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Abstract

In this research, we give foundations of Galois Theory and its important implication on

insoulability of quintic equation. In the first chapter, we lay down the background on finite

extensions needed to study this subject. In the second chapter, we proceed in studying

Galois theory, after some introductory results, we state and prove the Fundamental Theorem

of Galois on finite field extensions. Then we conclude this chapter with the famous important

result of insoulability of the quintic equation and prove it as a consequence of the Fundamental

Theorem of Galois.
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Introduction

First, we give a historical survey of this fascinating thoery and pivotal subject of ”Galois

Theory”. It is needless to say that Geometry and Numbers are the two foundations on whom

mathematics was built on from the evolve of human civilizations. The first deep and most

important subject in all fields of mathematics is solving equations on one unknown which

has a long and rich history of developments. The solution of the linear equation was known

from untiquity In the 9th century Muhammad ibn Musa Al-Khwarizmiy(780-850) gave the

procedures of solving the general second degree equation in his famous book ”Aljabr wa

Almugabla”.

For the general 3rd and 4th degree equations, they were difficult to deal with and their

solutions became a formidable tasks and they were finally solved through the period 1535-

1545 in a dramatic series of events by Firro, Fontana, Cardano, and Ferrari.

For the quintic equations, i.e. the 5th degree equation in one unknown; since the 16th

century the mathematician were struggling finding the general law of solving this equation

by radicals. As the time went without any sign of finding this seeked solution, some math-

ematicians start to doubt that is there ever a solution of this equation. Among those was

the famous mathematician Joseph Lagrange(1736-1813) who even though didn’t succeeded

in proving the impossibility of solving quintic by radicals, he paved the way for next ex-

plorers seeking this proof. After failure of many mathematicians in finding the proof of this

impossibility, Neils Abel(1802-1829) succeeded in providing the first complete proof of the

impossibility of solving the general quintic equation by radicals. Abel’s proof was later su-

perceded by the more elegant and comprehensive proof of Evariste Galois in 1830. Both Abel

and Galois lived a miserable lives and died too early. Their profounding proofs remained un-

noticed until the fourties of the 19th century, moreover, the great impact of Galois proof and

method was not realized until the end of 19th century.

Now we come the to material of this thesis which consists of two chapters. In the first

1



chapter, we lay down the necessary background in algebraic field extensions which is needed

for studying Galois theory on finite extension fields. We study in this chapter the notions

of algebraic, splitting, separable, and normal extensions and introduce some of their basic

properties. In the second chapter which represents the core material of this research, we

define the Galois group of any finite field extensions (K : F ) and study some of its properties

regarding the dimension [K : F ] and we prove the main result showing the order of the

Galois group Γ(K : F ) equals [K : F ] if and only if K is normal and separable over F . Next

after giving some other properties of these kinds of field extensions, we state and prove the

main theorem of this research the(Fundamental Theorem of Galois) which gives a one-one

corresponding between intermediate subfields of a normal separable extension field (K : F )

and the subgroups of its Galois group Γ(K : F ) with several important results. Finally in the

last section we use Galois theory to show the important result of insolvability of the general

quintic equation by radicals which was the main factor in evolving of Galois Theory. We

start this section by defining radical extension fields and reviewing the important notion of

solvable groups (this notion came out as a result of trying to solve the quintic equations by

radicals). Next we state and prove the important theorem which related the solvability of

Galois group with corresponding field extension being a radical extension. After that we state

and prove the impossiblity of solving the general quintic equation by radicals by considering

a specific 5th degree equation over the field of rational numbers whose Galois group is not

solvable, i.e., no splitting field of this polynomial would be contained in a radical extension

field of the rational numbers.
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Chapter1

Finite Algebraic Extensions

Throughout this research, F ⊂ K are fields and we denote this by K : F and call it an

extension field. If dimKF is finite we call it a finite extension and denote dimKF by [K : F ].

All results in sections 1 and 2 of this chapter are standard in any first Algebra graduate

course, so we won’t give proofs of these results but we refer the reader to references [ 1 ] and

[ 2 ].

1.1 Basics

(1.1) Definition.

Let K : F and L : F be field extensions. An F -homomorphism ϕ : K −→ L is a homo-

morphism of fields such that ϕ(a) = a for all a ∈ F . An F -embedding is an injective F -

homomorphism. An F -isomorphism is a bijective F -homomorphism. An F -automorphism

of K is an F -isomorphism mapping K onto itself. Two extensions K:F and L:F of a field F

are said to be F -isomorphic if there is an F-isomorphism ϕ : K −→ L.
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(1.2) Proposition (The Tower Law).

Let L:K and K:F be field extensions. Then:

[L : F ] is finite if and only if [L : K] and [K : F ] are finite.

In this case, [L : F ] = [L : K][K : F ].

(1.3) Definition.

Let K:F be a field extension and let α ∈ K. α is called algebraic over F if there exists

a non-zero polynomial f(x) ∈ F [x] such that f(α) = 0. If α is not algebraic over F , we call

it transcendental over F . If every element of K is algebraic over F , then we say that K is

algebraic over F and we call the K:F an algebraic extension.

(1.4) Proposition.

Any finite field extension is algebraic over the basic field.

(1.5) Proposition.

Let K:F be an extension field and let α ∈ K be algebraic over F . Then there exists

a unique irreducible monic polynomial - i.e. its leading coefficient is one - p(x) ∈ F [x] such

that p(α) = 0. Moreover, if f(x) ∈ F [x] with f(α) = 0, then p(x)|f(x).

(1.6) Definition.

If α ∈ K is algebraic over F , we call the polynomial p(x) above the minimal polynomial of

α over F and denote it by pα(x).

(1.7) Proposition.

Let K:F be a field extension and let α ∈ K be an algebraic over F. Then [F (α):F ] is finite

and it equals the deg(pα(x)).

(1.8) Proposition.

A field extension K:F is finite if and only if there exists a finite set of algebraic elements

α1, α2, ..., αn in K such that K=F (α1, α2, ..., αn).
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(1.9) Proposition.

Let L:K and K:F be field extensions. Then L:F is an algebraic field extension if and only if

L:K and K:F are both algebraic field extensions.

