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Abstract

In this research project, we investigate the theory of topological groups and Haar measures on
locally compact groups. The concept of binary operations in algebra are used as convenient
tools for the investigation and study of topological groups as well as other mentioned concepts.
Our work is divided into four parts, the �rst of which includes a review of basic knowledge that
we need in group theory and topological spaces. In the second part, we present the notions
of topological groups, subgroups, topological quotient groups and product groups. Besides, we
discuss the so-called topologically homomorphisms which are required to be continuous. In
fact, this is due to the topology which is de�ned on a group and making them continuous. We
distinguish the di�erence between algebraic and topological structures. One of the ultimate
di�erence between topological spaces and topological groups is the homogeneity axiom which
always holds for topological groups. Further, we discover in details the separation axioms which
imply to interesting results. The end of this part shows the reason of fail a homogeneous space
of being a topological group by applying the metrization of groups. In the third part, we are
concerned about the topological properties on groups such as the connectedness and locally
compactness. In particular, we are interested in compact and locally compact groups. This
part is remarkable since we will characterize a Haar measure on locally compact groups. Finally,
in the last part, we recall some roles of measure and integration theories and then we identify
a Haar measure. In addition, we state and prove its existence and uniqueness.
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Introduction

The present research project studies the theory of topological groups that is one of interesting
and fascinating areas in mathematics and which simply combines, from a purely logical point
of view, two fundamental mathematical concepts, the algebraic structure of groups and the
topological structure of topological spaces. In considering groups we study in purest form the
algebraic operation of multiplication while in considering topological spaces we investigate in
just as pure a form the operation of passage to a limit. Since both of these operations are
among the fundamental operations of mathematics, they often occur together. Thus the ax-
iomatization of the concept of a topological group is a natural procedure in which precisely
these two operations are united and interdependent.

One of the purposes of this theory is to allow us to give topological properties such as homo-
geneity, connectedness and separation axioms on groups, and deals with interesting topological
spaces (torus, circle, · · · ) as quotient of topological spaces by topological groups. The concept
of a continuous, or what is the same thing, topological group, arose in mathematics from the
study of groups of continuous transformations. A group of continuous transformations, for
instance, geometric transformation, constitutes in a natural way a topological manifold. It
appeared later that for the treatment of the greater part of the problems arising in this connec-
tion, it is not necessary to consider a group of transformation, but merely to study the group
intrinsically, remembering however that there is de�ned in it an operation of passage to a limit.
Therefore arose a new mathematical concept�topological groups.

Furthermore, since any group G contains either �nite or in�nite elements and this is common
in topological spaces as well, the question arises here whether it is possible to assign a topol-
ogy on G or not. Now, it becomes possible if there is no any restriction placed on the assigned
topology. Most in�nite groups we encounter in any areas of mathematics are topological groups
such as the group of n × n invertible matrices, the additive and multiplicative groups of the
�elds R and C and their subgroups such as the multiplicative group S1 of complex numbers of
absolute values 1. Note that we will see the homogeneity property makes everything possible
on a topological group, because it shows a property locally on a group and then it turns into
valid in the entire group. That is, we can �nd a homeomorphism π on every topological group,
say G, such that π(x) = y for any x, y ∈ G, however, unfortunately, the converse is not true
since the Sorgenfrey line S is a homogeneous space but it fails to admit any group operation.
Due to this property, it turns out to consist this theory many interesting results. For instance,
if a subgroup of any topological group is open, then it should be closed, and the equivalence
between separation axioms is apparent here. The need to examine the theory of topological
groups occurs to answer to the �David Hilbert's Fifth Problem� which dropped in 1900 and says
that whether every locally Euclidean group admits a Lie group structure. This motivated a
great amount of research on locally compact groups. Over the years, mathematicians gave a
positive answer to the Hilbert's question and developed much structure theories of locally com-
pact groups to boot. This led Otto Schreier in 1927 to de�ne this theory. In 1940s, the work on
the free topological groups of Markov and Graev expanded the study of topological groups in
a serious way to non-locally compact groups (see [12]). To nowadays, the theory of topological
groups constitutes an important branch of mathematics, it encompasses many essential notions
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such as the Haar measure, Fourier series, integrals and unitary operators groups. In addition,
it involves partially the potential theory, ergodic theory and algebraic topology.

In the early 20st century, people started wondering whether if there is an invariant measure
on all topological groups or not. In 1933, this problem was approached signi�cantly by the
works of Alfréd Haar [7] and John von Neumman [14]. Haar proved that there exists an invari-
ant measure on any sparable compact group while von Neumann proved the special case of the
Hilbert's problem for Euclidean locally compact groups supported by Haar's result. In the next
year, von Neumann could prove the uniqueness of an invariant measure, and substantially, nei-
ther Haar nor von Neumann proved the existence of invariant measures on any locally compact
groups. In fact, the full proof was interoduced by André Weil in his work [18] and the proof
was criticized for using the axioms of choice in the form of Tychono�'s theorem. Eventually,
Henri Cartan in [2] proved the existence of invariant measure on locally compact groups without
using the axioms of choice. Indeed, a Haar measure is analogous to the Lebesgue measure on
locally compact groups. More precisely, a Haar measure is a regular Borel measure on a locally
compact group such that it is either a left-invariant (respectively, right or both) measure. To
illustrate, on the real line R (more generally, on Rn) a Haar measure coincides with a Lebesgue
measure. This research project is organized as follows.

In Chapter 1 we discover fundamentals in both branches: group theory and general topol-
ogy. We �rst recall all about natural structure of groups, subgroups and quotient groups with
associated properties. Then we present the notion of morphisms followed by the three iso-
morphism theorems, and �nally, we close with the lattice notion that will help us to prove
the Tychono�'s theorem. In the next, we introduce the concept of topology which has been
divided into four sections. The four sections may express by two statements. Firstly, we de�ne
a topology on a set and continuous functions with concerning materials. Secondly, we exhibit
about topological properties such as separation and countability axioms corresponding with
metrization of spaces, connectedness and locally compactness. Some proofs of propositions are
presented here since this chapter has to be reasonable for what follows of next chapters. These
tools are all we need in order to explore the theory of topological groups.

Chapter 2 and Chapter 3 are devoted to the main de�nitions, ideas and topological proper-
ties in topological groups. We investigate each type of groups which are topological subgroups,
quotient groups and product groups. In the meanwhile, the three isomorphism theorems have
been discussed. Nevertheless, the second isomorphism theorem does not hold in general as
long as the quotient (Z+αZ)/Z is not homeomorphic to the quotient αZ/(Z∩αZ) where α is
irrational and Z is a normal subgroup of the additive group R. Besides we de�ne a topological
homomorphism that is a nice combination between being a group homomorphim and a contin-
uous function at once. We will also see that many results concerning neighborhood bases are
helpful to structure proofs. Since we have mentioned that a homogeneous space may not be
a topological group in general, we are now able to justify that the Sorgenfrey line S is not a
topological group. We as well study the separation axioms and see that the reverse of impli-
cations (G is T4 ⇒ G is T3 ⇒ G is T2 ⇒ G is T1 ⇒ G is T0) holds whenever G is a topological
group. Another interesting result is that G is always a regular space and hence we will see how
the above implications are useful further. Furthermore, we provide several crucial properties
and a good background of study the connectedness, compactness and locally compactness for
a reader who begins to learn about the theory.

In Chapter 4 we give a brief introduction into the concept of a Haar measure on locally
compact group with identifying it and following by several examples. In the last, we state and
prove the existence and essential uniqueness of a Haar measure.
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Chapter 1

Fundamentals of Group Theory and

Topology

In this chapter, we collect many ideas, facts and illustrated examples from the group theory
and topology with investigating some results that we gathered from (e.g. [5], [6] and [13]). The
aim for presenting this chapter is to make our justi�cations in next chapters clear and follow
our knowledge progressively.

1.1 Theory of Groups

This section is dedicated to the exposition of the fundamentals of theory of groups.

De�nition 1.1.1 (Group). A non-empty set G together with a binary operation ∗ which assigns
to each ordered pair (x, y) of elements of G an element denoted by x ∗ y in G, is called a group
if the following axioms hold.

(i) (x ∗ y) ∗ z = x ∗ (y ∗ z), for every x, y, z ∈ G (associativity),

(ii) there exists an element e in G such that e ∗ x = x ∗ e = x, for each x ∈ G (identity
element),

(iii) there exists an element x−1 ∈ G such that x−1 ∗ x = x ∗ x−1 = e, for each x ∈ G (inverse
element).

We may denote a group with ∗ as (G, ∗). For simplicity, we shall write the binary operation
between any pair in any group, say G, as x ∗ y = xy, for every x, y ∈ G.

Remark 1.1.1.

• A group G is said to be an abelian group if the commutative property holds, i.e.,

xy = yx, for all x, y ∈ G.

• The identity element e and the inverse element of each element in a group G are unique.

Recall that the order n = o(G) of a group G is the number of its elements. A group G is
called a cyclic group if there is an element x in G such that G = 〈x〉 = {xk : k ∈ Z}. In this
case, we say that x is a generator of G. A cyclic group can be either �nite or in�nite. If G is
a �nite cyclic group, then we call it a cyclic group of order n. If x is a generator of G, then so
is x−1. Further, every cyclic group is an abelian group.
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De�nition 1.1.2 (Subgroup). A non-empty subset H of a group G is called a subgroup of G,
written as H ≤ G, if the following conditions are satis�ed.

(i) for all h and g in H, hg in H,

(ii) for each h in H, h−1 in H.

Proposition 1.1.1. Let H be a non-empty subset of a group G. H is a subgroup of G if and
only if for all h and g in H, hg−1 in H.

Proposition 1.1.2. Let H be a subgroup of a group G and x, y ∈ G. Then

(i) xH = H if and only if x ∈ H,

(ii) xH = yH if and only if x−1y ∈ H if and only if y ∈ xH.

Remark 1.1.2.

• Every subgroup of a cyclic group is cyclic.

• If H and K are subgroups of a group G, then so is their intersection. But their union is
a subgroup if and only if one of them is contained in other.

De�nition 1.1.3 (Normal Subgroup). A subgroup N of a group G is called a normal subgroup
provided that for all g ∈ G, we have gN = Ng. We denote it by N D G.

When G is abelian, then every subgroup is normal.

Proposition 1.1.3. A subgroup N of a group G is normal if and only if for all g ∈ G, g−1Ng =
N .

We call gN a left coset obtained by multiplying N by an element g from the left. Similarly
for the right coset. Now let N be a normal subgroup of a group G. Consider the family Q of
all left (or right) cosets of N in G, i.e.,

Q = {gN : g ∈ G},

then Q forms a group with the binary operation de�ned as

xNyN = xyN , for all x, y ∈ G.

De�nition 1.1.4 (Quotient Group). The group Q which de�ned above is called the quotient
group of G by N and denoted by G/N .

When G is abelian, then so is G/N . Further, every quotient group of a cyclic group is cyclic. If
we consider N a subgroup of a group G, then the number of distinct cosets of N in G is called
the index of N in G and denoted as [G : N ]. It can be either �nite or in�nite.

The following are some examples of groups, subgroups, and quotient groups that are known
in algebra.

Example 1.1.1.

1. The centre, centralizer and normalizer groups:
Let G be a group and A any non-empty subset of G.

4



(a) The centre Z(G) of G de�ned as

Z(G) = {x ∈ G : xy = yx for all y ∈ G}

is a normal subgroup of G. When G is abelian, then so is Z(G) and vice versa. if
G/Z(G) is cyclic group, then G is abelian.

(b) The normalizer NG(A) and the centralizer ZG(A) of A in G de�ned as

NG(A) = {x ∈ G : xA = Ax} and ZG(A) = {x ∈ G : xa = ax for all a ∈ A}

are subgroups of G. Furthermore, ZG(A) ≤ NG(A). However, NG(A) may not be
normal. If NG(A) = G, then A is normal in G and vice versa.

Whenever G is abelian, then the above subgroups are equal.

2. The set of complex numbers C with addition forms an abelian group, and the subsets R,
Q and Z form abelian subgroups of C. If we consider these groups without zero number,
then they form multiplicative groups except Z.

3. The set of integers modulo n with addition, i.e., (Zn,+), is an abelian quotient group. If
we consider it without zero class, then it forms an abelian group with multiplication.

Next, we give some fundamental concepts in the study of morphisms such as homomor-
phisms.

De�nition 1.1.5 (Group Homomorphism). Let (G1, ∗) and (G2, ◦) be two groups. A mapping
ψ : G1 → G2 is called a group homomorphism if for all x, y ∈ G1, ψ(x ∗ y) = ψ(x) ◦ ψ(y).

Remark 1.1.3. Let H1 and H2 be two groups and φ : H1 → H2 any group homomorphism.

• If φ is bijective (one-to-one and onto), then it is said to be an isomorphism.

• If φ maps a group H1 to itself, then it is called an endomorphism, and when it is an
isomorphism, then so is called an automorphism.

• If φ is onto, then it is said to be an epimorphism, and H2 is called a homomorphic
image of H1.

• If φ is one-to-one, then it is said to be a monomorphism, and H1 is called embeddable
in H2, denoted as H1 ↪→ H2.

Proposition 1.1.4. Let G1 and G2 be two groups and ψ : G1 → G2 a homomorphism. Then

(i) ψ(e1) = e2 where e1 and e2 are the identity elements of G1 and G2, respectively.

(ii) ψ(x−1) = [ψ(x)]−1, for every x ∈ G1.

(iii) ψ(xn) = [ψ(x)]n, for every x ∈ G1 and n ∈ N.

Remark 1.1.4. When two groups, say G1 and G2, are isomorphic, i.e., there is an isomorphism
mapping φ between them, then we have the following properties.

• o(G1) = o(G2),

• If G1 is abelian, then so is G2 and vice versa,

• o(x) = o(φ(x)), for every x ∈ G1.
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Given two groups G1 and G2, recall that the kernal of a homomorphism φ : G1 → G2 is
de�ned as

ker(φ) = {x ∈ G1 : φ(x) = e2},

where e2 is the identity element of G2, and the image of φ is Im(φ) = φ(G1). We know that
φ is a monomorphism if and only if ker(φ) = {e1} where e1 is the identity element of G1, and
it is an epimorphism whenever Im(φ) = G2 and vice versa.

The following is an example of some other groups that we are already familiar with.

Example 1.1.2 (The Matrix Groups). Let K be a scalar �eld (C or R), then the set of n× n
matrices with entries in K is denoted by Mn(K).

1. The general linear group GLn(K) is the set of all invertible matrices in Mn(K), i.e.,

GLn(K) = {A ∈Mn(K) : det(A) 6= 0}.

GLn(K) forms a group under the matrix multiplication. Recall that the map det :
GLn(K) → R∗ is a homomorphism map, and the kernal of this map is a normal sub-
group of GLn(K) which is called the special linear group SLn(K). We de�ne it as

SLn(K) = {A ∈ GLn(K) : det(A) = 1}.

2. The orthogonal matrices group On is the set of all orthogonal matrices in Mn(R),
i.e.,

On = {A ∈Mn(R) : AtA = I}.

Clearly, On forms a subgroup of GLn(R). The special orthogonal matrices SOn is a
normal subgroup of On and de�ned as

SOn = {A ∈ On : det(A) = 1}.

3. The unitary matrices group Un is the set of all unitary matrices in Mn(C), i.e.,

Un = {A ∈Mn(C) : A∗A = I}

where A∗ is the adjoint of the matrix A. Clearly, Un forms a subgroup of GLn(C). The
special unitary matrices SOn is a normal subgroup of Un and de�ned by

SUn = {A ∈ Un : det(A) = 1}.

We represent the theorem that gives the relationship between homomorphisms and quotient
groups often called the Fundamental Theorem of Homomorphism and then we state other
related theorems, i.e., second and third isomorphism theorems.

Proposition 1.1.5 (First Isomorphism Theorem). Given two groups G1 and G2, let ψ : G1 →
G2 be an epimorphism. Then every homomorphic image of G1 is isomorphic to the quotient
group G1/ker(ψ). That is,

G1/ker(ψ) ∼= ψ(G1).

6



De�nition 1.1.6 (Canonical Map). Let H be a normal subgroup of a group G. An epimorphism
map

µ : G→ G/H

x 7→ xH

is called the canonical map.

Proposition 1.1.6 (Second Isomorphism Theorem). If H is a normal subgroup and K a
subgroup of a group G, then we have the following.

(i) HK is a subgroup of G,

(ii) H ∩K is a normal subgroup of K, and

HK

H
∼=

K

H ∩K
.

Proposition 1.1.7 (Third Isomorphism Theorem). Let H and K be two normal subgroups of
a group G such that H ≤ K, then

G/K ∼=
G/H

K/H
.

Example 1.1.3.

1. Every in�nite cyclic group is isomorphic to (Z,+).

2. Every �nite cyclic group is isomorphic to (Zn,+).

Let G be any group. The set of all automorphisms Aut(G) of G is a group under the
composition of mappings. Let g be a �xed element of G and de�ne an automorphism mapping
Ig by Ig(x) = gxg−1, for all x ∈ G. This map is called an inner automorphism of G, and the
set of all inner automorphisms Inn(G) of G forms a normal subgroup of Aut(G).

Proposition 1.1.8. Let G be any group. The quotient group G/Z(G) is isomorphic to the
group of inner automorphisms Inn(G) of G where Z(G) is the centre of G.

De�nition 1.1.7 (Lattice). A partially ordered set (L, ≤) is called a lattice if any pair of
elements in L has the least upper bound and the greatest lower bound. That is, L is said to be
a lattice if for each x and y, there exist both the least upper bound called join and the greatest
lower bound called meet, written as x ∨ y and x ∧ y, respectively.

A lattice L is called distributive if for all x, y, z ∈ L

x ∧ (y ∨ z) = (x ∧ y) ∨ z.

Example 1.1.4. The lattice L of subgroups of the additive group Z30 of integers modulo 30 is

L = {〈0〉 , 〈1〉 , 〈2〉 , 〈3〉 , 〈5〉 , 〈6〉 , 〈10〉 , 〈15〉}.

Let L be a lattice. We have the following.

De�nition 1.1.8 (An Ideal of a Lattice). A subset a of L is called an ideal of L if it satis�es
the following properties.

(i) if x ∈ a and y ≤ x, then y ∈ a,

(ii) if x, y ∈ a, then x ∨ y ∈ a.

7



We say that an ideal a is proper if a 6= L.

De�nition 1.1.9 (A Filter of a Lattice). Let f be a subset of L. f is said to be a �lter of L if
the following conditions hold.

(i) if x ∈ f and x ≤ y, then y ∈ f,

(ii) if x, y ∈ f, then x ∧ y ∈ f.

