ (1− 8α2
2

π2
)

∫ 1

0

(u′(x))2 dx+ (1− 4

π2
)

∫ 1

0

(u′′(x))2 dx

+

∫ 1

0

(u′′′(x))2 dx+ (1− 4

π2
)

∫ 1

0

(u(4)(x))2 dx ≤ (
ε1
2

+ 2)

∫ 1

0

(g(x))2dx. (2.22)

Choosing ε1 =
k

π
where k >

√
2 so that α1 −

1

2ε1
> 0 and 1 − 8α2

2

π2
> 0. Let

c1 = min(α1 −
1

2ε1
, 1 − 8α2

2

π2
, 1 − 4

π2
). Hence the inequality (2.13) holds, where

c = c
1
2
2 and c2 =

2 + ε1
2

c1
.

Remark 6. The same estimate can be obtained for Problem (2.1) with (2.4).

2.3 Existence and Uniqueness Theorem

In this section, we need the following lemmas to show the existence and unique-

ness of the solutions.
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Lemma 2.3.1. Let U be a Hilbert space and let L : D(L) ⊂ U −→ L2[0, 1] be a

linear operator. Then R(L) = L2[0, 1] if and only if R(L) is closed and R(L)⊥ =

{0}.

Proof.

See [11].

Lemma 2.3.2. The linear operator L : D(L) ⊂ U −→ L2[0, 1] defined in (2.6) is

closed.

Proof.

Let {un}∞n=1 be a sequence in D(L) such that lim
n→∞

un = u and

lim
n→∞

Lun = lim
n→∞
{u(4)n (x) + f(x)un(x)} = v.

We want to prove that Lu = u(4) + f(x)u = v. Let ϕ ∈ C4[0, 1] with ϕ(0) =

ϕ(1) = ϕ(i)(0) = ϕ(i)(1) = 0, for i = 1, 2, 3.

We have∫ 1

0

(u(4)n (x) + f(x)un(x))ϕ(x)dx =

∫ 1

0

u(4)n (x)ϕ(x)dx+

∫ 1

0

f(x)un(x)ϕ(x)dx

=

∫ 1

0

un(x)ϕ(4)(x)dx+

∫ 1

0

f(x)un(x)ϕ(x)dx.(2.23)

Now, taking the limit, we obtain∫ 1

0

v(x)ϕ(x) dx =

∫ 1

0

u(x)ϕ(4)(x) dx +

∫ 1

0

f(x)u(x)ϕ(x) dx

=

∫
u(4)(x)ϕ(x) dx +

∫ 1

0

f(x)u(x)ϕ(x) dx

=

∫ 1

0

(u(4)(x) + f(x)u(x))ϕ(x) dx. (2.24)

It follows that∫ 1

0

[v(x)− (u(4)(x) + f(x)u(x))]ϕ(x) dx = 0 for any ϕ ∈ C4[0, 1]. (2.25)

Therefore v = u(4) + f(x)u = Lu and u ∈ D(L). Hence L is closed.
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Theorem 2.3.3. Let U be a Hilbert space and L : D(L) ⊂ U −→ L2[0, 1] a linear

closed operator. Assume that R(L)⊥ = {0} and for some constant c > 0 the a

priori estimate defined in (2.13) holds. Then for each g ∈ L2[0, 1] the equation

Lu = g, u ∈ U has a unique solution.

Proof.

In order to prove the existence, we prove that R(L) is closed. In fact, let {gn} be

a sequence in R(L) that converges to g and let {un} ∈ D(L) be a sequence with

Lun = gn. By the inequality (2.13), we have ‖un − um‖U ≤ c ‖gn − gm‖L2 . This

implies that {un} is a Cauchy sequence in U . Since U is a Hilbert space, {un}
converges to some u ∈ U . Now, using the fact that L is a closed linear operator,

we conclude that u ∈ D(L) ⊂ U and

Lu = g ∈ R(L).