1.2 Splitting Fields

(2.1) Definition.

Let K:F be a field extension. A non-zero f(x) ∈ F [x] is said to split in K if it is a constant

polynomial or there exist elements c, α1, α2, ..., αn ∈ K such that f(x) = c(x − α1)(x −

α2)...(x− αn), i.e., f(x) can be factored into linear factors in K[x].

(2.2) Theorem (Kronecker).

Let F be a field and let f(x) be a non-constant polynomial in F [x]. Then there exists

an extension field K and an element α of K such that f(α) = 0.

(2.3) Proposition.

Let K:F be a field extension and let α, β∈ K be algebraic over F . Then F (α) is isomorphic

to F (β) if and only if α and β have the same minimal polynomial over F .

(2.4) Definition.

Let K:F be a field extension and let f(x) be a non-constant polynomial in F [x]. We call the

field K a splitting field for f over F if the following holds

(i) The polynomial f splits in K over F .

(ii) The polynomial f does not split over any proper subfield of K containing F .

(2.5) Proposition.

Let K:F be a field extension and let f(x)∈F [x] which splits in K. Then there is a unique

splitting subfield (up to F -isomorphism) of f(x) in K.

For the field extension C:Q, the Fundamental Theorem of Algebra asserts that a non-

constant polynomial f(x)∈Q[x] always splits in the field C.
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Note that if a polynomial f(x) splits in an extension field K of F and if α1,α2,...αn are

the zeros of this polynomial in K, then the unique splitting field ,up to an F -isomorphism,

of f over F contained in K is exactly the field F (α1, α2, ..., αn) obtained by adjoining the

zeros of f to F .

1.3 Normal and Separable Extensions

(3.1) Definition.

A field extension K:F is called normal if every irreducible polynomial in F [x ] having a zero

in K splits in K.

So we can see from definition above that: a finite field extension K:F is normal if and

only if for any element α ∈ K, the minimal polynomial p(x) ∈ F [x] of α in K splits in K.

(3.2) Proposition.

Let K:F be a field extension. Then K is a splitting field over F for some polynomial

f(x)∈F [x] if and only if the field extension K:F is both finite and normal.

Proof.

Assume that K:F is both finite and normal. Then by proposition(1.8), there exist

α1,α2,...,αn in K such that K=F (α1,α2,...,αn) where αi’s are algebraic over F . Now let

pi(x )∈ F[x ] be the minimal polynomial of αi in F for each i=1,2,...,n, and let f(x) =

p1(x)p2(x)...pn(x). Since K:F is normal, pi(x) splits in K for i=1,2,...,n. Hence f splits

in K. Moreover, K is generated by α1,α2,...,αn which implies that K is the splitting field of

f over F .

Conversely, suppose that K is a splitting field for some polynomial f(x) ∈ F [x]. Then K

is generated by the zeros of f . Using proposition(1.8), K:F is finite. For the normality, let

g(x) ∈ F [x] be irreducible, and let L be a splitting field of fg over K. Then each of f(x)

and g(x) splits in L. Now suppose that α and β are zeros of g(x) in L. Then f(x) splits in
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both K(α) and K(β). So if f(x) splits in any subfield E of L containing F (α), then K ⊂ E

and hence K(α) ⊂ E. Hence K(α) is a splitting field of f(x) over F (α). Similarly, we found

that K(β) is a splitting field of f(x) over F (β).

Now define the mapping ϕ : F (α) −→ F (β) by ϕ(h(α)) = h(β) for all h(x) ∈ F [x]. So

ϕ is well-defined mapping, since for any two polynomials h1(x) and h2(x) in F [x] having

the same value at some zero of g(x) if and only if h1 − h2 is divisible by g. Since K(α)

and K(β) are splitting fields of f(x) over F (α) and F (β) respectively, we can extend ϕ

to an F -isomorphism ϕ∗ : K(α) −→ K(β). Therefore K(α) and K(β) are F -isomorphic,

hence [K(α) : F ] = [K(β) : F ]. By Tower Law, [K(α) : F ] = [K(α) : K][K : F ] and

[K(β) : F ] = [K(β) : K][K : F ]. Thus[K(α) : K] = [K(β) : K]. Hence α ∈ K if and only

if β ∈ K. So for any irreducible polynomial in F [x] having a zero in K must split in K. It

follows that, K : F is normal. �

(3.3) Example.

Let K be a splitting field of x3 − 2. Then

x3 − 2 = (x− u)(x− ωu)(x− ω2u)

where u = 3
√

2 and ω = (−1 +
√
−3)/2. Clearly K = Q(u, ω) is the splitting field of

x3 − 2 over Q, ω /∈ Q(u), and u /∈ Q(ω). By proposition(3.2), K is normal. Note that

[Q(u) : Q] = 3 = [Q(u, ω) : Q(ω)], since the minimal polynomial of u has degree 3 over Q

and Q(ω). Also [Q(ω) : Q] = 2, since the minimal polynomial of ω is (x−ω)(x−w2) and has

degree 2 over Q. Now by Tower Law [K : Q] = [K : Q(ω)][Q(ω) : Q] = 3× 2 = 6. However,

neither Q(u) nor Q(ω) is a splitting field of x3 − 2 over Q, so both of them are not normal

over Q.

It can easy shown that if L : F is normal finite extension and K is an intermediate field

of this extension, then so is L : K. But K : F is not necessarily normal, e.g. in the example,

Q(u : ω) : Q and Q(u, ω) : Q(u) are both normal but Q(u) : Q is not.
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(3.4) Definition.

Let F be a field and let f (x )=
∑n

i=0 aix
i∈F [x ]. The formal derivative f ′ of f is defined by

f ′(x )=
∑n

i=0 iaix
i−1.

It is easy to show that ∀f(x),g(x)∈F [x], (f + g)′ = f ′ + g′ and (fg)′ = f ′g + fg′ If f is

constant polynomial, then f ′=0.

(3.5) Proposition.

Let F be a field and let f (x )∈F [x ]. Then the polynomial f has a repeated zero in some

splitting field of f over F if and only if there is g(x )∈F [x ] of positive degree such that g(x )|

f (x ) and g(x)|f ′(x).

Proof.