We say that a �lter f is proper if f 6= L.

Remark 1.1.5. Let (L, ≤) be a lattice. Consider the opposite order ≤op of ≤, i.e.,

y ≤ x⇒ x ≤op y, x, y ∈ L.

Then (L, ≤op) is clearly a lattice. In addition, an ideal of (L, ≤) is a �lter of (L, ≤op) and a
�lter of (L, ≤) is an ideal of (L, ≤op).

De�nition 1.1.10 (Maximal Ideal of a Lattice). Let m be an ideal of a lattice L. We say that
m is a maximal ideal if it is a proper ideal that is not properly included in any other proper
ideal, i.e., whenever m 6= L and a is an ideal of L such that m ⊆ a ⊂ L, then either m = a or
a = L.

In order to ensure the existence of maximal ideals, we �rst give some essential facts as
follows.

Since a lattice L is a partially ordered set, a subset E of L is called a chain if every pair in
E is comparable, i.e., if x, y ∈ E, then either x ≤ y, x ≥ y or equal. Further, an element m in
L is said to be maximal if there is no l ∈ L for which m < l.

Proposition 1.1.9 (Zorn's Lemma). Let P be a partially ordered set in which every chain in
P has an upper bound in P , then P has at least one maximal element (upper bound).

Proposition 1.1.10. if A is a chain of proper ideals of a lattice L with a maximal element 1,
then

⋃
A is a proper ideal.

Proof. Let x ∈
⋃
A with y ≤ x, then x ∈ a for some a ∈ A. Since a is an ideal in L, it follows

that y ∈ a ⊆
⋃
A. Also, if x, y ∈

⋃
A such that x ∈ a and y ∈ b for some a, b ∈ A, and

without loss of generality b ⊆ a, then x∨ y ∈ a ⊆
⋃
A as a is an ideal with x, y ∈ a. Thus

⋃
A

is an ideal. Finally, as every ideal of A is proper, we have that 1 /∈ a for each a ∈ A so that
1 /∈

⋃
A. Hence,

⋃
A is a proper ideal.

According to Prop.1.1.9, we deduce that every proper ideal is contained in a maximal ideal.
We can assert that the existence of maximal �lters (usually, they are called ultra�lters) in
lattices with a minimal element as well.

De�nition 1.1.11 (Prime Ideal of a Lattice). An ideal p of a lattice L is called prime if it is
proper and whenever the meet x ∧ y is in p, then either x ∈ p or y ∈ p.

Similarly, one can de�ne a prime �lter pf associated with the join of a pair in L and then one
of them is in pf. Moreover, regarding to the Remark 1.1.5, prime ideals correspond to prime
�lters and vice versa.

Proposition 1.1.11. Let m and f be a maximal ideal and ultra�lter of a distributive lattice L,
respectively. Then

(i) if L has an upper bound, m is prime,
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(ii) if L has a lower bound, f is prime.

Proof. Let (L, ≤) be a distributive lattice.
(i) Suppose that L has an upper bound 1 and let m be a maximal ideal. Assume that

a ∧ b ∈ m with a /∈ m. Our goal is to show that b ∈ m. Firstly, de�ne

a := {x ∈ L : ∃m ∈ m such that x ≤ a ∨m}

which is an ideal in L. Indeed,

• if x1, x2 ∈ a then there are m1,m2 ∈ m in which x1 ≤ a ∨m1 and x2 ≤ a ∨m2. Thus,

x1 ∨ x2 ≤ (a ∨m1) ∨ (a ∨m2) = a ∨ (m1 ∨m2),

where m1 ∨m2 ∈ m as m is an ideal. It follows that x1 ∨ x2 ∈ a,

• if x ∈ a and y ∈ L with y ≤ x, then there exists m ∈ m such that x ≤ a ∨m. Therefore,
y ≤ a ∨m and we get that y ∈ a.

Additionally, as a ≤ a∨m for all m ∈ m, so we have a ∈ a. Likewise, as m ≤ a∨m, m ∈ a for
all m ∈ m. Hence, m is strictly contained in a and it follows that a is an ideal. Since a ∈ a \m
and m is a maximal ideal, we deduce that a = L. In particular, 1 ∈ a, so there is m ∈ m for
which 1 = a ∨m. Therefore,

(a ∧ b) ∨m = (a ∨m) ∧ (b ∨m) = 1 ∧ (b ∨m) = b ∨m ≥ b,

where both a∧b andm are in m. So (a∧b)∨m ∈ m as m is an ideal. Finally, since b ≤ (a∧b)∨m,
we have b ∈ m. Thus, m is prime as desired.

(ii) Suppose that L has a lower bound and let f be an ultra�lter. We have f is a maximal
ideal in (L, ≤op). By assumption, (L, ≤) has a minimal element, so (L, ≤op) has a maximal
element. Thus, applying (i) gives that f is a prime ideal of (L, ≤op). Hence, it is a prime �lter
of (L, ≤) according to the correspondence.

1.2 Topological Spaces and Continuous Functions

In this section, we review the elementary de�nitions and theorems from topology which we
need throughout this project. We �rst have topological spaces and followed by related notions.
Then, we give the meaningful of being a function continuous on any topological space with
surely associated ideas such as homeomorphisms.

De�nition 1.2.1 (Topological Spaces). Let X be any set and let τ be a collection of subsets of
X. A family τ is called a topology on X if the following axioms hold.

(i) ∅ and X are in τ ,

(ii) the union of any collection (Oi)i∈I of elements of τ is in τ , and

(iii) the intersection of any �nite collection (Oi)
n
i=1 of elements of τ is in τ .

A set X equipped with a topology τ is called a topological spae and we write (X, τ). Each
element in τ is called an open set and any set whose complement is open called a closed set.

Example 1.2.1. Let X be any set.

1. The collection τd of all subsets of X, i.e., P(X), is a topology on X called the discrete
topology.
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2. The collection τi containing only ∅ and X is a topology on X called the trivial topology
or indiscrete topology.

Cleary for any topology τ on a set X, we have τi ⊆ τ ⊆ τd. In this case, we say that τd is �ner
than τ and τi is coarser than τ . Further, for any topology on X, τd is the �nest topology on
X.

3. The topology τf = {O ⊆ X : X \ O is �nite } ∪ {∅} de�ned on X is called the �nite
complement topology.

4. The two collections

τu = {O ⊆ R : ∀x ∈ O, ∃(a, b) such that x ∈ (a, b) ⊆ O} ∪ {∅},
τl = {O ⊆ R : ∀x ∈ O, ∃[a, b) such that x ∈ [a, b) ⊆ O} ∪ {∅}

de�ne topologies on the set of real numbers R and are called the usual topology and
the lower limit topology, respectively.

From the preceding de�nition, we can deduce the following properties for closed sets as well.

Proposition 1.2.1. Let X be a topological space. Then

(i) X and ∅ are closed in X.

(ii) The union of any �nite collection of closed sets in X is closed in X.

(iii) The intersection of any family of closed sets is closed in X.

De�nition 1.2.2 (Neighborhood of x). Let X be a topological space and x any element in X.
Let O be an open set in X such that x ∈ O, then O is called a neighborhood of x.

Given a topological space X, we denote the collection of neighborhoods of an element x
by N (x). Now by the meaning of neighborhood, the identi�cation of an open set becomes as
below.

De�nition 1.2.3 (Characterization of an Open Set). Let X be a topological space and let O
be a non-empty subset of X. Then O is said to be an open set in X if for each x ∈ O, there
is a neighborhood Ux of x such that Ux ⊆ O.

Proposition 1.2.2. Let X be a topological space and x ∈ X. Let N (x) be the collection of
neighborhoods of x. Then the following properties are called the neighborhood axioms.

(i) N (x) is non-empty and every element contains x,

(ii) any subset Y of X containing a neighborhood of x is an element in N (x),

(iii) any �nite intersection of neighborhoods is an element in N (x),

(iv) if y ∈ X such that N (y) is a family of neighborhoods of y and O ∈ N (y), then for any
U ∈ N (x) such that O ⊂ U , U ∈ N (y) for all y ∈ O.

De�nition 1.2.4 (Fundamental System of Neighborhoods). Let X be a topological space and
let x ∈ X. Let Vx be a subset of the collection Ux of all neighborhoods of x. Then we say that
Vx is a fundamental system of neighborhoods of x whenever for all Ux in Ux there is Vx
in Vx such that Vx ⊂ Ux. Moreover, we call Vx a base for Ux.

De�nition 1.2.5 (Interior, Derived, Closure and Boundary Sets). Let x be an element in a
topological space X and A a subset of X. Then
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(i) x is an interior point of A if there is a neighborhood of x contained in A. The set of all
interior points of A is denoted by Å or Int(A).

(ii) x is called a limit point (or accumulation point) of A if for every neighbourhood Ox

of x for which Ox ∩ A \ {x} 6= ∅. The set containing all limit points of A is called the
derived set of A and denoted by A′.

(iii) The set containing points of A and its limit points is called the closure of A and denoted
as Ā. Alternatively, whenever A meets every neighbourhood Ox of x, then x ∈ Ā.

(iv) The boundary of A is the intersection of the closure of A and the closure of its comple-
ment and denoted by ∂A.

Proposition 1.2.3. Let A and B be two subsets of a topological space X. Then

(i) Å is the largest open set contained in A.

(ii) A is open if and only if A = Å.

(iii) Ā is the smallest closed set containing A.

(iv) A is closed if and only if A = Ā.

(v) ¯̄A = Ā, A ∪B = Ā ∪ B̄ and A ∩B ⊂ Ā ∩ B̄.

(vi)
⋂
αAα ⊂

⋂
α Āα and

⋃
α Āα ⊂

⋃
αAα.

(vii) ∂A = ∂(X \ A) = Ā ∩X \ A.

(viii) Ā, ∂A and X \ A form a partition of X.

(ix) Ā = Å ∪ ∂A, X \ A = Int(X \ A) ∪ ∂A, X \ A = Int(X \ A) and X \ Ā = Int(X \ A).

De�nition 1.2.6 (Dense Set and Separable Space). Let X be a topological space and A a subset
of X.

(i) A is said to be dense in X if its closure set is the entire space X.

(ii) X is called separable space if it has a countable dense subset.

Next, in preceding examples, for instance, 3 and 4, there are some collections of subsets
of X which are generating the concerned topologies. These families are called bases for these
topologies which we de�ne below.

De�nition 1.2.7 (Basis for a Topology). Let X be a topological space and let B be a collection
of subsets of X whose elements β are called basis elements. B is a basis for a topology on
X if the following properties hold.

(i) for each x ∈ X, there is β ∈ B such that x ∈ β,

(ii) if x ∈ X and for any β1 and β2 in B such that x ∈ β1 ∩ β2, there is β3 ∈ B such that
x ∈ β3 ⊆ β1 ∩ β2.

Note that if B satis�es the preceding de�nition, then we can de�ne the topology τB gen-
erated by B as follows. A subset O of X is said to be open in X, if for each x ∈ O, there is a
basis element βx ∈ B such that x ∈ βx ⊆ O. So it is clear that each open set is a union of basis
elements.
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Example 1.2.2.

1. The collection of all singleton subsets of a set X is a basis for discrete topology τd on X.

2. Consider X = R. The �nite complement topology on R is a basis for itself.

3. The collections
Bu = {(a, b) : a, b ∈ R, a < b},
Bl = {[a, b) : a, b ∈ R, a < b}

are bases for the usual (standrad) and the lower limit topologies on R, respectively.

Proposition 1.2.4. Let B1 and B2 be two bases for topologies τ1 and τ2 on a set X, respectively.
Then the following statments are equivalent.

(i) τ1 is �ner than τ2,

(ii) for each x ∈ X and each basis element β2 ∈ B2 such that x ∈ β2, there is a basis element
β1 ∈ B1 such that x ∈ β1 ⊂ β2.

De�nition 1.2.8 (Neighborhood Base). We say that the collection B of subsets of X is a
neighborhood base of x in X if for each open set U of X containing x, there is a basis
element β ∈ B such that x ∈ β ⊂ U .

De�nition 1.2.9 (Sub-basis). Let X be any set. A sub-basis S for a topology τ on X is a col-
lection of subsets of X whose union equals X. The topology τ of all union of �nite intersections
of elements of S is called the topology generated by the sub-basis S.

Another important subject that is of interest to the study of topological spaces is the product
topology. We �rst de�ne a projection map.

De�nition 1.2.10 (Projection Map). Let {Xi}i∈I be a family of topological spaces and let X
be the product of these spaces. For each x ∈ X, the mappings

ρi : X → Xi

x 7→ xi

are called the projections of X onto Xi for each i ∈ I.

Now, we express the product topology in term of its sub-basis. Given a family of topological
spaces {(Xi, τi)}i∈I , the union of the collection

s = {ρ−1i (Oi) : Oi ∈ τi, i ∈ I}

de�nes a sub-basis for the product of topological spaces.

De�nition 1.2.11 (Product Topology). Let {Xi}i∈I be a collection of topological spaces and
consider X the product of given spaces. The product topology of X is the family of all unions
of all �nite intersections of elements of the sub-basis s.

The product set X endowed with the product topology is called a product space.

De�nition 1.2.12 (Basis for the Product Topology). Let {Xi}i∈I be a collection of topological
spaces and consider X =

∏
i∈I Xi. The collection

Bprod = {
∏
i∈I

Oi : Oi = Xi except for �nitely many values of i}

de�nes a basis for the product topology on X where each Oi is an open set in each Xi.
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Remark 1.2.1. Let {Xi}i∈I be a family of topological spaces and X be the product space.
We say that U =

∏
i Ui is open in X provided that for each x ∈ U , there is a basis element

β ∈ Bprod of the form β =
∏

i∈I βi where βi = Xi except a �nite number of indices with βi is
open in Xi such that x ∈ β ⊆ U .

Example 1.2.3. The product of the usual topology on R n-times is a topology on Rn.

De�nition 1.2.13 (Subspace Topology). Let (X, τ) be a topological space and let Y be a subset
of X. Then the collection

τY = {Y ∩O : O ∈ τ}
is a topology on Y called the subspace topology and we say that Y , equipped with τY , is a
subspace of X.

Proposition 1.2.5. Let X be a topological space. The basis for the subspace topology on Y is
de�ned as

BY = {β ∩ Y : β ∈ B}
where B is a basis for a topology on X.

Remark 1.2.2. O is open in Y if there is an open set U in X such that O = Y ∩ U .

Proposition 1.2.6. Let X be a topological space and Y be a subspace of X.

(i) If U is open in Y and Y is open in X, then U is open in X.

(ii) If C is closed in Y and Y is closed in X, then C is closed in X.

De�nition 1.2.14 (Hausdor� Space). Let X be a topological space. X is called a Hausdor�
space if for each distinct elements x1 and x2 of X, there are disjoint neighborhoods Ox1 and
Ox2 of x1 and x2, respectively.

Example 1.2.4.

1. Any set with discrete topology is a Hausdor� space.

2. The set of real numbers R equipped with the usual or with the lower limit topologies is
a Hausdor� space.

Proposition 1.2.7.

(i) Any �nite set in a Hausdor� space is closed.

(ii) Any subspace of a Hausdor� spaces is Hausdor�.

The converse of (i) in the preceding proposition is not true. For instance, the set of real
numbers R together with the �nite complement topology is not a Hausdor� space, but each
�nite set is closed. However, this property holds T1 axiom which will be given in the next
section.

Proposition 1.2.8. If {Xi}i∈I is a family of topological spaces and X is the product space.
Then

(i) X is Hausdor� if and only if each Xi is Hausdor�,

(ii) a subset Y =
∏

i∈I Yi of X is a subspace if and only if each Yi is a subspace of Xi.

Next, we move on to the meaning of continuity of functions on topological spaces which
give many various properties.
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De�nition 1.2.15 (Continuity on a Topological Space). If X and Y are two topological spaces
and f is a function from X into Y , then f is said be continuous at a point x if for each open
subset O of Y containing f(x) there is an open subset U of X containing x such that f(U) is
contained in O.

We say that f is continuous if it is continuous at each x.

Proposition 1.2.9. Let X and Y be two topological spaces and f : X → Y be a function. Then
the following statments are equivalent.

(i) f is continuous,

(ii) for any subset A of X, f(Ā) ⊆ f(A),

(iii) for any closed set C in Y , f−1(C) is closed in X,

(iv) for any open set O in Y , f−1(O) is open in X.

Example 1.2.5. Let X, Y and Z be topological spaces.

1. If the two functions f : X → Y and g : Y → Z are continuous, the composition g◦f : X →
Z is continuous.

2. If A is a subspace of X and i : A→ X is the inclusion map, then i is continuous.

3. The constant function (i.e., f(x) = y0 for any x ∈ X and y0 ∈ Y ) is continuous.

4. The projection map ρi de�ned in Def.1.2.10 is continuous.

5. If A is a subspace of X and a function f : X → Y is continuous, then the restriction
h = f |A : A→ Y is also continuous.

Proposition 1.2.10. If X is a Hausdor� space and f : Y → X a continuous injection, then
Y is Hausdor�.

Proposition 1.2.11. Let {Xi}i∈I be a family of topological spaces and X the product space
endowed with the product topology. Assume that Y is a topological space and f : Y → X is a
map de�ned by f(x) = (fi(x))i∈I where fi : Y → Xi for all i ∈ I. Then f is continuous if and
only if fi is continuous for each i ∈ I.

Proposition 1.2.12. Let {Xi}i∈I be a family of topological spaces, and let X be the product
space equipped with the product topology and with the projections ρi : X → Xi. Suppose that
Y be another topological space. Then a function f : Y → X is continuous if and only if the
composition ρi ◦ f : Y → Xi is continuous for each i ∈ I.

Before giving the next result, we de�ne the following.

De�nition 1.2.16 (Open Map). Let X and Y be two topological spaces. A map f : X → Y is
said to be open if for each open subset of X, its image under f is open in Y .

Likewise for the identi�cation of a closed map.

Proposition 1.2.13. Let {Xi}i∈I and {Yi}i∈I be two families of topological spaces and let X
and Y be two product spaces of two given families, respectively. If fi : Xi → Yi is an open
surjection for each i ∈ I, then the function

f : X → Y

x 7→ (fi(x))

is an open surjection.
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De�nition 1.2.17 (Homeomorphism Function). Let X and Y be two topological spaces and
f : X → Y a bijective function. Then f is called homeomorphism if both f and its inverse
are continuous.

Note that any homeomorphism map is open and closed at once. When two spaces are home-
omorphic, this means that they have the same topological properties such as being Hausdor�
or the connectedness property (see Sec.1.5). This is the topological analog of an isomorphism
of groups.