Hence R(L) is closed. By using Theorem 1.2.5, we get

L2[0, 1] = R(L)⊕R(L)⊥.

We know that R(L)⊥ = {0} and also by Lemma 2.3.1, we obtain R(L) = L2[0, 1].

Then L is onto, which implies that ∀g ∈ L2[0, 1] ∃u ∈ D(L) such that

Lu = g.

The uniqueness of the solution follows immediately from the a priori estimate.

Indeed, let u1 and u2 be two solutions, then we have

Lu1 = g and Lu2 = g.

Hence, we get Lu1−Lu2 = 0. This implies that 0 ≤ ‖u1 − u2‖U ≤ c ‖Lu1−Lu2‖L2 .

Thus u1 = u2.
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Chapter 3

Existence and uniqueness theorem

for the classical solution
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3.1 Introduction

Theorems concerning the existence and uniqueness and properties of fixed points

are known as fixed-point theorems. Such theorems are important tools for proving

the existence and uniqueness of the solution to various mathematical models (dif-

ferential equations, integral differential equations) representing phenomena arising

in different fields.

Fixed Point Theorems of metric spaces provide us exact or approximate solutions

of boundary value problems.

In this chapter, we will investigate the application of the fixed-point theorem for

proving the existence and uniqueness of the classical solution to problem (2.1) with

(2.3) and problem (2.1) with (2.4).

Definition 11. Let (X, d) be a metric space and T : X −→ X be a map. A solution

of T (x) = x is called a fixed point of T.

Definition 12. Let (X, d) be a metric space. A mapping T : X −→ X is a

contraction mapping if there exists a constant c with 0 < c < 1, such that

d(T (x), T (y)) ≤ c d(x, y)

for all x, y ∈ X.

Theorem 3.1.1. [4, 5] [Fixed-Point Theorem] Let X be a complete metric space

and T be a contraction on X. Then there exists a unique x ∈ X such that T (x) = x.

3.2 The conversion of the BVP (2.1) with (2.3)

and (2.1) with (2.4) into Fredholm Integral

Equations

In this section, we will reformulate the BVP (2.1) with (2.3) and (2.1) with (2.4)

as a fixed point problem for integral equations.

We need the following lemmas.
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Lemma 3.2.1. The solution of the BVP

u′′ = F (x) , 0 < x < 1, (3.1)

u(0) = u′(0) = 0 (3.2)

is given by u(x) =

∫ x

0

G1(x, y)F (y) dy, where G1(x, y) = x − y is the ”Green

Function”.

Proof.

We integrate both sides of the equation (3.1) and taking into account the boundary

condition (3.2), we obtain

u(x) =

∫ x

0

∫ y

0

F (s) ds dy. (3.3)

Using integration by parts, we get

u(x) =

∫ x

0

(x − y)F (y) dy. (3.4)

Hence the solution u is given by

u(x) =

∫ x

0

G1(x, y)F (y) dy, where G1(x, y) = x − y. (3.5)

Lemma 3.2.2. The solution of the BVP

v′′ = F (x) , 0 < x < 1, (3.6)

v(1) = v′(1) = 0 (3.7)

is given by v(x) =

∫ 1

x

G2(x, y)F (y) dy, where G2(x, y) = y − x is the ”Green

Function”.

Proof.

We integrate both sides of the equation (3.6) and taking into account the boundary

condition (3.7), we obtain

v(x) =

∫ 1

x

∫ 1

y

F (s) ds dy. (3.8)

22



Using integration by parts, we get

v(x) =

∫ 1

x

(y − x)F (y) dy. (3.9)

Hence the solution v is given by

v(x) =

∫ 1

x

G2(x, y)F (y) dy, where G2(x, y) = y − x. (3.10)

The given problems (2.1) with (2.3) and (2.1) with (2.4) can be converted into the

following coupled systems.
u′′ = v, u(0) = 0, u′(0) = 0,

v′′ = g(x) − f(x)u , v(1) = v′(1) = 0

(3.11)

and 
u′′ = v, u(1) = 0, u′(1) = 0,

v′′ = g(x) − f(x)u , v(0) = v′(0) = 0,

(3.12)

respectively.