If c is a repeated zero of f(x)∈F [x] in some extension L, then f(x) = (x − c)2h(x), for

some polynomial h(x)∈L[x]. Since f ′(x) = 2(x− c)h(x) + (x− c)2h′, we note that f ′(c) = 0.

Hence both f(x) and f ′(x) have a common factor x− c of positive degree in the extension L

of F .

Now, assume that there exists g(x) ∈ F [x] of positive degree such that g(x)|f(x) and

g(x)|f ′(x). Let a be a zero of g(x). Then a is a zero of both f(x) and f ′(x), and thus there

exists a polynomial p(x) such that f(x) = (x − a)p(x). Hence f ′(x) = (x − a)p′(x) + p(x)

and 0 = f ′(a) = p(a). This means that x − a is a factor of p(x). So we showed that,

f(x) = (x− a)2q(x), where p(x) = (x− a)q(x), for some polynomial q(x) ∈ L[x]. Thus a is

a repeated zero of f(x). �

(3.6) Definition.

Let f (x )∈F [x ] be irreducible. f (x ) is called separable over F if there is no repeated zero

for f (x ) in some splitting field(hence in any splitting field) of f (x ) over F . Any polynomial

g(x )∈ F [x ] is called separable over F if all its irreducible factors are separable over F ,

otherwise g(x ) is called inseparable.
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(3.7) Definition.

Let K:F be an algebraic field extension and let a ∈ K. Then a is called separable if its

the minimal polynomial pa(x) ∈ F [x] is separable over F . The field K is called separable

extension of F if all its elements are separable over F .

(3.8) Proposition.

Let F be a field. Then an irreducible polynomial f is inseparable over F if and only if f ′=0.

Proof.

Suppose that f(x) ∈ F [x] is an irreducible inseparable polynomial. Then f(x) has a

repeated zero in some extension of F , so by proposition(3.5) there exists a polynomial g(x) ∈

F[x] of positive degree that divides both f(x) and f ′(x). Since f is irreducible, g(x) = af(x)

for some a ∈ F. Hence f(x) divides f ′(x). But deg(f ′)< deg(f). We deduce that, f ′(x) = 0.

Conversely, suppose that f ′(x) = 0. Then both of f(x) and f ′(x) are divisible by f(x). By

proposition(3.5), we obtain that f(x) has e repeated zero in some extension of F. It follows

that, f is inseparable over F. �

(3.9) Proposition.

Let K:F be algebraic extension with char(F )=0 and let f (x )∈F [x ] be irreducible. Then:

(i) f (x ) is separable over F .

(ii) K is separable over F .

Proof.

(i)Suppose that f(x) is not separable. Then by proposition(3.8), f ′(x) = 0. Therefore

f(x) must be a constant which contradicts the irreducibility of f(x). Thus f(x) is separable.

(ii)Let d ∈ K be algebraic over F with a minimal polynomial pd(x). Then by pat(i), pd(x)

is separable over F . This shows that any algebraic element over F , its minimal polynomial

must be separable. Hence K : F is separable. �

For the corresponding proposition on finite fields, we need the following result whose proof

can be found in [2].
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(3.10) Proposition.

Let F be a finite field with char(F )=p, then:

(F ∗, .) is cyclic and | F |= pn for some n ∈ N. Moreover, F ' Zp(α) for some α ∈ F .

(3.11) Proposition.

Let F = Zp(α) be a finite field with | F |= pn. Then the extension F : Zp is a separable

extension.

Proof.

(F ∗, .) is cyclic group of order pn− 1 implies ∀a ∈ F ∗, apn−1 = 1. Hence ∀a ∈ F , ap
n

= a,

i.e. every element of F is a zero of the polynomial f(x) = xp
n − x. Thus all zeros of f(x) are

in F and are all distinct. So f(x) is separable over Zp, i.e. F : Zp is separable. �

(3.12) Example.

Let F = Z2(y) be the field of quotients of the ring Z2[y] of polynomials in the indeterminate

y with coefficients from Z2. Consider the polynomial f(x) = x2 − y ∈ F [x]. To see that

f(x) is irreducible over F , it suffices to show that it has no zeros in F . Now suppose that

g(y)/h(y) is a zero of f(x). Then (g(y)/h(y))2 = y, and threfore (g(y))2 = y(h(y))2. Since

g(y), h(y) ∈ Z2[y] and char(Z2)=2, we have g(y2) = yh(y2). But deg(g(y2)) is even, whereas

deg(yh(y2)) is odd. So, f(x) is irreducible over F . Finally, since y is a constant in F [x] and

the char(F )=2, we have f ′(x) = 0 so that f(x) and f ′(x) have f(x) as a common factor. So,

f(x) has a repeated zero in some extension of F and hence f(x) is inseparable.

(3.13) Theorem (Primitive Element Theorem).

Let K:F be a finite separable extension field. Then K=F (α) for some α∈K, i.e. K is

a simple extension field of F .
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Proof.

We have two cases.

Case1. F is finite and K is finite over F so K is finite. Hence by proposition(3.10),

K = Zp(α) = F (α) for some α ∈ K.

Case2. F is infinite. We will prove the result by mathematical induction and for that it

is enough to prove it for K = F (α.β). Let f(x) and g(x) be the minimal polynomial of α

and β respectively, and let L be a splitting field of fg. Then both f and g split in L, and

hence α1, α2, ..., αr and β1, β2, ..., βs are the zeros of f and g ,respectively, in L with α1 = α

and β1 = β. αi’s and βj’s are distinct, since K : F is separable.

Since F is infinite, we choose an element d ∈ F such that d 6= (αi − α)/(β − βj) for

any i ≥ 1 and j > 1. Let h(x) = f(δ − dx), where δ = α + dβ. Then h(x) ∈ F (δ)[x],

h(β1) = h(β) = f(α) = 0, and h(βj) 6= 0 for any j > 1, since αi 6= δ − dβj for any i ≥ 1 and

j > 1.

Let u(x) ∈ (F (δ))[x] be the minimal polynomial of β over F (δ). Now g(x) ∈ F [x] ⊆

(F (δ))[x] with g(β) = 0, so u(x)|g(x). Similarly, since h(β) = 0, u(x)|h(x). In L we have

g(x) = (x − β1)(x − β2)...(x − βs) with β = β1 and we see above that h(βj) 6= 0,∀j > 1.