De�nition 1.2.18 (Homogeneous Space). A topological space X is said to be homogeneous
if for any x, y ∈ X, there is a homeomorphism π : X → X such that π(x) = y.

We are going to see soon how much the homogeneity of groups plays the crucial role in con-
struction of many properties and important results on topological groups. So far, the following
is another type of mappings which leads us to build the quotient spaces called quotient map.

De�nition 1.2.19 (Quotient Map). Let X and Y be two topological spaces. A surjection
q : X → Y is called quotient map provided a subset O of Y is open in Y if and only if q−1(O)
is open in X.

Thus, q is a continuous map on X by Prop.1.2.9.

Proposition 1.2.14. Let X, Y and Z be topological spaces and let q : X → Y be the quotient
map. Then a map f : Y → Z is continuous if and only if f ◦ q : X → Z is continuous.

De�nition 1.2.20 (Quotient Topology). Let X be a space and Y be any set, and consider the
quotient map q : X → Y . If there is exactly one topology τ on Y relative to q, then this topology
is called the quotient topology induced by q.

The above de�nition has given generally the meaning of quotient topology. However, we are
looking for the special situation in which the quotient topology occurs particularly frequently.
So the following will be considered in this project.

De�nition 1.2.21 (Quotient Space). Let (X,τ) be a topological space and consider the equiv-
alence relation ∼ de�ned on X. In this case, the quotient map becomes

q : X → X/ ∼ such that x 7→ x̄.

The topology induced by q de�ned by

τq = {U ⊂ X/ ∼: q−1(U) open in X}

is the quotient topology on X/ ∼. The set which is endowed with the quotient topology is said
to be a quotient space.

Note that the quotient topology is the �nest topology making q continuous. Nevertheless,
the quotient map is not always open as shown in the following example.

Example 1.2.6. Take the closed interval X = [0, 1] and the equivalence relation ∼ identifying
the points 0 and 1, equipped with the quotient map q : X → X/ ∼. We show that the image
of an open subset O =

[
0, 1

2

)
under q is not open in X/ ∼. Indeed,

q−1(q(O)) = q−1
(
q

(
0,

1

2

))
∪ q−1 (q {0}) =

(
0,

1

2

)
∪ {0, 1}

and
[
0, 1

2

)
∪ {1} is not open in X. Thus, q is not an open map.
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Proposition 1.2.15. Let B be a basis for a topology de�ned on a space X. Then the family

B = {q(U) : U ∈ B}

is a basis for the quotient topology if and only if q is an open map.

Proof. Suppose that B is a basis for the quotient topology, we show that q is open. Indeed, let
O be an open set in X, then O = ∪j∈JUj. Thus, q(O) = ∪j∈Jq(Uj) which is a union of open
sets. Hence, q is open. Conversely, assume that q is an open map. Then

• let x̄ ∈ X/ ∼, so x̄ ∈ q(X) as q a surjection. Because of the openness of q and X, there
is a neighborhood O of x̄ such that x̄ ∈ O ⊂ q(X). Note that q−1(O) is a neighborhood
of x. By the continuity of q, there exists U ∈ B such that x ∈ U ⊂ q−1(O). That is,
x̄ ∈ q(U) and q(U) ∈ B.

• Let q(U1) and q(U2) in B such that x̄ ∈ q(U1) ∩ q(U2). Thus q(U1) ∩ q(U2) is open in
X/ ∼ since q, U1 and U2 are open. It follows that q−1(q(U1) ∩ q(U2)) is open in X so
that there is U ∈ B containing x such that x ∈ U ⊂ q−1(q(U1) ∩ q(U2)). In other words,
x̄ ∈ q(U) ⊂ q(U1)∩ q(U2) and q(U) ∈ B. Hence, B is a basis for the generating topology
τB.

To show that τq = τB. Indeed, we have

O ∈ τq ⇐⇒ q−1(O) is open in X

⇐⇒ q−1(O) = ∪j∈JUj for some Uj ∈ B
⇐⇒ O = ∪j∈Jq(Uj)
⇐⇒ O ∈ τB.

1.3 Separation Axioms

In this section, we state other stronger proporties than the Hausdor� property so-called the
separation axioms.

De�nition 1.3.1 (Separation Axioms). Let X be a topological space. We say that X is T0
(respectively, T1, T2, T3, T4 and T5) if

(T0) for any x di�erent to y in X, there is an open subset O of X such that either x in O or
y in O,

(T1) for each x di�erent to y in X, there are two neighborhoods O1 and O2 of x and y, respec-
tively, in which x /∈ O2 and y /∈ O1.

(T2) it is a Hausdor� space.

(T3) it is a T1 space and for any closed subset C with x /∈ C, there are two disjoint open subsets
O1 and O2 such that C ⊆ O1 and x ∈ O2.

(T4) it is a T1 space and for any x ∈ X and any closed set C with x /∈ C, there exists a
continuous function f from X into [0, 1] such that f(x) = 0 and f(C) = {1}.

(T5) it is a T1 space and for all disjoint closed sets C1 and C2 in X, there are disjoint neigh-
borhoods O1 and O2 of C1 and C2, respectively.
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We say that a topological space is regular, completely regular or normal if it is a T3,
T4 or T5 space, respectively.

Remark 1.3.1.

• We can see from the previous de�nition that for any topological space X,

X is T4 ⇒ X is T3 ⇒ X is T2 ⇒ X is T1 ⇒ X is T0.

Later, we will see in the next chapter that these imblications are equivalent if X is a
topological group.

• It is also clear that a normal space is completely regular and a completely regular space
is regular.

Proposition 1.3.1. Let X be a T1 space.

(i) X is regular if and only if given a point x ∈ X and a neighborhood U of x, there is a
neighborhood O of x such that O ⊆ U .

(ii) X is normal if and only if given a closed set C of X and an open set U containing C, there
is an open set O containing C such that O ⊆ U .

Proposition 1.3.2. Let X be a topological space.

(i) X is T1 if and only if every �nite subset of X is closed.

(ii) If X is T3, then every pair of points of X have neighborhoods whose closures are disjoint.

(iii) If X is regular with a countable neighborhood basis, then it is normal.

Proof. Let X be a topological space.
(i) Suppose that every �nite set in X is closed. Let x and y be two di�erent points in

X. Then, the two one point sets {x} and {y} are closed so that their complements X \ {x}
and X \ {y} are open. Note that X \ {x} ∈ N (y) with x /∈ X \ {x} and X \ {y} ∈ N (x)
with y /∈ X \ {y}. This means that X is T1. Now suppose that X is a T1 space and let
C = {x1, x2, · · · , xn} ⊂ X. We show that C is closed. Indeed, take x ∈ X \ C so that for all
i = 1, 2, · · · , n, x 6= xi. By the assumption we get, there are two neighborhoods Ui and Oi of x
and xi, respectively, in which xi /∈ Ui and x /∈ Oi. Note that U = ∩ni=1Ui ∈ N (x). Hence,

x ∈ U = ∩ni=1Ui ⊂ ∩ni=1 (X \ {xi}) = X \ ∪ni=1{xi} = X \ C.

We see that X \ C is open and consequently, C is closed.
(ii) As X is regular, then for any pair of points x and y, there is disjoint neighborhoods

Ux and Uy of x and y, respectively. By Prop.1.3.1 (i), both of them x and y have another
neighborhoods Ox and Oy such that their closures contained in Ux and Uy, respectively. Hence,

Ox ∩Oy ⊆ Ux ∩ Uy = ∅.

That is, Ox and Oy are disjoint.
(iii) See e.g. [13], p. 200-201.

Proposition 1.3.3.

(i) A subspace of a regular space is regular and a product of regular spaces is regular as well.

(ii) A subspace of a completely regular space is completely regular and a product of completely
regular spaces is completely regular as well.

(iii) A closed subspace of a normal space is normal.
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1.4 Metrization of Spaces

In this section, we de�ne and talk brie�y about the pseudometrizability. We �rst recall the �rst
and second countability axioms of topological spaces.

De�nition 1.4.1 (First and Second Countabilities). A topological space X is called �rst
countable if every x ∈ X has a countable neighbourhood base, and it is said to be second
countable if it is has a countable base for its topology.

Proposition 1.4.1.

(i) A subspace of a �rst countable space is �rst countable.

(ii) A product of �rst countable spaces is �rst countable.

Likewise for a second countability axiom.

Example 1.4.1. The space R equipped with τl is the �rst countable but not the second.

De�nition 1.4.2 (Pseudometric). A pseudometric on a set X is a function d : X × X →
[0,∞) satisfying the following properties.

(i) d(x, x) = 0 for all x ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X (symmetry),

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality).

Remark 1.4.1.

• If d satis�es d(x, y) = 0 if and only if x = y for any x, y ∈ X, we say that d is a metric
and a set equipped with d is called a metric space, and clearly, d is a pseudometric.

• If d is a pseudometric on X, we de�ne an open ball with radius r > 0 and centered at x
by

B(x, r) = {y ∈ X : d(x, y) < r}

and the topology generated by d as

τd = {O ⊆ X : ∀x ∈ O, ∃r > 0 such that B(x, r) ⊆ O}.

One can note that a pseudometric d can generate the topology τd on a set X and can be
either �ner, coarser than some topologies of X, equivalent or neither.

De�nition 1.4.3 (Pseudo-Metrizable Space). A topological space X is said to be pseudo-
metrizable if there exists a pseudometric on X generating its topology.

Proposition 1.4.2. If d is a pseudometric on a T0 space, then d is a metric.

Proof. Let d be a pseudometric on a T0 space X. It is enough to see that for any x, y ∈ X,
d(x, y) = 0 if and only if x = y. On the contrary, suppose that x 6= y. As X is a T0 space, there
is an open ball with radius r > 0 in which either x /∈ B(y, r) or y /∈ B(x, r). In both cases we
have d(x, y) > r > 0. It follows that d is metric.

Theorem 1.4.1. A metrizable space is second-countable if and only if it is separable.
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Proof. Let X be a metrizable space with metric d generating its topology. Suppose that X is
a second countable, then it has a countable base B. For each β ∈ B, take x ∈ β and de�ne
D = {xβ : β ∈ B}. Clearly, D is dense and countable in X, so X is separable.

On the other hand, assume that X is separable. Let D be a countable dense subset of X and
de�ne B = {B(x, 1

n
) : x ∈ D,n ∈ N}. We show that B is a base for a topology on X. Indeed,

let O be an open subset of X and choose x ∈ O. As {B(x, 1
n
) : n ∈ N} is a neighborhood base

of x, there is n0 ∈ N such that B(x, 1
n0

) ⊆ O. Since D is dense, so every open subset has a point
on it. In particular, there exists y ∈ D ∩ B(x, 1

2n0
). Thus, for z ∈ B(y, 1

2n0
) and by triangular

inequality, we have

d(x, z) ≤ d(x, y) + d(y, z) <
1

2n0

+
1

2n0

=
1

n0

,

which implies that z ∈ B(x, 1
n0

). Hence,

y ∈ B(y,
1

2n0

) ⊆ B(x,
1

n0

) ⊆ O.

Now since B(y, 1
2n0

) ∈ B, the claim follows.

De�nition 1.4.4 (Bounded Set). A subset A of a metric space (X,d) is said to be bounded if
there is some positive number M such that d(x, y) ≤M for all x, y in A.

1.5 Connected, Compact and Locally Compact Spaces

We divide this section into two subsections. The �rst one involves the concept of connectedness
and the second one concerns the concept of compactness and locally compactness.

1.5.1 Connected Space

De�nition 1.5.1 (Disconnected Space). Let X be a topological space. X is said to be discon-
nected if there exist two non-empty disjoint open subsets O1 and O2 of X such that their union
is X. In this case, we say that (O1, O2) is a separation of X.

A topological space is connected if it is not disconnected. Below we give alternative and
di�erent identi�cations of connectedness.

Proposition 1.5.1. Let X be a topological space. Then the following axioms are equivalent

(i) X is a connected space,

(ii) if X is a union of two disjoint open sets, then one of them is empty,

(iii) if X is a union of two disjoint closed sets, then one of them sets is empty,

(iv) if any continuous function maps X into {0, 1}, then it is constant,

(v) the only clopen (open and closed) sets are the empty set and X itself.

De�nition 1.5.2 (Connected Subspace). Let Y be a subspace of a topological space X. Y is
connected if it has no separation in the subspase topology τY .

Example 1.5.1. The set of rationals is not connected in R, because we �nd that Q∩ (
√

2,∞)
and Q ∩ (−∞,

√
2) is a separation in Q.
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Proposition 1.5.2. Let X be a connected space and Y a topological space. If f is a continuous
function from X into Y , then f(X) is connected.

That is, the image of any connected space under a continuous map is connected.

Proposition 1.5.3. Let {Ci}i∈I be a family of connected subspaces of a topological space X in
which their intersection is non-empty for each i. Then their union is a connected subspace of
X.

Proposition 1.5.4. Let C be a connected subspace and A a subset of a topological space X. If
C ⊂ A ⊂ C, then A is connected.

As consequence, the closure of a connected subspace is connected.

Corollary 1.5.1. Let X be a topological space and let Y be a dense connected subset of X, then
X is connected.

Proposition 1.5.5. If {Xi}i∈I is a collection of topological spaces, then the product space is
connected in the product topology if and only if Xi is connected for each i ∈ I.

De�nition 1.5.3 (Path-connected Space). A topological space X is said to be path-connected
if for all x, y ∈ X there is a continuous function f : [a, b]→ X such that f(a) = x and f(b) = y.
This function is called path from x to y.

Proposition 1.5.6.

(i) If a space is path-connected, then it is connected.

(ii) The image of a path connected space under a continuous map is path connected.

De�nition 1.5.4 (Connected Component). Let X be a topological space and x ∈ X. The
union of all connected subspaces of X containing x is called the connected component of X
at x (or shortly the component of x).

Proposition 1.5.7. Let X be a topological space.

(i) If x ∈ X, then the component of x is closed and connected.

(ii) The connected components of X form a partition of X.

One can deduce from the de�nition of a component of a point x and the preceding propo-
sition that the component of x is the maximal connected subspace containing x in X.

De�nition 1.5.5 (Totally Disconnected). We say that a topological space X is totally dis-
connected if the only connected subsets are the empty set and the one point set.

1.5.2 Compact and Locally Compact Spaces

Here, in addition to what we give, we state and prove the Tychono�'s theorem which
ensures whatever how many compact spaces are there, their product is necessarily compact. In
the proof, we employ the lattice idea. Note that there is another proceduce to prove it, we refer
to [11].

De�nition 1.5.6 (Open Cover). Let X be a topological space. An open cover of X is a
collection O = {Oi}i∈I of open subsets of X such that

⋃
i∈I Oi = X.

In addition, a subcover U of O is a cover of X for which U is contained in O.
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De�nition 1.5.7 (Compact Space). A topological space X is called compact if every open
cover of X has a �nite subcover.

Example 1.5.2.

1. Every �nite space is compact.

2. Any space equipped with discrete topology is compact if and only if it is �nite.

3. The set of real numbers R together with the usual topology is not compact.

De�nition 1.5.8 (Compact Subspace). A subspace Y of a topological space X is compact if
every open cover in Y has a �nite subcover. Alternatively, Y is compact if every covering of Y
by open sets in X has a �nite open covring of Y .

Proposition 1.5.8.

(i) Any closed subset of a compact space is compact.

(ii) Any compact subspace of a Hausdor� space is closed.

(iii) A �nite union of compact spaces is compact.

(iv) Any intersection of compact subspaces of a Hausdor� space is compact.

(v) If X is a compact space and f : X → Y a continuous surjection, then Y is compact.

The following is a well-known characterization for compactness in the Euclidean space Rn.

Theorem 1.5.1 (Heine-Borel Theorem). A subset of Rn is compact if and only if it is closed
and bounded.

Example 1.5.3.

1. Any interval [a, b] ⊆ R is compact as it is closed and bounded.

2. Let S1 = {z ∈ C : |z| = 1} be the unit sphere. De�ne a continuous surjection f : [0, 1]→
S1 by f(x) = e2inx. Then by Prop.1.5.8 (v), the 1-dimensional sphere S1 is compact as
[0, 1] is closed and bounded. By the same argument, we can show that the n-dimensional
sphere Sn is compact for any n ∈ N.

De�nition 1.5.9 (Finite Intersection Property). Given a topological space X. We say that X
has the �nite intersection property provided for every family {Ci}i∈I of closed subsets of X
in which every �nite subcollection has a non-empty intersection, then

⋂
i∈I Ci 6= ∅.

Proposition 1.5.9. Let X be a topological space. Then X is compact if and only if X has the
�nite intersection property.

Proof. Let X be a topological space. Suppose that X is a compact space and let {Ci}i∈I be a
family of closed subsets of X such that every �nite subcollection has a non-empty intersection.
On the contrary, assume that

⋂
i∈I Ci = ∅. Then, set Oi = X \Ci and note that Oi is open for

each i. Thus we have
X = X \

⋂
i∈I

Ci =
⋃
i∈I

Oi.

As X is compact, there exists a �nite subset J of I for which
⋃
j∈J Oj = X, and we get⋂

j∈J Cj = ∅ which is a contradiction.
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On the other hand, let {Oi}i∈I be an open cover of X. Then for each i, set Ci = X \Oi so
we have ⋂

i∈I

Ci =
⋂
i∈I

(X \Oi) = X \
⋃
i∈I

Oi = ∅.

Thus {Ci}i∈I is a family of closed subsets of X such that
⋂
i∈I Ci = ∅. By hypothesis, there

is a �nite subset J of I in which
⋂
j∈J Cj = ∅. Hence,

⋃
j∈J Oj = X. In other words, X is

compact.

Regarding to the lattice notion which had been discussed in Sec.1.1, if X is a topological
space, OX and CX are the families of open sets and closed sets, respectively, then both are
lattices with respect to the inclusion order.

Lemma 1.5.1. Let X be a topological space. Then the following statements are equivalent:

(i) X is a compact space,

(ii) if a is a proper ideal in OX, then
⋃
a 6= X,

(iii) if f is a proper �lter, then
⋂

f 6= ∅.