We conclude the following results:

Corollary 3.2.3. The problem (2.1) with (2.3) can be converted into the following

Fredholm integral equation

u(x) =

∫ 1

0

G(x, y) f(y)u(y) dy + h(x), (3.13)

where

h(x) = −
∫ 1

0

G(x, y)g(y) dy

and

G(x, y) =


y(x− y)2 if 0 ≤ y ≤ x ≤ 1,

x(x− y)2 if 0 ≤ x ≤ y ≤ 1.
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Proof.

By using Lemma 3.2.1 and by replacing F (y) with v(y), we obtain

u(x) =

∫ x

0

G1(x, y) v(y) dy, where G1(x, y) = x − y, (3.14)

and by using Lemma 3.2.2 and by replacing F (y) with g(y) − f(y)u(y), we obtain

v(x) =

∫ 1

x

G2(x, y) [g(y)− f(y)u(y)] dy, where G2(x, y) = y − x. (3.15)

From (3.14) and (3.15) with change of variable, we obtain

u(x) =

∫ x

0

∫ 1

y

−(x − z)2 g(z) dz dy +

∫ x

0

∫ 1

y

(x − z)2 f(z)u(z) dz dy. (3.16)

Using integration by parts, we get

u(x) =

∫ x

0

y(x− y)2[f(y)u(y)− g(y)]dy+

∫ 1

x

x(x− y)2[f(y)u(y)− g(y)]dy. (3.17)

Therefore,

u(x) =

∫ 1

0

G(x, y) f(y)u(y) dy + h(x), where (3.18)

h(x) = −
∫ 1

0

G(x, y)g(y) dy

and

G(x, y) =


y(x− y)2 if 0 ≤ y ≤ x ≤ 1,

x(x− y)2 if 0 ≤ x ≤ y ≤ 1.

3.3 Existence and Uniqueness Theorem

Rewrite problem (2.1) with (2.3) as T (u) = u, where

Tu =

∫ 1

0

G(x, y) f(y)u(y) dy + h(x). (3.19)
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Theorem 3.3.1. Suppose that G : [0, 1] × [0, 1] −→ R and h : [0, 1] −→ R are

continuous functions, and assume that

K = sup
0≤x≤1

∫ 1

0

∣∣∣G(x, y) f(y)
∣∣∣dy < 1. (3.20)

Then there is a unique continuous solution of problem (2.1) with (2.3).

Proof.

Let T : C[0, 1] −→ C[0, 1] defined by

Tu(x) =

∫ 1

0

G(x, y) f(y)u(y) dy + h(x). (3.21)

We prove that T is a contraction on the normed space C[0, 1] with its uniform norm.

We have for all u, v ∈ C[0, 1]

| Tu(x)− Tv(x) | =
∣∣∣ ∫ 1

0

G(x, y) f(y) [u(y) − v(y)] dy
∣∣∣

≤
∫ 1

0

∣∣∣G(x, y) f(y)
∣∣∣∣∣∣u(y) − v(y)

∣∣∣ dy
≤ sup

0≤x≤1

∫ 1

0

∣∣∣G(x, y) f(y)
∣∣∣dy ‖u− v‖∞.

Hence

‖Tu− Tv‖∞ ≤ K‖u− v‖∞. (3.22)

Thus, T is a contraction on C[0, 1]. Now applying Theorem 3.1.1, there exists one

solution u ∈ C[0, 1] such that Tu = u.