So u(x) has only one zero, namely β, in L so u(x) = (x − β)t for some t ∈ N, hence t = 1

because K ⊇ L is separable over F . Thus u(x) = (x−β) ∈ (F (δ))[x] which implies β ∈ F (δ).

Similarly, we show α ∈ F (δ), hence F (α, β) ⊆ F (δ). Thus K = F (δ) and K : F is a simple

extension. �

(3.14) Example.

Let F be infinite field with char(F )=p - p is prime number - and let x and y be indeterminantes

over F . Then we have F (xp, yp) ⊆ F (x, y). Now the basis of F (x, y) over F (xp, yp) is

{1, x, x2, ..., xp−1, y, y2, ..., yp−1, xy, xy2, ..., xyp−1, x2y, x2y2, ..., x2yp−1, ..., xp−1y, xp−1y2, ...,

xp−1yp−1} so [F (x, y) : F (xp, yp)] = p2. Furthermore, let z ∈ F (x, y). Then zp ∈ F (xp, yp)
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so that [F (xp, yp)(z) : F (xp, yp)] ≤ p. Therefore there is no primitive z such that F (x, y) =

F (xp, yp)(z). Thus F (x, y) is not simple extension.
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Chapter2

Galois Theory and Insolubility of The

Quintic Equation by Radicals

2.1 Galois Group

(1.1) Definition.

The Galois group Γ(K : F ) of a field extension K:F is the group of all F -automorphisms of

K which fix elements of F , i.e. ∀σ ∈ Γ(K : F ) ∀a ∈ F : σ(a) = a.

(1.2) Proposition.

If K:F is finite separable extension, then |Γ(K : F )| ≤ [K : F ]

Proof.

By Primitive Element Theorem, there exists an element α ∈ K such that K = F (α). Now

let β ∈ K. Then for some polynomial g(x)∈F [x], we have β = g(α). Since the coefficients

of g are fixed by any F -automorphism φ∈Γ(K:F ), we get φ(β) = φ(g(α)) = g(φ(α)). This

implies that, each F -automorphism φ is uniquely determined once φ(α) is known.

Let f(x) ∈F [x] be the minimal polynomial of α over F . Then f(φ(α)) = φ(f(α)) =
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0,∀φ ∈ Γ(K:F ), since the coefficients of f belong to F and therefore are fixed by φ. Hence

φ(α) is a zero of f . It follows that, the order of Γ(K:F ) is bounded above by the number

of zeros of f that are in K. But the number of zeros of f are equal to deg(f)=[K:F ], since

the zeros of f are all distinct and f is the minimal polynomial of α in K over F . Thus

|Γ(K:F )|≤[K:F ]. �

(1.3) Example.

Let a = 3
√

2 and consider the extension field Q(a) : Q. Let ϕ be any Q-automorphism of

Q(a). Then it is easy to see that ϕ(m) = m ∀m ∈ Z and consequently ∀m
n
∈ Q ϕ(m

n
) = m

n
..

Hence,

(ϕ(a))3 = ϕ(a3) = ϕ(2) = 2,

thus ϕ(a) = a and consequently ϕ(p) = ∀p ∈ Q(a) Therefore, Γ(Q(a) : Q) = {ι} and

|Γ(Q(a) : Q)| < [Q(a) : Q].

(1.4) Definition.

Let G be a group of automorphisms of a field K. Then the fixed field of G is the subfield FG

of K defined by

FG = {a ∈ K : ϕ(a) = a,∀ϕ ∈ G}.

(1.5) Proposition.

Let K be a field and G be a finite group of automorphisms of K. Let F = FG be the fixed

field of G. Then ∀α ∈ K, α is algebraic over F and the minimal polynomial pα(x) can be

written in the linear form pα(x) = (x − α1)(x − α2)...(x − αn) for some distinct elements

α1, α2, ..., αn ∈ K with αi = σi(α) for some σi ∈ G and α1 = α. Thus K is normal over F .

Proof.

Let f(x) = (x− α1)(x− α2)...(x− αn) ∈ K[x]. Clearly f(α) = 0 and ∀σ ∈ G, σ(f(x)) =

f(x). Thus f(x) ∈ F [x] and so α is algebraic over F . Now let g(x) ∈ F [x] with g(α) = 0.
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Then ∀αi, i = 1, 2, ..., n, g(αi) = σi(g(α)) = 0, since g(x) ∈ F [x]. Thus all zeros of f(x) are

zeros of g(x). Hence f(x)|g(x). So f(x) = pα(x). Also ∀i, j = 1, 2, ..., n : αi = αj if and only

if σi(α) = σj(α). This implies that, σ−1j (σi(α)) = α if and only if σ−1j (σi) = ι. It follows

that, σj = σi. That is ∀i 6= j : σj 6= σi, hence pα(x) is separable. �

(1.6) Definition.

An extension K : F is called Galois extension if K is a finite normal separable extension of

F .

(1.7) Proposition.

Let K : F be a finite extension field and let G be a subgroup of Γ(K : F ) such that F = FG.

Then K : F is a Galois extension and G = Γ(K : F ). Moreover, |G| = [K : F ].

Proof.

By proposition(1.5), ∀α ∈ K the minimal polynomial of α over F pα(x) splits in K and

it is separable so K : F is normal and separable. Now K is a finite algebraic extension so

K = F (β) for some β ∈ K with minimal polynomial pβ(x) = (x − β1)(x − β2)...(x − βn)

where β1 = β. As we saw in proposition(1.5), ∀i = 1, 2, ..., n, βi = σi(β) for some σi ∈ G and

βi 6= βj, ∀i 6= j. So |G| ≥ n Hence we have by proposition(1.2), [K : F ] = n ≤ |G| ≤ |Γ(K :

F )| ≤ [K : F ]. Thus G = Γ(K : F ) and |G| = [K : F ]. �

(1.8) Proposition.

Let K : F be a finite extension field. Then |Γ(K : F )| divides [K : F ]. Moreover,

|Γ(K : F )| = [K : F ] if and only if K : F is a Galois extension.