Proof.
(ii)⇔(iii) First note that (ii) and (iii) are clearly equivalent by taking complements. Indeed,
assume that (ii) holds and suppose that f is a proper �lter in CX. Then a = {X \ A : A ∈ f}
is a proper ideal in OX, so that

⋃
a 6= X. Thus

⋂
f = X \

⋃
a 6= X \ X = ∅. In the same

pattern, we can show that (iii) implies (ii).
(i)⇒(ii) Suppose that X is a compact space and let a be a proper ideal in OX. On the contrary,
if
⋃

a = X, then a is an open cover of X. Thus X has a �nite subcover as X is compact, i.e.,
there is {Ui}ni=1 in which

⋃n
i=1 Ui = X. Since ideals are closed under the �nite union, so X ∈ a

and therefore any open subset contained in X is in a. It follows that a = OX and it is not
proper, a contradiction.
(ii)⇒(i) Assume that a is a proper ideal in OX and let {Ui}i∈I be an open cover of X. De�ne
a to be the family of all open subsets A of X for which A can be covered by �nitely many Ui.
In other words,

a = {A ∈ OX : ∃JA ⊆ I �nite such that A ⊆
⋃
j∈JA

Uj}.

Now we want to check that a is an ideal of OX. Take A,B ∈ a, there are �nite subsets
JA, JB ⊆ I in which A ⊆

⋃
i∈JA Ui and B ⊆

⋃
i∈JB Ui. Thus JA ∪ JB is �nite and

A ∪B ⊆
⋃

j∈JA∪JB

Uj.

Therefore, A ∪B ∈ a. Further, if E ∈ OX with E ⊆ A, then we have E ∈ a as E ⊆
⋃
j∈JA Uj.

Hence a is an ideal in OX. Finally, from the de�nition of a, Ui ∈ a for each i ∈ I and since
{Ui}i∈I is a cover of X, it follows that

⋃
a = X. Hence, by assumption a can not be a proper

ideal, i.e., a = OX. Particularly, X ∈ a and so there is JX ⊆ I for which X =
⋃
j∈JX Uj as

desired.

Theorem 1.5.2 (Tychono�'s Theorem). Any product of compact spaces is compact.

Proof. Let {Xi}i∈I be a family of compact sets. Let X =
∏

i∈I Xi and assume that a is a proper
ideal of OX. We employ Lemma 1.5.1 by showing that

⋃
a 6= X. Indeed, let m be a maximal

ideal of OX containing a. It su�ces to show that
⋃
m 6= X since

⋃
a ⊆

⋃
m. For each i ∈ I,

de�ne
mi = {U ∈ OX : ρ−1i (U) ∈ m}

where ρi : X → Xi is the i-th projection. mi is a proper ideal of OXi for all i ∈ I. Indeed,
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• if U and W in mi, then both ρ−1i (U) and ρ−1i (W ) are in m. Thus, ρ−1i (U ∪W ) ∈ m as m
is closed under union, so that U and W are in mi,

• if U ∈ mi and W ∈ OXi such that W ⊆ A, then ρ−1i (W ) ⊆ ρ−1i (U) ∈ m. Thus,
ρ−1i (W ) ∈ m so that W ∈ mi.

On the other hand, since ρ−1i (Xi) 6= X, it follows that mi is a proper ideal of OXi.
Now, as each Xi is compact, from Lemma 1.5.1,

⋃
mi 6= Xi. Take x = (xi)i∈I ∈ X such

that each xi is in Xi, but not in
⋃

mi. We prove that x /∈
⋃
m. On the contrary, if x ∈

⋃
m,

then there is U ∈ m containing x. As U open is in X, there exists W ∈ N (x) of the form
W =

⋂
j∈J ρ

−1
j (Wj) such that x ∈ W ⊆ U where J is a �nite subset of I and Wj ∈ OXj for all

j ∈ J . In particular, for each j ∈ J , we have x ∈ W ⊆ ρ−1j (Wj), so that by taking the image
of ρj both sides we get

xj = ρj(x) ∈ ρj(ρ−1j (Wj)) ⊆ Wj.

Thus, xj ∈ Wj. Set Uj = ρ−1j (Wj) and note that as U ∈ m and W ⊆ U , then W ∈ m.
Further, as OX has an upper bound of X and according to Prop.1.1.11, m is a prime ideal.
Since

⋂
j∈J ∈ Uj ∈ m, by the de�nition of a prime ideal, there exists k ∈ J in which Uk ∈ mk.

Therefore, Wk ∈ mk. Thus, xk ∈ Wk and so xk ∈
⋃
mk. This contradicts the choice of xk so

that x /∈
⋃

m. The claim follows.

Remark 1.5.1. The converse of the above theorem is also true. Indeed, if X =
∏

i∈I Xi is
compact, then the image of X under the projection mapping ρi is also compact. That is,
ρi(X) = Xi is compact and so is each Xi.

De�nition 1.5.10 (Locally Compact Space). We say that a topological space X is locally
compact if for each point x in X, there is a compact subspace containing a neighborhood of x.

From de�nition we can see that a compact space is locally compact.

Proposition 1.5.10. Let X be a Hausdor� space. Then X is locally compact if and only if
for each x ∈ X and each U a neighborhood of x, there is a neighborhood V of x such that V is
compact and V ⊂ U .

Proposition 1.5.11. Let X be a Hausdor� locally compact space, Y be a compact component.
Then for any open set U such that Y ⊆ U , there is a compact open subset O such that Y ⊆
O ⊆ U .

Proposition 1.5.12. Let X be a Hausdor� space and K and C be disjoint compact subsets of
X. Then there are disjoint open subsets U and V of X such that K ⊆ U and C ⊆ V .

Proposition 1.5.13. If X be a locally compact space and (Xi)
n
i=0 is a �nite descending sequence

of topological spaces such that X0 = X and Xi either open or closed in Xi−1, then Xn is locally
compact.

Lemma 1.5.2. Let X be a locally compact space such that

X =
⋃
n≥1

Xn

where Xn is closed in X for each n. Then one of Xn contains an open set.

Proof. Suppose by contradiction for all n ≥ 1, there is no an open set contained in Xn. Since X
is locally compact, there exists a compact open set U0 in X so that U0∩(X \X1) is a non-empty
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open set. It follows that we can �nd an open set U1 contained in U0 ∩ (X \X1) such that U1 is
compact and

U1 ∩X1 = ∅.

Again, U1 ∩ (X \ X2) is a non-empty open set, it follows that we can �nd an open set U2

contained in U1 ∩ (X \X2) such that U2 is compact and

U2 ∩X2 = ∅.

Continue in the same fashion, we construct a sequence of open sets {Un}n≥1 such that

Un ⊂ Un−1 and Un ∩Xn = ∅. (1.1)

Note that in U0, from (1.1), we can see that the sequence {Un}n≥1 is nested whose intersection
is non-empty. Now, if U = ∩n≥1Un, then U does not meet any of Xn since Un ∩Xn = ∅ for all
n. This contradicts to the fact that X is a union of Xn so that at least one of Xn must contain
an open set.

Proposition 1.5.14. A �nite product of locally compact spaces is locally compact.

Proposition 1.5.15. Let X be a Hausdor� locally compact space, K be a compact subset of X,
U1 and U2 be open subsets of X such that K ⊆ U1 ∪ U2. Then there are compact sets K1 and
K2 such that K = K1 ∪K2 with K1 ⊆ U1 and K2 ⊆ U2.

Proof. Let C1 = K \ U1 and C2 = K \ U2. Then both C1 and C2 are disjoint compact sets.
Thus, by Prop.1.5.12, there are V1 and V2 disjoint open sets such that C1 ⊆ V1 and C2 ⊆ V2. If
we consider K1 = K \ V1 and K2 = K \ V2, then K1 and K2 are both compact and contained
in U1 and U2, respectively, and satisfy K = K1 ∪K2.

Remark 1.5.2. One can generalize the above the proposition for all n ∈ N inductively. Indeed,
assume that it holds for n−1, i.e., if K is a compact subset in X such that K ⊆

⋃n−1
i=1 Ui, there

is {Ki}n−1i=1 compact subsets in X such that

K =
n−1⋃
i=1

Ki and Ki ⊆ Ui for all i = 1, 2, · · · , n− 1.

We want to show that it is also true for n. By our assumption and the proposition above, if K
is a compact subset of X such that K ⊆

⋃n−1
i=1 Ui ∪ Un ⊆

⋃n
i=1 Ui, then there are {Ki}n−1i=1 and

Kn compact subsets of X such that

K =
n⋃
i=1

Ki and Ki ⊆ Ui for all i = 1, 2, · · · , n.

Hence, the proposition holds for all n.

Proposition 1.5.16. Let X be a locally compact space, K be a compact subset of X and U be
an open subset of X such that K ⊆ U . Then there is an open subset V of X with a compact
closure V such that K ⊆ V ⊆ V ⊆ U .

Proof. Prop.1.5.10 implies that each point x ∈ K has a neighborhood Vx whose closure is
compact and contained in U . K being compact, then there is a �nite subcovering {Vxi}ni=1 of
K. Let V =

⋃n
i=1 Vxi . Since V xi ⊆ U for all i and by Prop.1.2.3 (vi), the claim follows.
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Chapter 2

General Theory of Topological Groups

The study of topological groups is a nice theory that relates the algebraic properties of the group
to the analysis properties resulting from the topology. The group operations are, however, not
independent, but they are connected by the condition of continuity: every group operation
must be continuous in a topological group. The fundamental relations holding for abstract
group and topological space are more or less bodily carried over into topological groups. In this
chapter, we discuss the concept of topological group and introduce the meaning of topological
subgroups, quotient groups and product groups. Further, we represent the separation axioms
and the metrization. The homogeneity of topological groups makes it possible to have results
proved locally, for example on the identity element, valid successfully on the whole group.

2.1 Main De�nitions and Properties

De�nition 2.1.1 (Topological Group). A topological group G is a group and topological space
such that the mappings

ψ : G × G → G
(x, y) 7→ xy

and φ : G → G
x 7→ x−1

are both continuous.

Remark 2.1.1. It is su�cient to consider the application µ : G×G → G de�ned as (x, y) 7→ xy−1

to be continuous instead of the multiplication and inversion functions in the above de�nition.

Example 2.1.1.

1. The additive groups C and R together with the usual topology are topological groups
since the map (x, y) 7→ x− y is continuous. Likewise for the multiplicative groups C∗ and
R∗.

2. Any group equipped either with discrete or indiscrete topology is a topological group.

3. The one-dimension sphere S1 = {z ∈ C : |z| = 1} together with the subspace topology
induced from the usual topology in C is a topological group.

4. The general linear group GLn(R) endowed with the matrix multiplication is a topological
group. Indeed, if we identify each matrix of GLn(R) with enteries in Rn2

as followsx11 · · · x1n
...

. . .
...

xn1 · · · xnn

←→ (
x11, · · · , x1n, · · · , xn1, · · · , xnn

)
,
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then we can consider on GLn(R) the induced topology from Rn2
. In this case, the mul-

tiplication is a polynomial de�ned by ψ : Rn2 × Rn2 → Rn2
such that (A,B) 7→ AB

where

(AB)ij =
n∑
k=1

aikbkj,

and the inversion is a rational function de�ned by φ : Rn2 → Rn2
such that A 7→ A−1

where

A−1 =
1

detA
adj(A)

and adj(A) is the transpose of the cofactors matrix. Remark that the determinant map
given by det : GLn(R) → R∗ is clearly continuous. Thus, both are continuous functions
since ψ is a polynomial of continuous coe�cients and φ is a product of a continuous matrix
with the determinant's inverse. It follows that GLn(R) is a topological group. Similarly,
we can show that GLn(C) is a topological group.

Given a topological group G and let a be a �xed point. The applications Ra and La are
called the right translation of G by a and the left translation of G by a and de�ned as

x 7→ xa x 7→ ax,

respectively. Now the following shows that both are homeomorphisms.

Proposition 2.1.1. Let G be a topological group and x ∈ G. Then the following mappings are
homeomorphisms.

(i) Rx and Lx, and

(ii) the inversion function φ.

Proof.
(i) Let ψ and φ be the multiplication and inversion functions de�ned on G, respectively. We
know that the identity and the constant (g 7→ x for any g ∈ G) functions are continuous, then
the function

γx : G → G × G
g 7→ (g, x)

is also continuous by Prop.1.2.11. The composition application Rx = ψ◦γx (g 7→ gx) is the right
translation map which is a homeomorphism. Indeed, Rx−1 is the inverse of Rx and it is clear
that both are continuous. Also, Rx is bijective since for any g1 ∈ G, there is g2 := g1x

−1 ∈ G
such that Rx(g2) = g1, and Rx satis�es the de�nition of injective functions. Hence, Rx is a
homeomorphism. Similarly, we can show that Lx is also a homeomorphism.
(ii) Clearly φ is bijective by Remark 1.1.1 and it is continuous. Likewise, φ−1 is continuous.
Indeed, remark �rst thar for all x ∈ G

φ−1(x) = (x−1)−1 = x = φ−1(x−1) = ((x−1)−1)−1 = x−1 = φ(x).

since G has a group structure and φ is bijective. Now for any open set O in G, φ(O) is open in
G as φ−1(O) is open. Hence, φ is a homeomorphism.

In the next, we give some relations which connect the group morphisms with elements in
topology.
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De�nition 2.1.2 (Topological Group Homomorphism and Isomorphism). Let G1 and G2 be
two topological groups and f an application from G1 into G2. We say that f is a topologi-
cal group homomorphism or a topological homomorphism if it is a continuous group
homomorphism, and it is said to be a topological group isomorphism or a topological
isomorphism if it is a homeomorphism group homomorphism.

The following result shows that every topological group is homogeneous. This is the main
di�erence between topological groups and ordinary topological spaces. In this case, it will give
us many results and advantages, for instance, the fact that topological groups are homogeneous,
is useful when describing a topology on a group by neighborhood bases (see the next section).

Proposition 2.1.2. Every topological group is a homogeneous space.

Proof. Let x, y ∈ G. Rx−1y is a homeomorphism and Rx−1y(x) = xx−1y = y for any x, y ∈ G.
We conclude that G is a homogeneous space.

Remark 2.1.2. The converse of the above proposition is not true. Indeed, the Sorgenfrey line
S (the set of real numbers equipped with the lower limit topology) cannot be a topological
group although it is a homogeneous space. Indeed, in Sec.2.7, we will give the reason by using
the metrization of groups.

Let A and B be two subsets of a topological group G, we denote

A−1 = {a−1 : a ∈ A},
AB = {ab : a ∈ A, b ∈ B},
aB = {ab : b ∈ B}, and
Ab = {ab : a ∈ A}.

The following ensures how the right and left translations are applicable and helpful to identify
many properties, specially in study the openness and closeness concept in groups.

Proposition 2.1.3. Let G be a topological group, H1, H2 are two subsets of G and let x in G.
Then

(i) if H1 is open (respectively, closed), then so are H1x and xH1,

(ii) if H1 is open, then so are H1H2 and H2H1,

(iii) if H1 is open (respectively, closed), then so is H−11 ,

(iv) if H1 is closed and H2 is �nite, then H1H2 and H2H1 are closed.

Proof.
(i) It is clear that xH1 and H1x are the (direct) image of the set H1 under the right Rx and
the left Lx translations, respectively. Therefore, if H1 is open (or closed), then so are xH1 and
H1x.
(ii) Write H1H2 =

⋃
h∈H2

H1h and H2H1 =
⋃
h∈H2

hH1. So when H1 is open then H1H2 and
H2H1 are the unions of open subsets, hence both are open.
(iii) Since the inversion map φ is homeomorphism, then H−11 is open (or closed) whenever H1

is.
(iv) Again, write H1H2 =

⋃
h∈H2

H1h and H2H1 =
⋃
h∈H2

hH1. So when H1 is closed and H2 is
�nite, it follows that H1H2 and H2H1 are the unions of �nitely closed subsets, hence both are
closed.
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Proposition 2.1.4. Let G1 and G2 be two topological groups with e1 is the identity element of
G1 and f : G1 → G2 be a group homomorphism. Then

(i) f is continuous if and only if f is continuous at e1,

(ii) f is open if and only if f is open at e1,

(iii) if f is bijective, then its inverse is continuous if and only if f is open,

(iv) if f is bijective, then f is topologically isomorphism if and only if f is open and continuous.

Proof.
(i) The �rst imblication is obvious. Conversely, assume that f is continuous at e1 and let
x ∈ G1. Let U be an open set containing f(x). Then Uf(x)−1 is a neighborhood of e2 = f(e1)
(see Prop.2.2.1 in Sec.2.2). Thus, by continuity of f at e1, there is O an open set containing e1
such that f(O) ⊂ Uf(x)−1. f being homomorphism, we have

f(Ox) = f(O)f(x) ⊂ U

(see Prop.1.1.4). That is, we �nd an open set Ox (see Prop.2.1.3) containing x such that its
image under f contained in U . Therefore, f is continuous.
(ii) It is clear that if f is open then particularly it is open at e1.

Conversely, suppose that f is open at e1 and let O be an open set containing an element x.
Then Ox−1 is a neighborhood of e1. It follows that f(Ox−1) is an open set in G2 containing e2.
Since f is a homomorphism, we get

e2 ∈ f(Ox−1) = f(O)f(x−1) = f(O)f(x)−1

(see Prop.1.1.4). Hence, f(O) is open in G2 containing f(x). Consequently, f is open.
(iii) The equivalence comes from the fact that f is open and its inverse is continuous.
(iv) The equivalence follows the above de�nition with result of preceding.

Example 2.1.2. Let G be a topological group.

1. For a �xed point a ∈ G, recall that the inner automorphism Ia de�ned as x 7→ axa−1

is a topological isomorphism on G. Indeed, it is a composition of right Ra−1 and left La
translations which both are homeomorphisms. Also it is clearly a group homomorphism.
Indeed, for any x, y ∈ G,

Ia(xy) = axya−1 = ax(a−1a)ya−1 = (axa−1)(aya−1) = Ia(x)Ia(y).

2. If G is abelian, then the inversion map φ is a topological isomorphism. Indeed, by
Prop.2.1.1, φ is a homeomorphism. Thus we only show that it is a homomorphism.
For any x, y ∈ G

φ(xy) = (xy)−1 = y−1x−1 = x−1y−1 = φ(x)φ(y).

The claim follows.

De�nition 2.1.3 (Transformation Group). Let X be a topological space and G a topological
group. A left-action of G on X is a continuous map ψ : G ×X → X satisfying the conditions
below.

(i) ψ(st, x) = ψ(s, ψ(t, x)) for all s and t in G and all x in X,
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(ii) ψ(e, x) = x for all x in X, where e is the idntity element G.

A left-transformation group (or a left G-space) is a pair (X,ψ) consisting of a space X
equipped with a left-action ψ of G on X.

Remark 2.1.3.

• We shall usually denote ψ(s, x) by sx for any s ∈ G and x ∈ X.

• Similarly, we can de�ne a right-action of G on X as a continuous map (x, s) 7→ xs,
x ∈ X and s ∈ G satisfying the conditions below.

(i) (xt)s = x(ts) for all s and t in G and all x in X,

(ii) xe = x for all x in X, where e is the idntity element G.