Similarly rewrite problem (2.1) with (2.4) as T (u) = u, where

Tu =

∫ 1

0

G(x, y) f(y)u(y) dy + h(x), (3.23)

h(x) = −
∫ 1

0

G(x, y)g(y) dy
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and

G(x, y) =


y(x− y)2 if 0 ≤ y ≤ x ≤ 1,

x(x− y)2 if 0 ≤ x ≤ y ≤ 1.

Remark 7. For problem (2.1) with (2.3) and (2.1) with (2.4), we find the estimate:

sup
0≤x≤1

∫ 1

0

∣∣∣G(x, y) f(y)
∣∣∣dy <

1

12
‖f‖∞. (3.24)

Thus, there is a unique solution of problem (2.1) with (2.3) for any continuous

function f with ‖f‖∞ ≤ 12.
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Chapter 4

BVP for nonlinear fourth-order

equation
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4.1 Introduction

In [9], Yang extended the previous boundary value problem for fourth-order

equation and considered the following nonlinear problem:

u(4) = g(x, u, u′′), 0 < x < 1, (4.1)

subject to

u(0) = u(1) = u′′(0) = u′′(1) = 0, (4.2)

and established the following result on the existence and uniqueness theorem:

Theorem 4.1.1. Suppose that g(x, u, v) is continuous on [0, 1] × R × R and there

are constants a, b, c ≥ 0 such that

|g(x, u, v)| ≤ a|u|+ b|v|+ c, where
a

π4
+

b

π2
< 1. (4.3)

Then problem (4.1) subject to (4.2) has a solution.

Motivated by this work of Yang [9], we consider the general nonlinear problem:

u(4) + f(x)u = g(x, u, u′′), 0 < x < 1, (4.4)

subject to the set of the homogeneous mixed boundary conditions (4.2).

4.2 A priori estimate

In this section, we establish a result concerning a priori estimate for solutions of

the boundary value problem (4.4) subject to (4.2).

Lemma 4.2.1. Suppose that g(x, u, v) is continuous on [0, 1] × R × R, f(x) is

continuous on [0, 1] and there are constants a, b, c ≥ 0 such that

|g(x, u, v)| ≤ a|u|+ b|v|+ c, where
a+ ‖f‖∞

π4
+

b

π2
< 1. (4.5)

Then there exists a constant M > 0 such that for any x ∈ [0, 1] and any solution
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u(x) to problem (4.4) subject to (4.2), we have

‖u‖∞ + ‖u′′‖∞ = sup
0≤x≤1

|u(x)|+ sup
0≤x≤1

|u′′(x)| ≤M. (4.6)

Proof.

Set v = u′′. Then, we have the following coupled nonlinear system

u′′ = v, u(0) = u(1) = 0, (4.7)

v′′ = g(x, u, v)− f(x)u, v(0) = v(1) = 0. (4.8)

From (4.7), we have uu′′ = uv, and first using Cauchy-Schwarz inequality and then

Wirtinger’s inequality, we obtain∫ 1

0

(u′)2dx = −
∫ 1

0

uvdx

≤
(∫ 1

0

u2dx

) 1
2
(∫ 1

0

v2dx

) 1
2

≤ 1

π

(∫ 1

0

(u′)2dx

) 1
2 1

π

(∫ 1

0

(v′)2dx

) 1
2

.

Consequently (∫ 1

0

(u′)2dx

) 1
2

≤ 1

π2

(∫ 1

0

(v′)2dx

) 1
2

. (4.9)

From (4.8), we have vv′′ = vg(x, u, v)− f(x)uv, then

∫ 1

0

(v′)2dx = −
∫ 1

0

vg(x, u, v)dx+

∫ 1

0

f(x)uvdx

≤
∫ 1

0

[a|uv|+ b|v2|+ c|v|]dx+ max
0≤x≤1

|f(x)|
∫ 1

0

|uv|dx

=

∫ 1

0

[a|uv|+ b|v2|+ c|v|]dx+ ‖f‖∞
∫ 1

0

|uv|dx. (4.10)