15



Proof.

Let G = Γ(K : F ) and let M = FG. Then by proposition(1.7), K : M is a Galois

extension with |G| = [K : M ]. Now by Tower Law, [K : F ] = [K : M ][M : F ] = |G|[M : F ].

So |G| divides [K : F ].

Suppose now |G| = [K : F ], then from Tower equality above [M : F ]=1, and hence

M = F . But K : M is a Galois extension, i.e. K : F is a Galois extension.

Conversely, suppose that K : F is a Galois extension. Then by Primitive Element The-

orem, K = F (α) for some α ∈ K with deg(pα(x))=n=[K : F ].As we saw in proof of

proposition(1.5) n ≤ |G|, and by proposition(1.2) n ≤ |G| ≤ [K : F ]=n. Thus |G| = [K : F ].

�

(1.9) Proposition.

Let K : F be an extension field and let M be an intermediate field of this extension. Suppose

that K:F is a Galois extension, then so is K:M . Moreover, if M :F is normal extension, then

M :F is a Galois extension.

Proof.

Let α ∈K and let fα(x) and mα(x) be the minimal polynomials of α over F and M

respectively. Then fα(x) splits in K and its zeros are all distinct, since K : F is a Galois

extension. But mα(x)|fα(x), because the coefficients of fα(x) are in M and f(α) = 0.

Therefore mα(x) splits in K and hence its zeros are distinct. We deduce that, K : M is

a Galois extension.

Now suppose that M : F is a normal extension. Then clearly M :F is a separable ex-

tension, since K : F is a separable extension. It follows that, M : F is a Galois extension.

�
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2.2 The Fundamental Theorem of Galois

(2.1) Proposition.

Let L : F be a Galois extension and let K be an intermediate field of this extension. Then

the extension K : F is normal if and only if φ(K) = K, ∀φ ∈ Γ(L : F )

Proof.

Let α ∈ L and let f(x) be the minimal polynomial of α over F . If K : F is normal, then

f splits in K.Now for any element φ ∈ Γ(L : F ), we have 0 = φ(f(α)) = f(φ(α)), so φ(α)

is a zero of f and hence φ(α) ∈ K. Therefore φ(K) ⊂ K, ∀φ ∈ Γ(L : F ). But φ(K) ⊂ K,

∀φ ∈ Γ(L : F ) implies that φ−1(K) ⊂ K, ∀φ ∈ Γ(L : F ). Hence K = φ(φ−1(K)) ⊂ φ(K),

∀φ ∈ Γ(L : F ) . Thus φ(K) = K, ∀φ ∈ Γ(L : F ).

Conversely, suppose that φ(K) = K ∀φ ∈ Γ(L : F ) and let g(x) be the minimal polyno-

mial of α over F . Then g splits in L, since L : F is a Galois extension. By proposition(1.8),

F is the fixed field of Γ(L : F ). This implies that, the zeros of g are distinct, from proposi-

tion(1.5). We deduce that, g splits in K. Hence, K : F is normal extension. �

(2.2) Proposition.

Let K:F be a Galois extension and let M be an intermediate field of this extension. Suppose

that the extension M :F is a normal extension. Then for any F -automorphism φ of K, the

restriction φ|M is an F -automorphism of M .

Proof.

Let φ ∈ Γ(K:F ) be an F -automorphism of K. Then from proposition above we have

φ(M) = M . Now multiply both sides by φ−1, we get M = φ−1(M). This implies that, the

restrictions φ|M and φ−1|M of φ and φ−1, respectively, are both F -homomorphism mapping

from M to itself. In addition, φ−1|M is the inverse of φ|M . Therefore φ|M is an F -isomorphism

and hence is an F -automorphism of M . �

Now we are ready to state and prove the main theorem of this research.
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(2.3) Theorem (Fundamental Theorem of Galois).

Let K : F be a finite Galois extension and let G = Γ(K : F ). Let

H = {H ⊆ G|H is a subgroup of G}

and

M = {M ⊆ K|M is a subfield of K containing F}.

Then:

(i) ∀M ∈M, K : M is a finite Galois extension.

(ii) There is a bijection

φ : H −→M

which reverses inclusion where ∀H ∈ H, ∀M ∈ M : φ(H) = FH the fixed field of H and

φ(M) = Γ(K : M).

(iii) ∀M ∈M :

M is normal over F if and only if the subgroup H = Γ(K : M) is normal in G. Moreover, in

this case Γ(M : F ) ' G/H.

The following diagram show the one -to-one corresponding of (ii) above:

K

M

F

E1

E2

Γ (K : F )

H2 = Γ (K : E1)

H1 = Γ (K : E2)

{ι}

H

18



Proof.

(i) Clear from proposition(1.9).

(ii) Note first that FH ∈ M,∀H ∈ H, and by (i) K : FH is a Galois extension. Hence

∀H ∈ H, (φ−1 ◦ φ)(H) = φ−1(FH) = Γ(K : FH) = H, by proposition(1.7). Also ∀M ∈ M,

(φ−1 ◦ φ)(M) = φ(Γ(K : M)) = M since K : M is a Galois extension by (i). From above,

we see that φ is a bijection. Also ∀H1, H2 ∈ H, H1 ⊆ H2 if and only if FH2 ⊆ FH1 , i.e.,

φ(H1) ⊆ φ(H2) if and only if H2 ⊆ H1. Thus φ reverses inclusion.

(iii) Let H = Γ(K : M).

(=⇒) Suppose that M is normal over F , then M : F is a Galois extension by propo-

sition(1.9). Also by proposition(2.1), ∀σ ∈ G,σ|M ∈ H. So ∀τ ∈ H, ∀σ ∈ G, we have:

∀a ∈ M, (στσ−1)(a) = (στ)(σ−1(a)) = (στ)(σ−1|M(a)) = σ(τ(σ−1|M(a))) = σ(σ−1|M(a)) =

σ(σ−1(a)) = a. Thus (στσ−1) ∈ H, i.e., ∀σ ∈ G, σHσ−1 ⊆ H. So H is normal subgroup of

G.