A right G-space is a space X equipped with a right-action of G on X.

• We say that G e�ectively operates in X if ex = x for all x ∈ X.

Example 2.1.3. Let a be a �xed point in a topological group G, then both translations Ra

and La are a right-action and a left-action of G on G, respectively. Hence, (G, Ra) and (G, La)
are a right G-space and a left G-space, respectively.

Proposition 2.1.5. Every topological group is a transformation group.

Proof. See the above example.

De�nition 2.1.4 (Isotropy Group). Let x be in a topological space X and let H be a set of
elements s of a topological group G such that sx = x. H is called isotropy (or stability)
subgroup of G at x.

2.2 Neighborhood Bases

We will see that the homogeneity of a topological group plays a role to represent a topology on
a group by neighbourhood bases which we examine its properties.

Proposition 2.2.1. Let G be a topological group and B a neighborhood basis of the identity
element e. Then for each x in G, the collections xU = {xβ : β ∈ B} and U x = {βx : β ∈ B}
form neighborhood bases of x.

Proof. It is su�cient to notice that xβ = Lx(β) where Lx is a homeomorphism. Similarly,
βx = Rx(β) where Rx is a homeomorphism.

As consequence, if Ux is a neighborhood base of x, then B = {g−1U : U ∈ Ux} is a
neighborhood base of e. Indeed, take x ∈ G and let U be an open subset of G containing e.
Hence, we can �nd O ∈ Ux such that e = g−1g ∈ g−1O ⊆ U .

Now we give the fundamental properties of the neighbourhood base of the identity element
e.

Proposition 2.2.2. Let B be a neighborhood base of e in a topological group G. Then, the
following properties are satis�ed.

(P1) B is non-empty,

(P2) for each β1, β2 ∈ B there exists β3 ∈ B such that β3 ⊆ β1 ∩ β2,
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(P3) for each β1 ∈ B there exists β2 ∈ B such that β2β2 ⊆ β1,

(P4) for each β1 ∈ B there exists β2 ∈ B such that β−12 ⊆ β1,

(P5) for each β1 ∈ B and x ∈ G there exists β2 ∈ B such that x−1β2x ⊆ β1,

(P6) for each β1 ∈ B and x ∈ β1 there exists β2 ∈ B such that xβ2 = β1,

(P7) for each β1 ∈ B and x ∈ G there exists β2 ∈ B such that xβ−12 x ⊆ β1.

Proof. Let G be a topological group with multiplication ψ and inversion φ functions and let B
be a neighbourhood base of e.
(P1) Because G ∈ B.
(P2) Every topological space satis�es this property, in particular, topological groups.
(P3) Let β1 ∈ B. As ψ is continuous, ψ−1(β1) is a neighborhood of (e, e) and so there exist
β2, β3 ∈ B such that β2 × β3 ⊆ ψ−1(β1). By (P2) we �nd β∗ ∈ B such that β∗ ⊆ β2 ∩ β3. Then,
β∗ × β∗ ⊆ ψ−1(β1), and by applying ψ we have β∗β∗ ⊆ ψ(ψ−1(β1)) ⊆ β1.
(P4) Let β1 ∈ B. Since φ−1(β1) is a neighborhood of e, there exists β2 ∈ B such that β2 ⊆
φ−1(β1). Taking the image by φ in both sides, we get β−12 = φ(β2) ⊆ β1.
(P5) Let x ∈ G and β1 ∈ B. The composition γx = Lx−1 ◦ Rx is given by γx : G → G such that
γx(g) = x−1gx. Clearly, γx is continuous as it is the composition of two continuous functions.
Hence, γx(β1) is a neighborhood of e. Thus, if we take β2 ∈ B such that β2 ⊆ γ−1x (β1), and the
image γx in both sides, we get γx(β2) = x−1β2x ⊆ β1.
(P6) Let β1 ∈ B and x ∈ β1. Set β2 = x−1β1, then β2 is a neighborhood of e as x−1x = e for
each x ∈ β1. It follows that β2 ∈ B and hence xβ2 = β1 as desired.
(P7) Let β1 ∈ B. The map Lx ◦ Rx ◦ φ is continuous, so (Lx ◦ Rx ◦ φ)−1(β1) is a neighborhood
of e. Thus, there is β2 ∈ B such that β2 ⊂ (Lx ◦Rx ◦ φ)−1(β1), i.e.,

xβ−12 x = (Lx ◦Rx ◦ φ)(β2) ⊆ β1.

Remark 2.2.1.

• In the preceding proposition, the properties (P3) and (P4) are equivalent to say:
(P8) for all β1 ∈ B there exists β2 ∈ B such that β−12 β2 ⊆ β1. Indeed, suppose that (P2)
and (P3) hold. By (P2), let β1 ∈ B, there exists β2 ∈ B such that β2β2 ⊆ β1. Also by (P3)
with taking β2 ∈ B, there exists β3 ∈ B such that β−13 ⊆ β2, and by (P1), there exists
β∗ ∈ B such that β∗ ⊆ β2 ∩ β3. Therefore,

β∗
−1
β∗ ⊆ β−13 β2 ⊆ β2β2 ⊆ β1

as required. Conversely, suppose that (P8) holds. Let β1 ∈ B, there exists β2 ∈ B such
that β−12 β2 ⊆ β1. Thus, β

−1
2 ⊆ β−12 β2 ⊆ β1, so that (P3) is satis�ed. By (P2), take a β∗ ∈ B

such that β∗ ⊆ β−12 ∩ β2. Then β∗ ⊆ β−12 and β∗ ⊆ β2, so we get β∗β∗ ⊆ β−12 β2 ⊆ β1.

• Similarly, we can deduce the equivalence of (P3) and (P4) with (P9) which says that for
all β1 ∈ B there exists β2 ∈ B such that β2β

−1
2 ⊆ β1.

• The converse of this proposition holds: a non-empty collection B of subsets of a group
G satisfying these properties generates a group topology on G, i.e., a topology on G
making G a topological group.

Example 2.2.1.
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1. The collection {(−ε, ε) : ε > 0} generates a group topology (the usual topology) on the
additive group R.

2. For a �xed prime p, we de�ne B = {pnZ : n ∈ N} which is the family of subsets of Z.
This family satis�es the properties in Prop. 2.2.2, so it generates a group topology on Z.
This topology is called p-adic topology.

3. Let G be any group and B the family of all subgroups of �nite index of G, i.e.,

B = {H ≤ G : [G : H] <∞}.

We can show that B satis�es the properties in Prop. 2.2.2 and thus it generates a group
topology on G. This topology is called pro�nite topology.

The following proposition let us carrying on about the last point in the remark above.

Proposition 2.2.3. Let B be a non-empty collection of subsets of a group G containing e. If
B satis�es the properties (P2, P3, P4, P5), then there is a unique group topology such that B is
a neighbourhood base of e in G.

Proof. Let G be any group and B be a non-empty collection of subsets containing e and satisfying
the properties P2, P3, P4 and P5. De�ne

τ = {H ⊆ G : ∀x ∈ H,∃β ∈ B such that xβ ⊆ H}.

Our goal is to prove that τ is a group topology on G.
Firstly, we show that τ forms a topology on G. Clearly, ∅ and G are in τ . Let H1, H2 ∈ τ

with H1 ∩ H2 6= ∅ and let x ∈ H1 ∩ H2. By de�nition of τ , there exist β1, β2 ∈ B such that
xβ1 ⊆ H1 and xβ2 ⊆ H2, and by (P2) we can take β3 ∈ B such that β3 ⊆ β1 ∩ β2. Then

xβ3 ⊆ x(β1 ∩ β2) ⊆ xβ1 ∩ xβ2 ⊆ H1 ∩H2.

Thus H1 ∩H2 ∈ τ . Let Hi ∈ τ for all i ∈ I and let x ∈
⋃
i∈I Hi. Then x ∈ Hi0 for some i0 ∈ I

and so there exists β ∈ B such that xβ ⊆ Hi0 ⊆
⋃
i∈I Hi. Thus,

⋃
i∈I Hi ∈ τ and it follows that

τ is a topology on G such that xU = {xβ : β ∈ B} is a neighborhood base of x for any x ∈ G.
Secondly, we show that the multiplication ψ function is continuous. Let β1 ∈ B and (x, y) ∈

G × G. Since xyβ1 is a neighborhood of ψ(x, y) = xy, it su�ces to �nd a neighbourhood of
(x, y) in G × G contained in ψ−1(xyβ1). By (P3), there exists β2 ∈ B such that β2β2 ⊆ β1 and
then xyβ2β2 ⊆ xyβ1. By (P5), we take β3 ∈ B such that y−1β3y ⊆ β2 and if we let β∗3 = β3∩β2,
then β∗3 is a neighborhood of e such that y−1β∗3y ⊆ β2 since β∗3 ⊆ β2. Thus,

ψ(xβ∗3 × yβ∗3) = xβ∗3yβ
∗
3 = xy(y−1β∗3y)β∗3 ⊆ xyβ2β2 ⊆ xyβ1.

Taking the preimage in both sides, we get xβ∗3 × yβ∗3 ⊆ ψ−1(xyβ1). Therefore, ψ is continuous
since xβ∗3 × yβ∗3 is a neighbourhood of (x, y).

Finally, we show that the inversion φ function is continuous. Indeed, let β1 ∈ B and x ∈ G.
It is su�cient to �nd a neighborhood of x−1 contained in φ−1(xβ1). By (P4), there is β2 ∈ B
such that β−12 ⊆ β1. Thus, φ(β2x

−1) = xβ−12 ⊆ xβ1, and with taking the inverse image in both
sides, we get β2x−1 ⊆ φ−1(xβ1). Now by (P5), there exists β3 ∈ B such that x−1β3x ⊆ β2.
Hence,

x−1β3 = (x−1β3x)x−1 ⊆ β2x
−1 ⊆ φ−1(xβ1),

and it follows that φ is continuous.

Let us mention now that by the homogeneity of a topological group and Prop.2.2.2, we can
deduce some features of neighborhood base at any point analogously.
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Proposition 2.2.4. Let Ux be a neighborhood base of x in a topological group G. Then

(i) for each U ∈ Ux there exists O ∈ Ux such that OO ⊆ U ,

(ii) for each U ∈ Ux there exists O ∈ Ux such that O−1 ⊆ U ,

(iii) for each U ∈ Ux there exists O ∈ Ux such that O−1O ⊆ U ,

(iv) for each U ∈ Ux there exists O ∈ Ux such that OO−1 ⊆ U .

Proof.
(i) Let U be a neighborhood of x. We have ψ is continuous at (x, e) and ψ(x, e) = x ∈ U which
is open. Then ψ−1(U) is open in G×G and containing (x, e). Thus there exists O neighborhood
of x such that O ×O ⊆ ψ−1(U). Hence, ψ(O ×O) = OO ⊆ U .
(ii) Let U be a neighborhood of x. Then we can write U = xβ1 or U = β1x for some β1 a
neighborhood of e. Hence, in view of (P7), there is β2 containing e such that x−1β−12 x−1 ⊆ β1.
This implies that β−12 x−1 ⊆ xβ1, i.e., (xβ2)

−1 ⊆ U . Set O = xβ2, so we have O−1 ⊆ U with
O ∈ Ux. The case of U = β1x is smilar.
(iii) Let U be a neighborhood of x, then by using (i) and (ii), there are O and V neighborhoods
of x such that

OO ⊆ U and V −1 ⊆ O.

Let W = V ∩O which is a neighboorhood of x. We get

W−1W ⊆ V −1O ⊆ OO ⊆ U.

The claim follows.
(iv) Similar to the proof of (iii).

Proposition 2.2.5. Let G be a topological group and H1 and H2 be two subsets. Then

(i) H1H2 ⊆ H1H2.

(ii) H1
−1

= H−11 .

(iii) xH1y = xH1y.

Proof.
(i) Let x ∈ H1, y ∈ H2 and let β1 be a neighborhood of e. Then there is a neighborhood β2 of
e such that xβ2yβ2 ⊆ xyβ1. It follows that

∅ 6= (xβ2 ∩H1)(yβ2 ∩H2) ⊆ xβ2yβ2 ∩H1H2 ⊆ xyβ1 ∩H1H2

meaning that xy ∈ H1H2. Thus, H1H2 ⊆ H1H2.
(ii) The inversion map φ is a homeomorphism, so it is a closed map, i.e., φ(H1) = H1

−1
is

closed. Thus, H1
−1

= H1
−1
. It follows that

H−11 ⊆ H1
−1

= H1
−1
.

On the other hand, as φ is continuous, H1
−1 ⊆ H−11 by Prop.1.2.9. Hence the equality holds.

(iii) The composition map γxy = Lx ◦ Ry is a homeomorphism, so it is a closed map, i.e.,

γxy(H1) = xH1y is closed. Thus, xH1y = xH1y. It follows that

xH1y ⊆ xH1y = xH1y.

On the other hand, as γxy is continuous, then xH1y ⊆ xH1y by Prop.1.2.9. Hence the equality
holds.
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Proposition 2.2.6. Let G be a topological group and D be a dense subset in G. Assume that
B is a fundamental system of neighborhoods of e, then the collection

U = {Ux : x ∈ D,U ∈ B}

is a basis for a topology on G.

Proof. Let O be a neighborhood of x, so Ox−1 is a neighborhood of e. Thus there is U ∈ B
such that UU−1 ⊆ Ox−1 by (P9). As D is dense, then so is xD−1 because

X = γx(D) ⊆ γx(D)

where the map γx = Lx ◦ φ is continuous. So, there is y ∈ U ∩ xD−1 and z ∈ D such that
y = xz−1, i.e., z = y−1x. We get that Uy−1x ∈ B. Further as y ∈ U and for all x ∈ O, we have

Uy−1x ⊆ UU−1x ⊆ Ox−1x = O.

Therefore,
⋃
x∈O Uy

−1x ⊆ O. Likewise, since e ∈ Uy−1, then for all x ∈ O, we have x ∈ Uy−1x.
Hence, O ⊆

⋃
x∈O Uy

−1x. Consequently, O =
⋃
x∈O Uy

−1x.

De�nition 2.2.1 (Symmetric Neighborhood). Let G be a topological group. A neighborhood β
is said to be symmetric if β = β−1.

Proposition 2.2.7. Let G be a topological group, then there exists a base of symmetric open
sets. In particular, there is a fundamental system of symmetric neighborhoods of each point of
G.

Proof. Let U be an open subset of G. Then U−1 is an open subset of G as well. Put O = U∩U−1,
so O is an open and O = O−1 since

O = U ∩ U−1 = U−1 ∩ (U−1)−1 = (U ∩ U−1)−1 = O−1.

Further, O ⊆ U , so that there is a symmetric of open sets.

2.3 Subgroups

De�nition 2.3.1 (Topological Subgroup). Let G be a topological group and H a subgroup of
G. Consider H equipped with the topology induced from G, then H is called a topological
subgroup of G.

For illustrating the idea of the de�nition, we give the proposition below.

Proposition 2.3.1. A subgroup of a topological group is a topological group.

Proof. Let H be a subgroup of a topological group G. It is enough to discuss the continuity of
the inversion φ and multiplication ψ functions on H. Indeed, since both are also restrictions
on H, it follows that they are continuous on H (see Ex.1.2.5(5)). And the claim follows.

Proposition 2.3.2. Let G be a topological group and H a subgroup of G. Then

(i) if H is open, H is closed,

(ii) if H is closed and of �nite index, H is open,

(iii) if H contains a non-empty open subset, H is open.
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Proof. Let R be a set of representatives of the cosets xH except H. Then

G \H =
⋃
x∈R

xH. (2.1)

(i) If H is open, then according to the Prop.2.1.3, its complement in (2.1) is a union of open
subsets so that it is open. Therefore, H is closed.
(ii) If H is closed and having a �nite index, then R is �nite and the complement of H in (2.1)
is a �nite union of closed subsets, so H is open.
(iii) If H contains a non-empty open subset, say O, then H = OH and by Prop.2.1.3, H is
open.

Proposition 2.3.3. Let H be a subset of a topological group G. Then

(i) if H is a subgroup, then so is its closure H,

(ii) if H is a normal subgroup, then so is its closure H.

Proof. Let G be a topological group.
(i) H is clearly non-empty since e ∈ H ⊂ H. Let x, y ∈ H and let U be a neighborhood of
xy−1. As the application µ is continuous (see Remark 2.1.1), then there are a neighborhood O
of x and a neighborhood V of y such that O × V ⊆ µ−1(U), i.e., OV −1 ⊆ U . Also, as x and y
are in H̄, then there are h1 ∈ O ∩H and h2 ∈ V ∩H. Hence, h1h

−1
2 ∈ OV −1 ∩H since H is a

subgroup. Thus, xy−1 ∈ H. It follows that H is a subgroup.
(ii) For all x ∈ G, by Prop.2.2.5(iii), we get

xHx−1 = xHx−1 = H

as H is normal. Therefore, H̄ is normal.

Example 2.3.1. Recall that the general linear group GLn(R) is a topological group.

1. The subset GLn,+(R) is the set of all matrices having positive determinant, i.e.,

GLn,+(R) = {A ∈ GLn(R) : det(A) > 0}.

Then it is an open subgroup of GLn(R). Indeed, GLn,+(R) is non-empty since the deter-
minant of the identity matrix is 1. If A and B are two elements of GLn,+(R), then

det(AB−1) = det(A) det(B−1) =
det(A)

det(B)
> 0.

On the other hand, since the determinant map over GLn(R) is continuous, it follows that
GLn,+(R) is open as det−1(0,∞) = GLn,+(R). Consequently, it is closed by Prop.2.3.2(i).

2. Let us recall that the special linear group SLn(R) is de�ned as

SLn(R) = {A ∈ GLn(R) : det(A) = 1}.

Then it is a closed subgroup of GLn(R). Indeed, clearly it is a subgroup of GLn(R). On
the other hand, since the determinant map over GLn(R) is continuous, it follows that
SLn(R) is closed as det−1({1}) = SLn(R).
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3. The orthogonal matrices group On(R) over GLn(R) is de�ned as

On(R) = {A ∈ GLn(R) : AtA = I}.

Then it is a closed subgroup of GLn(R). Indeed, it is clear that On(R) is a subgroup of
GLn(R). Note that if A ∈ On(R), then AtA = I which is equivalent to

n∑
k=1

akiakj = δij ∀i, j = 1, 2, · · · , n,

where δij is the Kronecker delta which is equal to 1 if i = j and 0 otherwise. Now, de�ne
the continuous function fij : GLn(R) → R as fij(A) =

∑n
k=1 akiakj, i, j = 1, 2, · · · , n.