Now, using Cauchy-Schwarz inequality and ε−inequality, we have

∫ 1

0

(v′)2dx ≤ (a+‖f‖∞)

(∫ 1

0

u2dx

) 1
2
(∫ 1

0

v2dx

) 1
2

+(b+
ε

2
)

∫ 1

0

v2dx+
c2

2ε
. (4.11)
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From Wirtinger’s inequality and (4.9), we have

(∫ 1

0

u2dx

) 1
2

≤ 1

π

(∫ 1

0

(u′)2dx

) 1
2

≤ 1

π3

(∫ 1

0

(v′)2dx

) 1
2

(4.12)

and (∫ 1

0

v2dx

) 1
2

≤ 1

π

(∫ 1

0

(v′)2dx

) 1
2

. (4.13)

Therefore, (4.11) becomes

∫ 1

0

(v′)2dx ≤ a+ ‖f‖∞
π4

∫ 1

0

(v′)2dx+
b

π2

∫ 1

0

(v′)2dx+
ε

2π2

∫ 1

0

(v′)2dx+
c2

2ε
. (4.14)

Since a, b and ‖f‖∞ satisfy the assumptions, we can choose ε > 0 sufficiently small

such that

1−
(
a+ ‖f‖∞

π4
+

b

π2
+

ε

2π2

)
= k > 0.

Then it follows from (4.14) that

∫ 1

0

(v′)2dx ≤ c2

2εk
= c1, (4.15)

and consequently from (4.9) and (4.15), we obtain

(∫ 1

0

(u′)2dx

) 1
2

≤
√
c1
π2

. (4.16)

In particular, (4.15) and (4.16) give us

|v(x)| =
∣∣∣∣∫ x

0

v′dx

∣∣∣∣ ≤ (∫ 1

0

(v′)2dx

) 1
2

≤
√
c1 (4.17)

and

|u(x)| =
∣∣∣∣∫ x

0

u′dx

∣∣∣∣ ≤ (∫ 1

0

(u′)2dx

) 1
2

≤
√
c1
π2

. (4.18)

Then the estimate (4.6) follows from estimates (4.17) and (4.18).
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4.3 A uniqueness Theorem

In this section, we will prove the uniqueness of the solution.

Theorem 4.3.1. Suppose that f is continuous on [0, 1] and g(x, u, v) is a Lipschitz

function in u and v, that is, there are two constants k1, k2 > 0 such that

|g(x, u1, v1)− g(x, u2, v2)| ≤ k1|u1 − u2|+ k2|v1 − v2| (4.19)

for all ui, vi ∈ C[0, 1], i = 1, 2, where
k1 + ‖f‖∞

π4
+
k2
π2

< 1.

Then, there exists at most one solution u ∈ C[0, 1] of problem (4.4) with (4.2).

Proof.

Suppose there are two solutions u1 and u2 such that u1 6= u2. Then we have


u
(4)
1 + f(x)u1 = g(x, u1, u

′′
1),

u1(0) = u1(1) = u′′1(0) = u′′1(1) = 0

and


u
(4)
2 + f(x)u2 = g(x, u2, u

′′
2),

u2(0) = u2(1) = u′′2(0) = u′′2(1) = 0.

Let w = u1 − u2. Then


w(4) + f(x)w = g(x, u1, u

′′
1)− g(x, u2, u

′′
2), 0 < x < 1

w(0) = w(1) = w′′(0) = w′′(1) = 0.