(⇐=) Assume now H is normal subgroup of G. We will show M is normal over F as

follows:

Let f(x) ∈ F [x] be an irreducible polynomial having a zero a ∈M . Then a ∈ K implies that

f(x) splits in K, since K is normal over F . Now for each zero b ∈ K of f(x), there is σ ∈ G

such that b = σ(a). Since H is normal in G, σHσ−1 = H. Hence ∀µ ∈ H,∃τ ∈ H such

that µ = στσ−1. Then µ(b) = (στσ−1)(b) = (στσ−1)(σ(a)) = (στ(a)) = σ(τ(a)) = σ(a) = b.

Thus b ∈ FH = M , since K : M is a Galois extension. Hence all zeros of f(x) are in M , i.e.,

f(x) splits in M . Thus M is normal over F .

Finally denoting Γ(M : F ) by K and assuming H is normal in G, i.e., M is normal over

F , we will show K ' G/H as follows:

Define

ϕ : G −→ K

by ∀σ ∈ G,ϕ(σ) = σ|M . Then clearly ϕ is well defined by proposition(2.1).
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Also ∀σ, µ ∈ G,∀a ∈ M :(σµ)|M(a) = (σµ)(a) = σ(µ(a)) = σ(µ|M(a)) = σ|M(µ|M(a)) =

(σ|Mµ|M(a)). Thus ϕ(σµ) = (σµ)|M = (σ|M)(µ|M) = ϕ(σ)ϕ(µ). Thus ϕ is a group homo-

morphism. Also we have:

σ ∈ kerϕ if and only if ϕ(σ) = ιM (the identity mapping on M) if and only if σ ∈ H. Thus

kerϕ = H and G/H ' Imϕ. But by Tower Theorem:

|Imϕ|= |G|/|H| = [K : F ]/[K : M ] = [M : F ] = |K|. So Imϕ= K, since K is finite.

Therefore K ' G/H as required to show. �

2.3 Examples of Galois Theory

(3.1) Example.

Let h(x) = (x2 − 2)(x2 − 3) ∈ Q[x] and let E = Q(
√

2,
√

3). Then clearly E is the splitting

field of h(x) over Q which means by proposition(1.3.2), E is a normal extension over Q. Also

h(x) has the two irreducible factors, x2 − 2 and x2 − 3 and both are separable, hence h(x)

is separable. So E : Q is Galois extension. Now let H = Γ(E : Q), then |H| = [E : Q] = 4.

Note that Q(
√

2) : Q is a Galois extension, since Q(
√

2) is the splitting field of x2 − 2 over

Q, so Γ(Q(
√

2) : Q) = {σ1 = id, σ2} where σ1(
√

2) =
√

2 and σ2(
√

2) = −
√

2. Each of these

mappings can be extended to Q-automorphism of E as follows:

τ1 :
√

2 7−→
√

2,
√

3 7−→
√

3, τ2 :
√

2 :7−→
√

2,
√

3 7−→ −
√

3, τ3 :
√

2 :7−→ −
√

2,
√

3 7−→
√

3,

and τ4 :
√

2 :7−→ −
√

2,
√

3 7−→ −
√

3 and each one of them has order 2 except τ1 = ι, hence

H is not cyclic which implies H ' C2 × C2. By Galois corresponding, the subfields of E are

E,Q(
√

2),Q(
√

3),Q(
√

6), and Q and the corresponding subgroups of H are {idE}, < τ4 >,<

τ3 >,< τ2 >, and H. Hence the inverted lattices are:
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{ι} E

〈τ2〉 〈τ3〉 〈τ4〉 Q(
√

2) Q(
√

3) Q(
√

6)

G Q

(3.2) Example.

Let g(x) = x3 − 2 ∈ Q[x]. Then three zeros of g(x) are one real root α1 = 3
√

2 and two

non-real roots α2 = ω 3
√

2 and α3 = ω2 3
√

2, where ω is a cubic primitive root of unity.

Clearly K = Q( 3
√

2, ω) is the splitting field of g(x) over Q which is normal. By Eisenstein’s

Criterion, g(x) is irreducible over Q, hence it is separable. So K : Q is a Galois extension

and letting G = Γ(K : Q), then noting that [K : Q( 3
√

2)] = 2 we get |G| = [K : Q] = [K :

Q( 3
√

2)][Q( 3
√

2) : Q] = 2 × 3 = 6. Now we determine the elements of G according to their

permutations of zeros of g(x) as follows:

σ1 = ι : K −→ K, σ2 which takes α1 7−→ α2 and fixes others,

σ3 which takes α1 7−→ α3 and fixes others,

σ4 which takes α2 7−→ α3 and fixes others,

σ5 which takes α1 7−→ α2 7−→ α3 and fixes others, and

σ6 which takes α1 7−→ α3 7−→ α2 and fixes others. Now G is not abelian, since (σ4σ5)(α1) =

σ4(σ5(α1)) = α3 6= α2 = σ5(σ4(α1)) = (σ5σ4)(α1). Since the only non-abelian group of order

6 is S3, G ' S3. The subgroups of G are {σ1}, < σ2 >,< σ3 >,< σ4 >,< σ5 >, and G which

correspond K,Q(α3),Q(α2),Q(α1),Q(ω) and Q. Hence the inverted lattices are:

G Q

< σ5 > Q(α3) Q(α2) Q(α1)

< σ2 > < σ3 > < σ4 > Q(ω)

< σ1 > K
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(3.3) Example.