Thus, On(R) is closed since

On(R) = f−1ij ({δij}) =

{
f−1ij ({0}) if i 6= j

f−1ij ({1}) if i = j.

Lemma 2.3.1. Let U be a symmetric neighborhood of e in a topological group G. Then H =⋃
n≥1 U

n is a clopen subgroup of G.

Proof. Let x, y ∈ H. Then there exist positive integers n and m such that x ∈ Un and y ∈ Um.
Hence,

x−1y ∈ (Un)−1Um = (U−1)nUm = UnUm = Un+m ⊆ H

since U is symmetric. Hence, H is a subgroup. On the other hand, we show that H is open.
Indeed, if U is a neighborhood of e, then for each x ∈ H, xU ∈ xH = H, so H is open.
Consequently, H is closed by Prop.2.3.2.

Proposition 2.3.4. A subgroup H of a topological group G is closed if and only if for some
closed neighborhood U of e, H ∩ U is closed in G.

The proof follows easily.

De�nition 2.3.2 (Discrete Subgroup). A subgroup H of a toplogical group is called a discrete
subgroup if for each x ∈ H, there exists a neighborhood U of x such that U ∩H = {x}.

2.4 Quotient Groups

Let G be a topological group endowed with a topology τ and H a subgroup of G (not necessarily
normal). Consider the equivalence relation in G given by

x ∼ y if and only if xH = yH.

For any x ∈ G, the equivalence class [x] is exactly the coset xH, because

[x] = {y ∈ G : x ∼ y} = {y ∈ G : xH = yH} = {y ∈ G : x−1y ∈ H} = {y ∈ G : y ∈ xH} = xH.

We shall denote the set whose elements are the cosets xH by G/H. Further, de�ne the canon-
ical projection κ by

κ : G → G/H
x 7→ xH.

(2.2)

It is easy to check that κ is a surjection. Now we construct the collection τκ of subsets of G/H
induced by κ as follows

τκ = {O ⊆ G/H : κ−1(O) ∈ τ},
then it is a topology on G/H. In fact, τκ is the quotient topology on G/H since it is the �nest
topology making κ continuous. In fact, κ is the quotient map and G/H is the quotient space.
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Remark 2.4.1.

• If H is a normal subgroup of G, then G/H has a natural group structure.

• If G/H is a group, the canonical projection κ is obviously an epimorphism. Indeed, for
any x and y in G, we get

κ(xy) = xyH = xHyH = κ(x)κ(y).

• When we say O open in G/H, this actually means that there is an open set U in G such
that U = κ−1(O), i.e., κ(U) = O. Besides, we have

O = κ−1(κ(O))

as κ is surjective.

Now suppose that the group G has the multiplication ψ and the inversion φ mappings, and
H be a normal subgroup of G. Further, assume that G/H has the product ψ∗ and the inversion
φ∗ maps. If we consider the map κ × κ given by (κ × κ)(x, y) = (κ(x), κ(y)), then we get the
following diagrams which commute.

G G

G/H G/H

φ

κ κ

φ∗

G × G G

G/H × G/H G/H

ψ

κ×κ κ

ψ∗

(2.3)

In our case, φ∗ is continuous if and only if the composition φ∗ ◦ κ is also continuous. By
commutativity of (2.3), φ∗ ◦κ = κ◦φ and as the latter is a composition of continuous functions,
then so is φ∗ ◦ κ. Thus, the inversion φ∗ is continuous. The map κ is open and surjective
(see Prop.2.4.1), then so is κ× κ by Prop.1.2.13. Therefore, κ× κ is a quotient map which is
continuous, open and surjective. By commutativity of (2.3), ψ∗ ◦ (κ × κ) is continuous, then
by Prop.1.2.14 so is ψ∗ in which G/H is a topological group.

De�nition 2.4.1 (Topological Quotient Group). The quotient space G/H de�ned above is a
topological quotient group provided that G/H has a natural group structure and both ψ∗ and
φ∗ are continuous.

On topological groups, the canonical projection κ which is also a quotient map, is always
open as it is described in the following proposition.

Proposition 2.4.1. Let H be a subgroup (not necessarily normal) of a topological group G,
and let κ : G → G/H be the canonical projection. Then κ is an open map.

Proof. Let O be an open subset of G. According to the de�nition of the quotient topology,
κ(O) is open if and only if κ−1(κ(O)) is open in G. Thus,

κ−1(κ(O)) = κ−1 ({xH : x ∈ O}) = {y ∈ G : yH = xH for some x ∈ O} ,

and we know that yH = xH if and only if y ∈ xH. Hence,

κ−1(κ(O)) =
⋃
x∈O

{y ∈ G : y ∈ xH} =
⋃
x∈O

xH = OH

which is open by Prop.2.1.3.
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Remark 2.4.2.

• We have argued that the canonical projection has many features on topological groups.
It is a group isomorphism, open and continuous. Hence, by Prop.2.1.4, it is a topological
isomorphism.

• In general, the canonical map κ is not closed. For instance, consider the additive group R
and the subgroup Z, then κ : R→ R/Z is not closed since the closed set {n+ 1

2n
: n ∈ N}

is mapped onto a set { 1
2n

: n ∈ N} which is not closed. Nevertheless, we will see in Sec.3.2
that κ is closed whenever H is compact (see Prop.3.2.9).

Proposition 2.4.2. Let B be a basis for a topology on G. The collection

B = {{xH : x ∈ U}, U ∈ B}

is a basis for the quotient topology on G/H.

Proof.

• Let xH ∈ G/H with x ∈ G. Thus, there is U ∈ B such that x ∈ U . Hence, {xH} ∈ B.

• If xH ∈ O∩V and O, V ∈ B, then by the continuity of κ, κ−1(O∩V ) is open in G. Thus,
there is U ∈ B containing x such that U ⊂ κ−1(O ∩ V ). In other words, κ(U) ⊂ O ∩ V .
It follows that κ(U) = {uH : u ∈ U} ∈ B.

Therefore, B is a basis for the topology τB generating by B. On the other hand, it is clear that
τB = τκ (see Prop.1.2.15). We conclude that B is a basis for the quotient topology de�ned on
G/H.

The converse of Prop.2.4.1 is not true in general. Indeed, if the canonical projection κ : G →
G/H is an open map, then in general (G, τ) fails to be a topological group as we will see in the
next example. For this, the following lemma is needed.

Lemma 2.4.1. A subgroup of R which is not of the form sZ for some s ∈ Z is necessarily
dense in R.

Proof. Let H be a subgroup of R not of the form sZ. We prove that there is no least positive
element in H. On the contrary, suppose that t is the least positive element of H, then nt ∈ H
for any n ∈ Z so that tZ is contained in H. Take x in H and not in tZ and let m be the
integer part of x

t
. Note that |x−mt| is an element of H and 0 < |x−mt| < t, a contradiction.

As consequence, H has no least positive element, and so there is a strictly decreasing positive
sequence in H,

x1 > x2 > · · · > xi > · · ·

converging to 0. Now, given any interval (a, b), we can take an element xi of the sequence such
that 0 < xi < b − a. So the element nxi ∈ H lies in (a, b) for some n ∈ Z. Hence, H is dense
in R.

Now we go through to the intended example.

Example 2.4.1. As we mentioned earlier, the Sorgenfrey line S is not a topological additive
group. Indeed, the inverse image of an open subset [a, b) (in the lower limit topology) under the
inversion φ function (x 7→ −x) is (−b,−a] which is not open in S. Hence, φ is not continuous.
Now, let us see that for any subgroup H of S, the canonical projection κ is an open map.
Indeed, by the preceding lemma, H may be either of the form sZ or dense in R (with the usual
topology). We distinguish two cases.
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- If H is of the form sZ, then for an open subset [a, b) of S,

κ−1 (κ [a, b)) = {x ∈ S : κ (x) ∈ κ [a, b)}
= {x ∈ S : ks+ x ∈ [a, b) for some k ∈ Z}

=
⋃
k∈Z

[a+ ks, b+ ks)

which is open, because it is a union of open subsets. Thus κ is an open map.

- If H is dense in R. We have to prove that κ−1 (κ [a, b)) = S for any subset [a, b) of S.
For any x ∈ S, the subset (a− x, b− x) is open in R and so there exists h ∈ H such that
a − x < h < b − x. Then a ≤ h + x ≤ b and so there is y ∈ (a, b) such that h + x = y.
Thus, y − x ∈ H and

κ (x) = κ (y) ∈ κ (a, b) ⊆ κ [a, b) .

This implies that x ∈ κ−1 (κ [a, b)). Hence, κ is an open map.

Proposition 2.4.3. Let G/H be the quotient of a topological group G by a subgroup H. The
application Ts on G/H de�ned as xH 7→ sxH is a homeomorphism.

Proof. Ts is clearly a bijection. We show that Ts is continuous. Indeed, let O be an open set
in G/H, then according to the de�nition of the quotient topology, there is an open set U in G
such that O = κ(U). Now we have,

T−1s (O) = {xH ∈ G/H : Ts(xH) ∈ O}
= {xH ∈ G/H : sxH ∈ O}
= {xH ∈ G/H : xH ∈ s−1O}
= s−1O.

Hence,
T−1s (O) = s−1O = Ls−1(κ(U)) = (L−1s ◦ κ)(U) (2.4)

as Ls−1 = L−1s so that Ts is continuous since form (2.4) gives us that T−1s (O) is the image of U
under the composition of two continuous mappings. On the other hand, as Ts is surjective, its
inverse exists on G/H which is de�ned as xH 7→ s−1xH, i.e., T−1s = Ts−1 . Note that for any
open set O in G/H and from (2.4), we obtain

T−1s (O) = (Ls ◦ κ−1)(U)

for some open set U . Hence T−1s is continuous as well, meaning that Ts is a homeomorphism.

Proposition 2.4.4. Let G be a topological group and H be a subgroup, then G/H is homoge-
neous.

Proof. Since the map Tyx−1 is a homeomorphism on G/H, it follows that for any xH and yH
in G/H, we obtain

Tyx−1(xH) = yx−1xH = yH.

Hence, G/H is homogeneous.

Proposition 2.4.5 (First Isomorphism Theorem). Let G1 and G2 be two topological groups and
f : G1 → G2 a continuous open epimorphism. Then the map

ϕ : G1/ ker f → G2
x(ker f) 7→ f(x)

is a topological isomorphism.
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Proof. According to Prop.1.1.5, ϕ is a group isomorphism. It remains is to show that ϕ is open
and continuous. Note that if κ : G1 → G1/ ker f is the canonical projection, then ϕ ◦ κ = f .
That is,

ϕ(κ(x)) = ϕ(x(ker f)) = f(x) for all x ∈ G1.
Now, since f is continuous, by Prop.1.2.14, ϕ is continuous. Finally, we show that ϕ is an open
map. Indeed, for any open subset O of G1/ ker f , as κ is continuous and f is open, f(κ−1(O))
is open in G2. However, κ is surjective, then

f(κ−1(O)) = (ϕ ◦ κ ◦ κ−1)(O) = ϕ(O).

Hence ϕ is open. Thus, by Prop.2.1.4 (iv), the claim follows.

Example 2.4.2.

1. Consider the topological groups R and S1 and the exponential function f from R into S1

de�ned as f(x) = e2πix for all x ∈ R. Clearly, f is a homomorphism. By considering S1 as
a subset of R2, we may de�ne by f(x) = (cos 2πx, sin 2πx) for all x ∈ R, and since both
components are continuous, then so is f . Let (a, b) be an open interval of R, the image
of (a, b) can be either S1 (if b − a > 1), an open arc (if b − a < 1), or S1 \ {q} for some
q ∈ S1 (if b−a = 1). So the image of f is open in all cases. Thus f is an open map. Also,
clear that f(R) = S1 and ker f = {x ∈ R : e2πix = 1} = Z. Therefore, by Prop.2.4.5, the
topological group R/Z is topologically isomorphic to S1.

2. In Ex.2.1.1, recall that GLn(R) is equipped with the induced topology from Rn2
, and the

determinant function given by det : GLn(R) → R∗ is a topological homomorphism. det
is an open map also. Indeed, let O be an open subset of GLn(R). As {0} is closed in R
and det is continuous, then det−1({0}) is closed in Rn2

, and so its complement GLn(R)
is open in Rn2

. Therefore, O is also open in Rn2
. Now we show that det(O) is open. Fix

d ∈ det(O) and take x ∈ O with determinant d. As x ∈ O and O is open, there is an
open ball B(x, r) with r > 0 such that B(x, r) ⊆ O. We ensure that there exists ε > 0
such that tx ∈ B(x, r) for all t ∈ (1− ε, 1 + ε). In fact, we have

tx ∈ B(x, r)⇐⇒ ‖x− tx‖ < r

⇐⇒ |1− t|‖x‖ < r

⇐⇒ |1− t| < r

‖x‖
,

we can take ε := r
‖x‖ > 0. Now by taking the image of tx under det, we have det(tx) =

tnd ∈ det(O) for all t ∈ (1− ε, 1 + ε). We see that ((1− ε)nd, (1 + ε)nd) ⊆ det(O). Hence,
det is open.
For each d ∈ R∗, the matrix 

d 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


has determinant d, thus ker is an epimorphism. Further, since ker det = SLn(R) (see
Ex.1.1.2 part(1)), by Prop.2.4.5, GLn(R)/SLn(R) is topologically isomorphic to R∗.

Proposition 2.4.6 (Third Isomorphism Theorem). Let N and M be two normal subgroups of
a topological group G with N ≤M . Then

G/N
M/N

∼=
G
M

in the sense of being topologically isomorphic.
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Proof. Since G has a group structure, then the two quotient groups are isomorphic, i.e., there
is a group isomorphism f form G/N

M/N
onto G

M
. On the other hand, the canonical projection

κ : G → G/N is a topological isomorphism and also the map ϑ : G
M
→ G/N

M/N
is a homeomorphism.

Thus, the composition ϑ ◦ κ is a homeomorphism as well. Hence, by Prop.2.4.5,

ϑ ◦ κ : G/ ker(ϑ ◦ κ)→ G/N
M/N

is a homeomorphism such that M = ker(ϑ ◦ κ). In other words, we �nd a homeomorphism
group homomorphism f = ϑ ◦ κ between these quotients. Consequently, G/N

M/N
is topologically

isomorphic to G
M
.

One can assume that the second isomorphism theorem is also applicable in topological
groups as in groups (see Prop.1.1.6), but it is not true in general. The following example shows
in fact that it does not hold for topological groups in general.

Example 2.4.3. Consider the additive group R and the normal subgroup Z of R. Also consider
αZ where α is an irrational number. By Prop.2.4.6, the group (Z + αZ)/Z is isomorphic to
αZ/(Z ∩ αZ). As α is irrational, αZ/(Z ∩ αZ) = αZ/{0} is discrete. The subgroup Z + αZ of
R can not be written in the form sZ. If not, Z+αZ = sZ implies 1 = ms and α = ns for some
m,n ∈ Z. So we obtain α = n

m
which is a contradiction. Thus, Z + αZ would be dense in R,

by Lemma 2.4.1. Therefore, the quotient (Z + αZ)/Z is dense as a subspace of S1. Any open
subset of this quotient contains in�nitely many elements of it, so it is not discrete and thus not
homeomorphic to αZ/(Z ∩ αZ).

Proposition 2.4.7. Let G be a topological group and N,M be two normal subgroups of G with
N ≤ M . If τ1 is a topology on M/N as a subspace of G/N and τ2 a topology on M/N as a
quotient space of M , then τ1 = τ2.

Proof. Let κ : G → G/N be the canonical projection. Note that κ(x) = xN is in M/N if and
only if x ∈M . De�ne

f : M → (M/N, τ1)

x 7→ κ(x)

which is clearly a group epimorphism. We show that f is continuous. Let O ∈ τ1, there exists
an open subset U of G/N such that O = U ∩M/N . Then

f−1(O) = κ−1(O) = κ−1(U ∩M/N) = κ−1(U) ∩ κ−1(M/N) = κ−1(U) ∩M.

Since κ is continuous, κ−1(U) is open in G. Hence, f is continuous. Now we prove that f is
open. Let O be open in M , we shall write O = M ∩ U with U open in G. As M =

⋃
x∈M xN ,

we have
O =

⋃
x∈M

(xN ∩ U)

and we get,

f(O) = κ

(⋃
x∈M

(xN ∩ U)

)
=
⋃
x∈M

κ(xN ∩ U)

=
⋃
x∈M

{yN : y ∈ xN ∩ U}

=
⋃
x∈M

(κ(x) ∩ {yN : y ∈ U}) .
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Therefore,
f(O) = κ(M) ∩ κ(U) = M/N ∩ κ(U).

By Prop.2.4.1, κ is open so that κ(U) is open. Hence, f is an open map. Futhermore, kerf =
{x ∈M : xN = N} = N . Thus according to the Prop.2.4.5, the map

(M/N, τ2)→ (M/N, τ1)

xN 7→ xN

is a homeomorphism. Hence, τ1 = τ2.

Corollary 2.4.1. If N is a normal subgroup of a topological group G, then every subgroup of
G/N is topologically isomorphic to a quotient group M/N where N ≤M E G.

Proof. We know that if H is a subgroup of G/N then there exists a normal subgroup M of G
containing N such that H = M/N . By the preceding proposition, we see that H and M/N
de�ne the same topology, so they are homeomorphic.

Proposition 2.4.8. Let G be a topological group and G/H be the quotient group of G by a
normal subgroup H. The application ϕ : G × G/H → G/H is continuous.

Proof. Let O be an open set in G/H, then there is an open set U in G such that O = κ(U).
As G is a topological group, then the multiplication map ψ is continuous. This implies that for
any (x, y) ∈ ψ−1(U), there are neighborhoods V1 of x and V2 of y such that V1 × V2 ⊂ ψ−1(U),
i.e., ψ(V1, V2) ⊂ U . Note that

ϕ(V1, κ(V2)) = κ(ψ(V1, V2))

by the diagram below. Thus,

ϕ(V1, κ(V2)) = κ(ψ(V1, V2)) ⊂ κ(U) = O.

Hence, we �nd a neighborhood V1 × κ(V2) of (x, κ(y)) such that V1 × κ(V2) ⊂ ϕ−1(O). Conse-
quently, ϕ is continuous.

We illustrate the relation between the concerning functions by the following commutative
diagram

G × G G

G × G/H G/H

ψ

id×κ κ

ϕ

De�nition 2.4.2 (Homogeneous Space of a Topological Group). We say that a topological
group G operates transitively in a space X if for all x,y in X, there is s in G such that sx=y.
In this case, X is called a homogeneous space of G.