(4.20)

Set z = w′′. We have the following coupled problem

w′′ = z, w(0) = w(1) = 0, (4.21)

z′′ = −f(x)w + g(x, u1, u
′′
1)− g(x, u2, u

′′
2), z(0) = z(1) = 0. (4.22)

From (4.21), we have ww′′ = wz. Proceeding as in Lemma (4.2.1), we have

(∫ 1

0

(w′)2dx

) 1
2

≤ 1

π2

(∫ 1

0

(z′)2dx

) 1
2

. (4.23)
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From (4.22), we have zz′′ = −f(x)zw + z [g(x, u1, u
′′
1) − g(x, u2, u

′′
2)]. Since g is a

Lipschitz function, we get∫ 1

0

(z′)2dx ≤ (‖f‖∞ + k1)

∫ 1

0

|zw|dx+ k2

∫ 1

0

|z|2dx. (4.24)

Now, using Cauchy-Schwarz inequality and ε−inequality, we obtain∫ 1

0

(z′)2dx ≤ (‖f‖∞ + k1)(

∫ 1

0

z2dx)
1
2 (

∫ 1

0

w2)
1
2dx+ k2

∫ 1

0

|z|2dx. (4.25)

From Wirtinger’s inequality and (4.23), we have

(∫ 1

0

w2dx

) 1
2

≤ 1

π

(∫ 1

0

(w′)2dx

) 1
2

≤ 1

π3

(∫ 1

0

(z′)2dx

) 1
2

and (∫ 1

0

z2dx

) 1
2

≤ 1

π

(∫ 1

0

(z′)2dx

) 1
2

.

Therefore (4.25) becomes

[
1−

(
‖f‖∞ + k1

π4
+
k2
π2

)]∫ 1

0

(z′)2dx ≤ 0. (4.26)

Since

1−
(
‖f‖∞ + k1

π4
+
k2
π2

)
> 0. (4.27)

Then it follows from (4.26) ∫ 1

0

(z′)2dx ≤ 0 (4.28)

and consequently from (4.23) and (4.28), we obtain

(∫ 1

0

(w′)2dx

) 1
2

≤ 0. (4.29)

In particular, (4.28) and (4.29) give us

|z(x)| =
∣∣∣∣∫ x

0

z′dx

∣∣∣∣ ≤ (∫ 1

0

(z′)2dx

) 1
2

≤ 0 (4.30)
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and

|w(x)| =
∣∣∣∣∫ x

0

w′dx

∣∣∣∣ ≤ (∫ 1

0

(w′)2dx

) 1
2

≤ 0. (4.31)

Then,

sup
0≤x≤1

|w(x)|+ sup
0≤x≤1

|z(x)| = ‖w‖∞ + ‖z‖∞ ≤ 0. (4.32)

Hence

0 ≤ ‖w‖∞ + ‖w′′‖∞ ≤ 0. (4.33)

This is a contradiction. Therefore, u1 = u2.

Example 5. We consider the following BVP:
u(4) + (x2 + 1)u =

√
λ+ u2 + (u′′)2, 0 < x < 1, λ ∈ R+

u(0) = u(1) = u′′(0) = u′′(1) = 0.

We have

|g(x, u1, u
′′
1)− g(x, u2, u

′′
2)| =

∣∣√λ+ u21 + (u′′1)2 −
√
λ+ u22 + (u′′2)2

∣∣, for allu1, u2 ∈ R

=
|(λ+ u21 + (u′′1)2)− (λ+ u22 + (u′′2)2)|√
λ+ u21 + (u′′1)2 +

√
λ+ u22 + (u′′2)2

=
|(u21 − u22) + ((u′′1)2 − (u′′2)2)|√

λ+ u21 + (u′′1)2 +
√
λ+ u22 + (u′′2)2

=
|u1 + u2||u1 − u2|+ |u′′1 + u′′2||u′′1 − u′′2|√

λ+ u21 + (u′′1)2 +
√
λ+ u22 + (u′′2)2

≤ |u1 − u2|+ |u′′1 − u′′2|.

Thus, g is a Lipschitz function with k1 = k2 = 1, and the condition
‖f‖∞ + k1

π4
+

k2
π2

< 1 is satisfied. So that, Theorem 4.3.1 implies that this problem has at most

one solution.
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