Letf(x) = x4 − 2 ∈ Q[x] and let K be a splitting field of f(x) over Q. By Eiesenstein’s

Criterion, f(x) is irreducible over Q in K and

x4 − 2 = (x2 −
√

2)(x2 +
√

2) = (x− u)(x+ u)(x− iu)(x+ iu)

where u = 4
√

2. So the four zeros of f(x) are ±u,±iu ∈ K, hence K = Q(u, i). Now

[Q(u) : Q] = 4, since x4 − 2 is the minimal polynomial of u over Q. Also i /∈ Q(u) implies

that x2 + 1 is the minimal polynomial of i over Q(u) and hence [K : Q(u)] = 2. From Tower

Law, [K : Q] = [K : Q(u)][Q(u) : Q] = 2× 4 = 8. Moremore, K : Q is normal and separable

extension by proposition(1.3.2). Hence K : Q is a Galois extension, so |G| = 8 = [K : Q] =

[K : Q(i)][Q(i) : Q]. Thus [K : Q(i)] = 4, so the minimal polynomial of u over Q(i) is of

degree 4. Clearly u is a zero of the irreducible x4 − 2 over Q(i), hence x4 − 2 is the minimal

polynomial of u over Q(i). Now proposition(1.2.3) ensures that there exists an automorphism

σ of K sending u to iu which fixes i. Similarly there exits an automorphism λ of K sending

i to −i which fixes u. Therefore the automorphisms σ, σ2, σ3 and σ4 fix i and send u to

iu,−u,−iu and u, respectively. Hence σ4 = ι and λ2 = ι. Now by simple computations,

we found that σ3λ = λσ, σ2λ = λσ2, and (σλ)2 = (σ2λ)2 = (σ3λ)2 = ι which implies

Γ(K : Q) = {ι, σ, σ2, σ3, λ, σλ, σ2λ, σ3λ}. It can be shown easily that G ' D8 the dihedral

group of order 8. Finally by the Fundamental Theorem of Galois, the 10 subfields of K,

namely, K,Q(u2, i),Q(u),Q(u+iu),Q(iu),Q(u−iu),Q(u2),Q(iu2),Q(i) and Q correspond to

the 10 subgroups of G, namely, {ι}, {ι, σ2}, {ι, λ}, {ι, σλ}, {ι, σ2λ}, {ι, σ3λ}, {ι, σ2, λ, σ2λ},

{ι, σ2, σλ, σ3λ}, {ι, σ, σ2, σ3} and G. Below are the two inverted lattices of this corresponding:
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Γ(K : Q)

{ι, σ2, λ, σ2λ} {ι, σ, σ2, σ3} {ι, σ2, σλ, σ3λ}

{ι, λ} {ι, σ2λ} {ι, σ2} {ι, σλ} {ι, σ3λ}

{ι}

Supgroup of Γ(K : Q)

K

Q(u) Q(iu) Q(u2, i) Q(u− iu) Q(u+ iu)

Q(u2) Q(i) Q(iu2)

Q

Subfields of K

2.4 Insolubility of Quintic Equations

(4.1) Definition.

Let K : F be a field extension. A sequence of field extensions

F ⊆ F (a1) ⊆ F (a1, a2) ⊆ ... ⊆ F (a1, a2, ..., an) = K

- where for each i = 1, 2, ..., n, ani
i ∈ F (a1, a2, ..., ai−1) for some ni ∈ Z - is said to be a radical

sequence and in this case K is called a radical extension of F .

23



(4.2) Example.

Let F = Q. Then the following expression

α = (3 +
√

11)1/7 + 5
√

3(4−
3√2
6

)1/11

is a radical expression, since it just includes nth root and basic operations: addition, mul-

tiplication, and division. Now let a1 =
√

11, a2 = (3 + a1)
1/7, a3 = 5

√
3, a4 = 3

√
2 and

a5 = (4 − a4/6)1/11. Then K = F (a1, a2, a3, a4, a5) is a radical extension and α ∈ K, since

a21 = 11 ∈ F = Q, a72 = 3 + a1 ∈ F (a1), a
5
3 = 3 ∈ F (a1, a2), a

3
4 = 2 ∈ F (a1, a2,3 ), and

a115 = (4− a4)/6 ∈ F (a1, a2, a2, a3, a4).

(4.3) Definition.

Let f(x) ∈ F [x]. Then f(x) is called to be solvable by radicals if there exists a splitting field

of f(x) over F which is contained in some radical extension of F .

(4.4) Definition.

A group G is said to be solvable if it has a finite series

{1} = G0 ⊆ G1 ⊆ G2 ⊆ ... ⊆ Gn = G

of subgroups such that for j = 0, 1, 2, ..., n− 1

(i) Gj C Gj+1.

(ii) Gj+1/Gj is abelian.

From the definition above, we can clearly see that any abelian group G, G is solvable by

letting G1 = G and G0 = {1}.

(4.5) Proposition.

Suppose that G is a group, H ≤ G, and N E G. Then:

(i) If G is solvable, then H is solvable.

(ii) If G is solvable, then G/N is solvable.

(iii) If N and G/N are solvable, then G is solvable.
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Proof.

See [ 1 ]. �

Now we proceed in investigating the relation between insolubility of a polynomial by

radicals and solvability of its Galois group.

(4.6) Proposition.

Let F be a field with char(F )=0 and let K be the splitting field of f(x) = xn − a, a ∈ F .

Then Γ(K : F ) is solvable.

Proof.

Let u be a zero of f(x) in K and let ω be a primitive nth root of unity. We have two

cases:

For the case ω ∈ F , then u, uω, uω2, ..., uωn−1 are the zeros of f(x) and hence K = F (u).

By proposition(1.5), the elements of Γ(K : F ) send u to another zero of f(x). Now we show

that Γ(K : F ) is abelian and thus it is solvable as follows:

Let σ, τ ∈ Γ(K : F ). Then σ(u) = uωi and τ(u) = uωj for some i and j such that σ and

τ fix ω. Therefore (στ)(u) = σ(τ(u)) = σ(uωj) = uωiωj = uωi+j and (τσ)(u) = τ(σ(u)) =

τ(uωi) = uωjωi = uωi+j. So στ = τσ. Hence Γ(K : F ) is abelian and consequently it is

solvable.