Example 2.4.4. Let H be a subgroup of a topological group G. Then the quotient space G/H
is a homogeneous space of G. Since by Remark.2.1.3, the operation is de�ned as

ψ(s, tH) = stH for all s ∈ G, tH ∈ G/H.

Proposition 2.4.9. Let X be a homogeneous space of a topological group G. Let x in X and let
H be an isotropy group of G at x. Consider the canonical projection κ from G onto the quotient
group G/H. If s and t are two elements in G such that

κ(s) = κ(t),

then sx=tx.
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Proof. We have s−1t = h ∈ H. So that tx = shx = sx.

Conversely, if sx = tx, then s−1tx = x. That is, s−1t ∈ H. So s and t are in the same class,
i.e., sH = tH. This allows us to de�ne an application g : G/H → X by g(κ(s)) = sx.

Proposition 2.4.10. Let X be a homogeneous space of a topological group G and let H be an
isotropy group of G at a point x ∈ X. Then the map g : G/H → X such that g(κ(s)) = sx is
bijective and continuous.

Proof. Since X is a homogeneous space of G, it follows that G operates transitively in X. Thus,
g is clearly surjective. Given below is a commutative diagram showing the continuity of g

G

G/H X

f
κ

g

where f de�ned by f(s) = sx for all x ∈ X is continuous. Let O be an open set in X, then
according to the diagram above, we obtain

κ−1(g−1(O)) = f−1(O).

Therefore, f−1(O) is open and so is g−1(O) in G/H. Hence, g is continuous.

2.5 Product Groups

Let us recall that the notion of product topology has been introduced in Sec.1.2. Now let
{Gi}i∈I be a family of topological groups and let G =

∏
i∈I Gi with the projections de�ned as

ρi : G → Gi. G has a natural group structure obtained by multiplying elements of G, i.e., if
x, y ∈ G, then the product of x and y is xy = (xiyi)i∈I . In the following we show that the group
G together with the product topology is a topological group. Whatever the group operation is
de�ned in G, the following diagrams are commutative for each i ∈ I.

G G

Gi Gi

φ

ρi ρi

φi

G × G G

Gi × Gi Gi

ψ

ρi×ρi ρi

ψi

(2.5)

Since ρi, φi and ψi are continuous for each i ∈ I, then so are φi ◦ ρi and ψi ◦ (ρi × ρi). By
commutativity of (2.5), ρi ◦ φ and ρi ◦ ψ are continuous and by Prop.1.2.12, φ and ψ are
continuous. Consequently, G is a topological group.

De�nition 2.5.1 (Topological Product Group). The product space G =
∏

i∈I Gi de�ned above
is a topological product group provided that G has a natural group structure obtained by
multiplying its elements and both ψ and φ are continuous.

Next, as a result of the Prop.1.2.13 (i.e., the product of open surjections is again an open
surjection), we introduce the following.

Corollary 2.5.1. Let {Gi}i∈I be a family of topological groups and let Ni be a normal subgroup
of Gi for each i. Let G =

∏
i∈I Gi and N =

∏
i∈I Ni. Then,

G
N
∼=
∏
i∈I

Gi
Ni

in the sense of being topologically isomorphic.
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Proof. Let κi : Gi → Gi/Ni, i ∈ I, be the canonical projections. According to Prop.2.4.5, it
su�ces to show that the map

f : G →
∏
i∈I

Gi
Ni

x 7→ (κi(x))

is an open continuous epimorphism with kerf = N . Indeed, as each κi is an open surjection,
then by Prop.1.2.13 f is an open surjection. In addtion, f is a group homomorphism since for
x, y ∈ G,

f(xy) = (κi(xy)) = (κi(x)κi(y)) = (κi(x))(κi(y)) = f(x)f(y).

Consider now the diagram
G

∏
i∈I

Gi
Ni

Gi
Ni

ρi◦ff

ρi

and note that ρi ◦ f = κi ◦ ρi. Since κi ◦ ρi is continuous, by Prop.1.2.13 so is f .
Finally, it is clear that kerf = N since

(κi(xi)) = Ni for each i⇐⇒ xi ∈ Ni for all i ∈ I ⇐⇒ x ∈ N

and the claim follows.

Example 2.5.1. The n-torus Tn, de�ned as Tn = S1 × · · · × S1︸ ︷︷ ︸
n-times

is a topological group, and by

Cor.2.5.1, it is topologically isomorphic to Rn/Zn.

2.6 Separation Axioms

In this section, we discuss separation axioms on topological groups and explore equivalences
between them.

Proposition 2.6.1. Every topological group is regular.

Proof. Let G be a topological group. Firstly, we show that if C is a closed subset with e /∈ C,
then there are two open subsets O and U separating C and e. As C is closed, its complement
is an open neighbourhood of e. By Prop.2.2.2 (P8), there is a neighbourhood O of e such that
O−1O is a subset of G \ C. Moreover,

O−1O ⊆ G \ C ⇐⇒ x−1y /∈ C ∀x, y ∈ O
⇐⇒ y /∈ xC ∀x, y ∈ O
⇐⇒ O ∩OC = ∅.

Since O is open, so is OC by Prop.2.1.3, and we have C ⊆ OC with e ∈ O and OC ∩ O = ∅.
Therefore O and OC separate e and C.

Finally, if C is closed with x /∈ C, then x−1C is a closed subset such that e /∈ x−1C, so
there are open susets O and U separating x−1C and e. By Prop.2.1.3, xO and xU are two open
subsets separating C and x. Hence, G is regular (i.e., a T3 space).

Proposition 2.6.2. Every topological group is completely regular.

Proposition 2.6.3. For any topological groups, the separation axioms T0, T1, T2 and T3 are
equivalent.
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Proof. Let G be any topological group. By Prop.2.6.1 and since a T3 space is equivalent to a
T1 space, it su�ces to show that a T0 topological group is T1. Suppose that G is a T0 and let
x 6= y ∈ G. Without loss of generality, assume that O is an open subset in which x ∈ O but
y /∈ O. We have G \ O is a closed subset with x /∈ G \ O and by regularity there are two open
subsets U1 and U2 separating G \ O and x. Thus we can say that y ∈ G \ O ⊆ U1 and x ∈ U2

with U1 ∩ U2 = ∅. Hence G is Hausdor� (or T2) and consequently T1.

Proposition 2.6.4. Let G be a topological group and B be a family of neighborhoods of e. Then
G is a Hausdor� space if and only if ∩β∈Bβ = {e}.

Proof. Suppose that G is a Hausdor� space. Then for any point x 6= e in G, there are disjoint
neighborhoods of x and e. Hence, there is β ∈ B that does not contain x. Thus, ∩β∈Bβ does
not contain x also. Therefore, ∩β∈Bβ = {e}

Conversely, assume that ∩β∈Bβ = {e} and let x and y be two distinct points in G. Then
x−1y is di�erent from e, so there is β ∈ B such that x−1y /∈ β. Thus, using Prop.2.2.2 (P9),
there is β0 ∈ B such that β0β

−1
0 ⊂ β. Hence xβ0 ∩ yβ0 = ∅. If not, pick a point z in common,

then we get x−1 ∈ β0z−1 and y ∈ zβ−10 such that

x−1y ∈ β0β−10 ⊂ β,

which is a contradiction. Therefore, G is a Hausdor� space.

The following proposition gives some equivalent characterizations of the Hausdor� property
for topological groups. The statements (i) and (ii) are equivalent for any topological space
while the statements (i), (iii), (iv) and (v) are equivalent for any topological group.

Proposition 2.6.5. Let G1 be a topological group and B a neighbourhood base of e. Then the
following statements are equivalent

(i) G1 is Hausdor�,

(ii) the diagonal map d : G1 → G1 × G1 given by x 7→ (x, x) is a closed map,

(iii) if G2 is a topological group and f : G2 → G1 a topological homomorphism, then ker f is a
closed subgroup of G2,

(iv) {e} is a closed subset of G1,

(v)
⋂
β∈B β = {e}.

Proof.
(i)⇒(ii) Suppose that G1 is a Hausdor� space and consider C a closed subset of G1. If (x, y) /∈
d(C), then either x is di�erent from y or equal. When x 6= y, there exist disjoint open subsets
O and U such that x ∈ O and y ∈ U . Thus, O × U is an open neighborhood of (x, y) and we
have

(O × U) ∩ d(C) = {(z, z) : z ∈ C and z ∈ O ∩ U} = ∅.

Otherwise, if x = y, since (x, x) /∈ d(C), we get x /∈ C. C being closed, then there is an open
subset O of G1 such that x ∈ O with both O and C are disjoint. Further, O × O is an open
neighborhood of (x, x) and with (O ×O) ∩ d(C) = ∅, we get d(C) closed in G1 × G1.
(ii)⇒(iii) Assume that the diagonal map d : G1 → G1×G1 given by x 7→ (x, x) is a closed map.
Let df : G2 → G1 × G1 be de�ned by x 7→ (f(x), e) where f is continuous, so is df . Since d(G1)
is closed in G1 × G1, then by the continuity of df

d−1f (d(G1)) = {x ∈ G2 : f(x) = e} = kerf
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is closed.
(iii)⇒(iv) Take in particular G2 = G1 and f the identity map id : G1 → G1. It is clear that id is
a topological homomorphism. Hence by (iii), ker id = {e} is closed.
(iv)⇒(v) Assume that {e} is a closed subset of G1 and let x ∈ G1 \ {e}. By homogeneity of G1,
{x} is a closed and then there is β ∈ B in which x /∈ β. Thus x /∈

⋂
β∈B β and consequently⋂

β∈B β = {e}.
(v)⇒(i) See the proposition above.

Proposition 2.6.6. Let {Gi}i∈I be a family of topological groups. Then
∏

i∈I Gi is Hausdor� if
and only if Gi is Hausdor� for each i ∈ I.

Proof. The result follows immediately from Prop.1.2.8.

Example 2.6.1.

1. As R is Hausdor�, so are Rn and all its subgroups for each n ∈ N. Also, Cn is Hausdor�
since it is homeomorphic to R2n.

2. Both GLn(R) and SLn(R) are Hausdor� as subsets of the Hausdor� space Rn2
.

One can combine the preceding equivalences in one result as below.

Theorem 2.6.1. Let G be a topological group. Then the following statements are equivalent.

(i) G is T0,

(ii) G is T1,

(iii) G is a Hausdor� space,

(iv) G is a regular space,

(v) G is a completely regular space,

(vi)
⋂
β∈B β = {e} where B is a neighborhood base of e.

Remark 2.6.1.

• Any topological group satis�es the theorem above, we may call it a topological Haus-
dor� group or Hausdor� group.

• One can wonder whether a Hausdor� group is normal (i.e., every toplogical group is a T5
space), however, this is not true in general. Indeed, for any completely regular space, we
enable to construct a Hausdor� group which de�nes a closed subgroup. But any closed
subspace in a normal space is normal (see Prop.1.3.3(iii)). Thus, any Hausdor� group
is normal and then it is completely regular which is impossible in general (see Remark
1.3.1).

Proposition 2.6.7. Let G be a topological group. Then the following subgroups are closed.

(i) The isotropy group of G at a point x ∈ X whenever X is a Hausdor� space.

(ii) The centre Z(G) and any discrete subgroup whenever G is a Hausdor� group.
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Proof.
(i) De�ne a map f : G → X by s 7→ sx, then f is clearly continuous. Therefore, H = f−1({x})
is closed since {x} is closed in the Hausdor� space X.
(ii) Let a ∈ Z(G). We show that a ∈ Z(G). Otherwise, if a /∈ Z(G) then there is x ∈ G
such that a 6= x−1ax. Put b = x−1ax and since G is Hausdor� and so is regular, then there
exist neighborhoods U and V of a and b, respectively, such that their closures are disjoint. Set
O = Z(G) ∩ U and as a ∈ Z(G), so it is clear that a ∈ O. Therefore,

b = x−1ax ∈ x−1Ox = x−1Ox = O ⊂ U

as long as Z(G) is a normal subgroup, a contradiction since b /∈ U . Hence, a ∈ Z(G) and so
Z(G) is closed.

On the other hand, we show that a discrete subgroup H is closed. Indeed, as G is regular by
Prop.2.6.1, there is a closed neighborhood U of e such that U ∩H = {e}. G being Hausdor�,
then {e} is closed. Hence, U ∩ H is closed and consequently by Prop.2.3.4, H is closed as
well.

In what follows, we discuss some results due to separation axioms on quotient groups.

Proposition 2.6.8. Let G/H be the quotient group of a topological group G by a subgroup H.
Then

(i) if G is Hausdor� so is H,

(ii) G/H is Hausdor� if and only if H is closed,

(iii) if H and G/H are Hausdor�, then so is G.

Proof.
(i) Let f : H → G be the inclusion map which is injective. Hence the result follows Prop.1.2.10.
(ii) We know that the identity element of G/H is H. Thus by Prop.2.6.5,

G/H Hausdor� ⇐⇒ H closed in G/H
⇐⇒ κ−1(H) closed in G.

Further, κ−1(H) = {x ∈ G : xH = H} = H. Thus H is closed.
(iii) If H is Hausdor�, then {e} is closed in H. So there is a closed subset C of G such that
H ∩ C = {e}. Also if G/H is Hausdor�, then by (ii) H is closed in G and thus H ∩ C = {e} is
closed in G. Hence, G is Hausdor�.

In consequence, if H is closed and Hausdor�, then by (ii) G/H is Hausdor� and thus by
(iii) G is Hausdor�.

Example 2.6.2.

1. The unit circle S1 = R/Z is Hausdor� since Z is closed in R. In other words, as S1 is a
subgroup of the Hausdor� group C∗, then S1 is Hausdor�.

2. As Q is not closed in R, the quotient R/Q is not a Hausdor� topological group.

Proposition 2.6.9. Let G be a topological group and H be a subgroup of G, then G/H is a T3
space (i.e., regular space).
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Proof. Let U be a basis element containing H in G/H. That is,

U = {xH : x ∈ β1} = κ(β1H)

where β1 is a basis element containing e in G. Thus, by Prop.2.2.2 (P8), there is β2 containing e
such that β−12 β2 ⊆ β1. We want to show that there is a neighborhood V of H such that V ⊆ U .
First we prove that β2H ⊆ β1H. Indeed, let x ∈ β2H, then β2x ∩ β2H 6= ∅. It follows that
there is h ∈ H and a, b ∈ β2 such that ax = bh. So, x = a−1bh ∈ β−12 β2H ⊆ β1H. Set

V = {yH : y ∈ β2} = κ(β2H).

Now, if yH ∈ V , then yH ∈ β2H and so it is in β2H. Let yH ∈ V . We have two cases y ∈ β2
or y /∈ β2. If y ∈ β2, then yH ∈ V and so

yH ∈ β2H ⊆ β2H ⊆ β1H.

We also have
{yH} = κ(yH) ⊆ κ(β1H) = U.

This implies that yH ∈ U . Hence, V ⊆ U . If y /∈ β2, then there is β3 a basis element containing
e such that y ∈ β3. So {yH} is an open subset in G/H containing yH. But

{yH} ∩ V = ∅

since y /∈ β2. Hence, yH /∈ V , a contradition. Therefore, V ⊆ U . According to Prop.1.3.1 (i),
G/H is a T3 space.

Proposition 2.6.10. A topological quotient group is a T4 space (i.e., completely regular space).

Proof. See the Theorem.2.6.1 with the preceding proposition.

2.7 Metrization of Groups

In this section, our aim is to present a proof of the Birkho�-Kakutani theorem which states
that a topological group is metrizable if and only if it is a �rst countable T0 space. Again, we
are going to interpret why the Sorgenfrey line S cannot be a topological group while it is a
homogeneous space. More precisely, we show that S does not admit any group stucture making
it a topological group.

Remark 2.7.1. Note that by Prop.2.2.1, a topological group is �rst countable if and only if
the identity element has a countable neighborhood base.

Lemma 2.7.1. If G is a �rst countable topological group, then there is a neighborhood base
{βn}n∈N of e such that each βn is symmetric and βn+1βn+1βn+1 ⊆ βn for all n ∈ N.

Proof. Let {On}n∈N be a neighborhood base of e. Set Un = On ∩ O−1n and we can get a
neighborhood base {Un}n∈N of e consisting of all symmetric neighborhoods.

Now take i1 = 1. As G is a topological space, according to the Prop.2.2.2, there is j > i1
for which UjUj ⊆ Ui1 . So let i2 > i1 for which Ui2Ui2 ⊆ Uj, we have

Ui2Ui2Ui2 ⊆ Ui2Uj ⊆ UjUj ⊆ Ui1 .

Again we can �nd an i3 > i2 such that Ui3Ui3Ui3 ⊆ Ui2 . Continuing in this manner, we construct
a strictly increasing sequence (in)n∈N for which Uin+1Uin+1Uin+1 ⊆ Uin for all n ∈ N.

Set βn = Uin for all n ∈ N, we obtain a neighborhood base {βn}n∈N of e (as in is strictly
increasing) consisting of all symmetric neighborhoods such that βn+1βn+1βn+1 ⊆ βn for all
n ∈ N.
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Lemma 2.7.2. A topological group is pseudometrizable if and only if it is �rst countable.

Proof. Let G be a topological group together with a topology τ . Suppose that G is pseu-
dometrizable. This implication is immediate. Indeed, if G is a pseudometrizable topological
group, then there is a pseudometric d on G generating τ . For each x ∈ G, {β(x, 1/n)}n∈N is a
countable neighborhood base of x and so G is �rst countable.

Conversely, suppose that G is �rst countable. By Lemma 2.7.1, there is a neighborhood
base {βn}n∈N of e consisting of all symmetric neighborhoods such that βn+1βn+1βn+1 ⊆ βn for
all n ∈ N.

Step 1 : (De�ning a symmetric function f). Put β0 = G and de�ne f : G × G → [0,∞) by

f(x, y) =

{
0, if x−1y ∈

⋂
n∈N βn

2−n, if x−1y ∈ βn \ βn+1.

In other words, f(x, y) = 2−n if n is the greatest non-negative integer in which x−1y ∈ βn
and f(x, y) = 0 if n does not exist. Further, f(x, x) = 0 and as each βn is symmetric,
x−1y ∈ βn if and only if (x−1y)−1 = y−1x ∈ βn. Hence, f is symmetric as f(x, y) = f(y, x).

Step 2 : (De�ning a left-invariant pseudometric d generating τ). Set

Fx,y = {f(x1, x2) + · · ·+ f(xk, xk+1) : k ∈ N, x1 = x, xk+1 = y} (2.6)

and de�ne the function
d : G × G → [0,∞)

(x, y) 7→ inf Fx,y.
d is a pseudometric generating τ . Indeed, for any x, y, z ∈ G, the �rst property (d(x, y) ≥ 0
and d(x, x) = 0) is clear according to the de�nition of d. Since f is symmetric, so is d. For
the last condition, i.e., the triangle inquality, we can see that from (2.6), Fx,y+Fy,z ⊆ Fx,z.
Therefore, we get

d(x, z) = inf Fx,z ≤ inf(Fx,y + Fy,z) = inf Fx,y + inf Fy,z = d(x, y) + d(y, z).