For the case ω /∈ F , in the equation xn − a we check two possibilities either a = 0 or

a 6= 0. If a = 0, then u = 0. Therefore all elements of Γ(K : F ) fix u so Γ(K : F ) is abelian

and thus Γ(K : F ) is solvable. For a 6= 0, then u 6= 0, so uω/u = ω ∈ K. Hence F (ω) ⊆ K,

and clearly F (ω) is the splitting field of xn − 1 over F . Now let σ, τ ∈ Γ(F (ω) : F ), then

σ(ω) = ωi and τ(ω) = ωj for some i and j. So (στ)(ω) = σ(τ(ω)) = σ(ωj) = (σ(ω))j =

(ωi)j = (ωj)i = (τ(ω))i = τ(ωi) = τ(σ(ω) = (τσ)(ω). Thus Γ(F (ω) : F ) is abelian. Now

K is the splitting field of f(x) over F (ω), since F ⊆ F (ω). Also Γ(K : F (ω)) is abelian

by the first case and the extension K : F (ω) is a Galois Extension. So by the Fundamental

Theorem of Galois, Γ(K : F (ω)) C Γ(K : F ). Since we saw above that Γ(K : F (ω)) and
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Γ(F (ω) : F ) are abelian, so they are solvable. Also by the Fundamental Theorem of Galois,

Γ(F (ω) : F ) ' Γ(K : F )/Γ(K : F (ω)), hence by proposition(4.5(iii)), Γ(K : F ) is solvable.

�

(4.7) Proposition.

Let f(x) ∈ F [x] with char(F )=0 and let f(x) be solvable by radicals. Then ΓF (f) is solvable.

In other words, if ΓF (f) is not solvable, then f(x) is not solvable by radicals.

Proof.

Suppose that f(x) is solvable by radicals. Then there is a radical extension F (a1, a2, ..., as)

which contains a splitting field K of f(x) over F . So K : F is a Galois extension, since it

is normal over F and f(x) is separable. To show that Γ(K : F ) is solvable, we proceed by

induction on s.

Basic step: s = 1. We have F ⊆ K ⊆ F (a1), since K is the splitting field of f(x) over F in

F (a1). Let a = an1
1 and let L be a splitting field of g(x) ≡ xn1 −a over F . Then K ⊆ L since

a1 is a zero of g(x). Since K and L are the splitting fields of f(x) and g(x) respectively over

F , hence both are Galois extension over F . Thus by the Fundamental Theorem of Galois,

we have Γ(K : F ) ' Γ(L : F )/Γ(L : K). By proposition above, Γ(L : F ) is solvable, and

hence by proposition(4.5), both Γ(L : K) and Γ(L : F )/Γ(L : K) are solvable. Consequently

Γ(K : F ) is solvable.

Induction step: Assume for k > 1 that the proposition holds for all s ≤ k − 1. Now

for k = s, let a = an1
1 ∈ F as before, and let L be the splitting field of g(x) ≡ xn1 − a

over K, hence by the above proposition, Γ(L : K) is solvable. Next let M ⊆ L be the

splitting field of g(x) over F . Since K is the splitting field of f(x) over F , L is a splitting

field of f(x)g(x) over F . Also L is the splitting field of f(x) over M , since M ⊆ L is the

splitting field of g(x) over F . Moreover, since F (a1) ⊆ M , f(x) splits in M(a2, ..., as). So

by induction hypothesis, Γ(L : M) is solvable. Also by proposition above, Γ(M : F ) is

solvable. Now by the Fundamental Theorem of Galois, Γ(M : F ) ' Γ(L : F )/Γ(L : M),
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hence Γ(L : F )/Γ(L : M) is solvable. Consequently by proposition(4.5), Γ(L : F ) is solvable

which implies Γ(K : F ) is solvable, since Γ(K : F ) ' Γ(L : F )/Γ(L : K) by the Fundamental

Theorem of Galois. �

L

M K

F

f(x) xn−a

f(x)(xn−a)

xn−a f(x)

Now we need the following proposition in Group Theory.

(4.8) Proposition.

The group of permutations Sn is not solvable for all n ≥ 5.

Proof.

See [ 2 ]. �

Next we come to the last proposition needed to prove the insolubility of quintic equation.

(4.9) Proposition.

Let f(x) ∈ Q[x] be an irreducible polynomial of prime degree p. Suppose that f(x) has

exactly two non-real zeros in C. Then ΓQ(f) is isomorphic to the symmetric group Sp.

Proof.

Let G = ΓQ(f). By Fundamental Theorem of Algebra, C must contain the splitting

field K of f(x), so K = Q(α1, α2, ..., αp) and αi’s are distinct, since f(x) is separable over

Q. Now let σ ∈ G. Then σ(αi) = αj for some i and j and hence the elements of G

permute the zeros of f(x). So G is isomorphic to a subgroup of Sp and [K : Q] = |G| is

divisible by p, by proposition(1.7). Therefore G contains an element of order p by Cauchy’s

Theorem. But the elements of Sp that have order p are p-cycles which implies G has a

p-cycle. Now we can restrict the complex conjugation - a Q-automorphism of C - to Q-

automorphism of K that fixes p − 2 real zeros of f(x) and permutes the other two non-

real zeros. Hence G has a 2-cycle. Now let G be generated by a 2-cycle a = (12) and
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b = (12...p). Then b−1ab = (23) ∈ G, b−1(23)b = (34) ∈ G, b−1ab = (45) ∈ G and so on.

Hence G contains all the transpositions of the form (n, n + 1). Also a−1(23)a = (13) ∈

G, (13)(34)(13) = (14) ∈ G and so on. Therefore G contains all the transpositions of the

form (1n). Moreover, (1n)(1m)(1n) = (nm) ∈ G. But we know that every element in Sp is

the product of transpositions.It follows that, G = Sp. �

Finally we state and prove the most important conclusion of this research, i.e., the insol-

ubility of the quintic equation.

(4.10) Theorem.

Let f(x) = x5 − 6x+ 3 ∈ Q[x]. Then f(x) is not solvable by radicals. So no general law for

solving quintic equations by radicals.

Proof.

First we show that f(x) has exactly three real roots and two non-real roots as follows:

f(−2) = −17 and f(−1) = 8, so there is a real root on [-2,-1]. Also f(0) = 3 and f(1) = −2

means there is another real root on [0,1]. Moreover, f(2) = 23 implies there is a third real

root on [1,2]. Now f ′(x) = 5x4−6 has the two real roots ± 4
√

6/5. Hence by Rolle’s Theorem,

f(x) has at most three real roots which we have already found.Thus f(x) has exactly three

real zeros and two non-real zeros. Also f(x) is irreducible over Q, by Eisenstein’s Criterion.

So by the above proposition, ΓQ(f) ' S5, hence is not solvable. Thus by proposition(4.7),

f(x) is not solvable by radicals. �
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