Hence d is a pseudometric. Clearly, d is left-invariant (i.e., d(x, y) = d(ax, ay)). Because
for any a ∈ G, x−1y = (ax)−1(ay), so that f is left-invariant and then so is d.

Step 3 : (Showing that G is a pseudometrizable ). We prove now that G is pseudometrizable, i.e.,
there is a topology τd generated by d such that τ = τd. Since d is left-invariant,

B(x, r) = {y ∈ G : d(x, y) < r} = x{x−1y ∈ G : d(e, x−1y) < r} = xB(e, r).

So we just have to check the neighborhoods at the identity e. We show that τ is �ner than
τd (i.e., τ ⊆ τd). Indeed, �x r > 0 and let n be a non-negative integer in which 2−n < r. Let
x ∈ βn+1, then f(e, x) ≤ 2−n−1 and by the de�nition of d, d(e, x) ≤ f(e, x) ≤ 2−n−1 ≤ 2−n.
Thus x ∈ B(e, 2−n) and so βn+1 ⊆ B(e, 2−n) ⊆ B(e, r). On the other hand, we show that
τd is �ner than τ . Indeed, for each n ∈ N there is r > 0 in which B(e, r) ⊆ βn. Let
x ∈ B(e, 2−n) and as d(e, x) < 2−n, we can �nd k ∈ N and x1, · · · , xk+1 ∈ G with x1 = e
and xk+1 = x for which

d(e, x) ≤ f(x1, x2) + · · ·+ f(xk, xk+1) < 2−n.

Note that as x−11 xk+1 = x, it remains to show that

x−11 xk+1 ∈ βn (2.7)

by using induction on k.
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• When k = 1, f(x1, x2) < 2−n, so either f(x1, x2) = 0 or f(x1, x2) = 2−j for some
j ≥ n. However, x−11 x2 ∈ βj ⊆ βn. So it holds for k = 1.

• For k ≥ 2, assume that if

f(y1, y2) + · · ·+ f(yp, yp+1) < 2−n,

then y−11 yp+1 ∈ βn for any y1, · · · , yp+1 ∈ G with p < k.
Suppose that

f(x1, x2) + · · ·+ f(xk, xk+1) < 2−n. (2.8)

Clearly, for any i, f(xi, xi+1) < 2−n. So f(xi, xi+1) ≤ 2−n−1 and thus, x−1i xi+1 ∈
βn+1. If f(x1, x2) ≥ 2−n−1, then f(x1, x2) = 2−n−1 and x−11 x2 ∈ βn. Therefore, to
hold (2.8), we have

f(x2, x3) + · · ·+ f(xk, xk+1) < 2−n−1.

It follows that by inductive hypothesis, x−12 xk+1 ∈ βn+1. Thus,

x−11 xk+1 = (x−11 x2)(x
−1
2 xk+1) ∈ βn+1βn+1 ⊆ βn.

Finally, suppose that f(x1, x2) < 2−n−1 and let 1 ≤ i ≤ k be the greatest integer for
which f(x1, x2) + · · ·+ f(xi, xi+1) < 2−n−1. We consider two cases.

� When i = k or i = k − 1, then

f(x1, x2) + · · ·+ f(xk−1, xk) < 2−n−1

and by inductive assumption, x−11 xk ∈ βn+1. Further, x
−1
k xk+1 ∈ βn+1, so that

x−11 xk+1 = (x−11 xk)(x
−1
k xk+1) ∈ βn+1βn+1 ⊆ βn.

� When i < k − 1, by the choice of i, we have

f(x1, x2) + · · ·+ f(xi+1, xi+2) ≥ 2−n−1

and from (2.8), we get

f(xi+2, xi+3) + · · ·+ f(xk, xk+1) < 2−n−1.

Thus,
x−11 xi+1, x

−1
i+1xi+2, x

−1
i+2xk+1 ∈ βn+1.

Hence,

x−11 xk+1 = (x−11 xi+1)(x
−1
i+1xi+2)(x

−1
i+2xk+1) ∈ βn+1βn+1βn+1 ⊆ βn.

Therefore the theorem is complete.

Theorem 2.7.1 (Birkho�-Kakutani Theorem). A topological group is metrizable if and only if
it is a �rst countable T0 space. In this case, any topological group admits a left-invariant metric
generating its topology.

Proof. Let G be a topological group. Suppose that G is metrizable. Since every metrizable
topological space is a T0 space and �rst countable, the �rst implication holds immediately.

Conversely, assume that G is a T0 space and �rst countable. By Lemma 2.7.2, G is pseu-
dometric and if it is also T0, it must be metrizable by Prop.1.4.2. Finally, whenever G is
metrizable, it admits a left-invariant metric as the pseudometric d (G is T0, so d is a metric) is
left-invariant and generates the topology of G (see the proof of Lemma 2.7.2).
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Next, as we said earlier, we are going to see that the Sorgenfrey line S does not form a
topological group whereas it is a homogeneous space.

We may �rst recall the structure and properties of S. As we know the Sorgenfrey line is
the real line R equipped with the lower limit topology τl. In Ex.2.4.1, we have shown that S
together with addition is not a topological group since the inversion map is discontinuous. Our
goal now is to prove that for any operation de�nes on S, S is not a topological group. In the
following remark we argue that it is separable and �rst countable, but not second countable.

Remark 2.7.2. The subset Q of S is countable and dense since for any interval [a, b), by
density theorem, we can �nd a rational lying on it. Thus, S is separable. Further, it is �rst
countable as {[x, x + 1/n) : n ∈ N} is a neighborhood base for each x ∈ S. On the other
hand, the second countability axiom fails for S. Indeed, suppose by contradiction that B is a
countable base for the topology on S. For any x ∈ S, the interval [x, x+1) is open and contains
x. Choose βx ∈ B in which x ∈ βx ⊆ [x, x + 1). Now for x 6= y and without loss generality we
consider x < y. The subsets βx and βy are distinct as x /∈ [y, y + 1) ⊇ βy. Therefore, the map

S → B
x 7→ βx

is injective, a contradiction since card(S) > card(B). Hence, S is separable and �rst countable,
but not second countable.

Theorem 2.7.2. The Sorgenfrey line S does not admit any group structure making it a topo-
logical group.

Proof. On the contrary, assume that S is a topological group. As S is T0 and �rst countable
(see the preceding remark), by Theorem 2.7.1, S is metrizable. On the other hand, as S is
separable, by Theorem 1.4.1, S is second countable, a contradiction. Hence S cannot be a
topological group.
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Chapter 3

Connectedness and Compactness of

Topological Groups

In this chapter, we discuss many ideas concerning the connectedness and the compactness on
groups. The �rst section is devoted to connected groups while the second concerns compact
and locally compact groups.

3.1 Connected Groups

Proposition 3.1.1. A connected topological group has neither proper open subgroups nor proper
closed subgroups of �nite index.

Proof. According to Prop.2.3.2, note that every open subgroup is closed and every closed sub-
group of �nite index is open.

Proposition 3.1.2. Let C be a connected group and choose O a non-empty open subset of C.
Then C is the group generated by O.

Proof. Let C be a connected group and O a non-empty open subset of C. As 〈O〉 is a subgroup
of C containing a non-empty open subset, by Prop.2.3.2, it is an open subgroup. By Prop.3.1.1,
〈O〉 is not a proper subgroup of C. Thus, 〈O〉 = C.

In fact, any connected topological group can be also generated by a neighborhood of its
identity.

Proposition 3.1.3. For any neighborhood U of e in a connected group C, we have C =
⋃
n≥1 U

n.

Proof. In view of Prop.2.2.7, we may assume that U is a symmetric neighborhood of e. By
Lemma 2.3.1,

⋃
n≥1 U

n is clopen. C being connected, then the only clopen sets are empty set
and the entire set. Hence, C =

⋃
n≥1 U

n.

Remark 3.1.1. The converse of above the proposition does not hold. Indeed, consider the
additive group of rationals Q endowed with the subspace topology from the usual topology in
R. Q is not connected, but every symmetric neighborhood U of 0 in Q being the trace of a
symmetric neighborhood of 0 in R that generates R, generates Q.

Example 3.1.1. The subgroup of all positive reals R+ of the multiplicative group R∗ is con-
nected. Thus, any open interval (a, b) of R+ generates R+, i.e., given any x ∈ R+, we can write
x as a product of �nitely many elements of (a, b) and its inverses.

The following result is an application of Prop.1.5.5 in topological groups.

51



Proposition 3.1.4. Let {Ci}i∈I be a family of topological groups and let N be a normal subgroup
of a topological group C. Then

(i) if C is connected, then so is C/N ,

(ii) the product space of {Ci}i∈I is connected if and only if Ci is connected for all i ∈ I,

(iii) if N and C/N are connected then so is C.

Proof.
(i) holds since the canonical projection is a continuous surject and (ii) follows immediately form
Prop.1.5.5.
(iii) Suppose on the contrary that C is disconnected, i.e., there is a separation (O1, O2) of C.
Assume that N and C/N are connected. Then without loss of generality, let e ∈ O1. If there is
x ∈ C the coset xN is not contained in O1 nor in O2, then xN ∩O1 6= ∅ and xN ∩O2 6= ∅ and
they are disjoint. Thus (xN ∩O1, xN ∩O2) forms a separation of xN which must be connected
as it is homeomorphic to N . Therefore for all x ∈ C, xN is contained either in O1 or in O2, so
we can write

O1 =
⋃
{xN : x ∈ O1} and O2 =

⋃
{xN : x ∈ O2}.

Since κ is an open map (see Prop.2.4.1), both κ(O1) and κ(O2) are open in C/N . More-
over, κ(O1) = {xN : x ∈ O1} and κ(O2) = {xN : x ∈ O2}, so that they are disjoint and
κ(O1) ∪ κ(O2) = κ(O1 ∪ O2) = C/N . It follows that (κ(O1), κ(O2)) is a separation of C/N , a
contradiction. Thus C is connected.

Theorem 3.1.1. If G is a topological group and N the component of e, then N is a closed and
connected normal subgroup of G and for any x ∈ G, xN is the component of x.

Proof. Let G be a topological group and N the component of e. By Prop.1.5.7, it follows imme-
diately that N is closed and connected. We show that N is a normal subgroup of G. Let n ∈ N
and x ∈ G, then both n−1N and x−1Nx are homeomorphic to N , so they are connected. Since
e ∈ n−1N , n−1N ⊆ N and hence N is a subgroup of G. Likewise, e ∈ x−1Nx, so x−1Nx ⊆ N .
Thus, N is a normal subgroup of G.

Finally, as the left translation Lx : G → G is a homeomorphism, xN is a connected compo-
nent of G of x for any x ∈ G.

Example 3.1.2.

1. Any interval of reals is connected.

2. As R =
⋃
n∈N(−n, n), by Prop.1.5.3 and 1., R is a connected group.

3. The additive group R is connected and its subgroup Z is normal, so S1 ∼= R/Z is connected.
Hence, the n-torus Tn is also connected for any n ∈ N.

4. The multiplicative group R∗ is not connected since O1 = (−∞, 0) and O2 = (0,∞) form a
separation of R∗. In addition O1 and O2 are clearly connected, so they are the connected
component of R∗.

5. The general linear group GLn(C) of n × n non-singular matrices with enteries in C is
connected, but GLn(R) is not. Indeed, GLn(R) is homeomorphic to Rn2 \ ker(det) where
det : Rn2 → R. Clearly, the inverse image of two open subsets of R, which was given in
4., under det are open subsets of Rn2

. We also have O1 ∪ O2 = Rn2 \ ker(det) and they
are disjoint, thus GLn(R) is disconnected. However, if n = 1, R \ ker(det) = R∗, so the
result follows from 4.
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Proposition 3.1.5. Let G be a topological group. Then

(i) If G is connected, then the connected component of e is the entire group G.

(ii) If the connected component of e is {e}, then G is totally disconnected.

Proof.
(i) Since the connected component of e is the largest connected subspace containing e, so it is
obviously the whole G.
(ii) By de�nition of a totally disconnected space and Theorem 3.1.1.

Proposition 3.1.6. Let N be normal discrete subgroup of a connected group C, then N is a
subgroup of the center of C.

Proof. By Prop.2.6.7, N is closed. Let x ∈ N , then there is a neighborhood U of x such that
U ∩N = {x}. Since we can write e−1xe = x, then there exists a neighborhood V of e such that
V −1xV ⊂ U . Let v ∈ V , then v−1xv ∈ U and v−1xv ∈ N because x ∈ N . Thus, v−1xv ∈ U∩N ,
i.e., v−1xv = x. Hence, x ∈ ZC(V ). Let y ∈ C, then by Theorem 3.1.3, C =

⋃
n≥1 V

n so that
y = v1 · · · vk, vi ∈ V . Thus,

y−1xy = v−1k · · · v
−1
1 xv1 · · · vk = x

since x ∈ ZC(V ). Therefore, x ∈ Z(C).

Remark 3.1.2. We can see easily that N is closed in the centre of C whenever C is a Hausdor�
group. Indeed, by Prop.2.6.7, N is closed in C and hence closed in Z(C) since N = N ∩ Z(C).

Proposition 3.1.7. Let G be a Hausdor� group such that for all neighborhoods U of e, there
is an open subgroup H of G contained in U . Then G is totally disconnected.

Proof. Since H is a non-empty (e ∈ H) clopen and G = H ∪ (G \H), then the component of
e is in H since e ∈ H. This compopent is in the intersection of all neighborhoods of e which
is {e} since G is Hausdor� according to the Theorem 2.6.1. So the compopent of e is just {e}.
Therefore, G is totally disconnected.

3.2 Compact and Locally Compact Groups

Proposition 3.2.1. If K and C are compact subsets of a topological group G and x ∈ G, then
the sets xK, Kx, KC and K−1 are compact.

Proof. Since the multiplication ψ and inversion φ are continuous, it follows that KC and K−1.
Further, as Rx and Lx are homeomorphism, we obtain xK and Kx are compact.

Proposition 3.2.2. Let G be a topological group. Let C be a compact subset of G and U an open
subset of G containing C. Then there exists an open neighborhood N of e such that NC ⊆ U .

Proof. Since any point x ∈ C is an interior point of U , by Prop.2.2.1, there is a neighborhood
Mx base of e such that Mxx ⊆ U and from Prop.2.2.2 (P3), there exists a neighborhood Nx of
e such that NxNx ⊆ Mx. Because of x ∈ Nxx, the family {Nxx}x∈C is an open cover of C. C
being compact, then there is a �nite subcover of C, i.e., C ⊆

⋃n
i=1(Nixi) where N1, N2, · · · , Nn

are corresponding to x1, x2, · · · , xn, respectively. Set N =
⋂n
i=1Ni, then N is a neighborhood

of e. Thus,

NC ⊆ N
n⋃
i=1

(Nixi) =
n⋃
i=1

(NNixi).

53



Also, as
NNixi ⊆ NiNixi ⊆Mixi ⊆ U

for all i = 1, 2, · · · , n, it follows that NC ⊆ U where M1,M2, · · · ,Mn are corresponding to
x1, x2, · · · , xn, respectively.

Proposition 3.2.3. Every open subgroup of a compact group has a �nite index.

Proof. Let H be an open subgroup of a compact topological group G. Then {xH}x∈G is an open
cover of G, and as cosets form a partition of G/H so any pair is either equal or disjoint. Thus,
G has no proper subcovers. Hence, {xH}x∈G must be �nite and so H has a �nite index.

Proposition 3.2.4. A topological group is locally compact if and only if there exists a compact
neighborhood of the identity.

Proof. Assume that G is a locally compact group, then there is a compact neighborhood of e.
Conversely, assume that U is a compact neighborhood of e. Then as G is regular by Prop.2.6.1,
there is a neighborhood V of e such that V ⊂ U . Thus, V is compact since V is closed in U
(see Prop.1.5.8). Now, for any x ∈ G, since the right translation map Rx is a homeomorphism,
then xV is a compact neighborhood of x and in view of Prop.2.2.5, xV = xV is a compact
neighborhood of x. As consequence, G is locally compact.

Proposition 3.2.5. Let {Gi}i∈I be a family of topological groups and let G =
∏

i∈I Gi. Then

(i) G is compact if and only if each Gi is compact.

(ii) If all but a �nite number of Gi are compact and all Gi are locally compact, then G is locally
compact.

Proof.
(i) Clearly from Theorem 1.5.2, the claim follows.
(ii) Assume that each Gj is locally compact and there are only �nite number of Gji which are
not compact, i.e.,

Gji is

{
not compact, for 1 ≤ i ≤ n

compact, otherwise.

By Prop.1.5.14, we get that
∏

1≤i≤n Gji is locally compact and by (i),
∏

i 6=k Gji is compact for
k = 1, 2, · · · , n. Since

G =
∏

1≤i≤n

Gji ×
∏
i 6=k

Gji

is a product of two locally compact groups with k = 1, 2, · · · , n, then G is locally compact.

Example 3.2.1.

1. The topological group S1 is compact. Hence, the n-torus Tn is compact too according to
Prop.3.2.5.

2. Let On(R) be the orthogonal group de�ned in Ex.2.3.1. We have shown that On is closed
in GLn(R). On the other hand, whenever i = j, we have

∑n
k=1 a

2
ki = 1, so that |aki| ≤ 1

for all k, i = 1, 2, · · · , n. It follows that On(R) is bounded in Rn2
and thus it is compact.

Proposition 3.2.6. Let H be a subgroup (not necessarily normal ) of a topological group G.
Then

(i) if G is compact, then so is G/H,
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(ii) if G is locally compact, then so is G/H,

(iii) if both H and G/H are compact, then so is G,

(iv) if both H and G/H are locally compact, then so is G.

Proof.
(i) As the canonical projection κ : G → G/H is continuous and surjective, the result follows
Prop.1.5.8 (ii).
(ii) Let U be a compact neighborhood of e since G is locally compact. As G is regular, there
is a neighborhood V of e such that V ⊆ U . We have V is compact since it is closed in U .
As the canonical projection κ is a homeomorphism, it follows that κ(V ) is a neighborhood of
H = κ(e). Further, κ(V ) is compact in G/H which is regular. Thus, κ(V ) is closed. On the
other hand,

V ⊆ V ⇒ κ(V ) ⊆ κ(V )

⇒ κ(V ) ⊆ κ(V ).

We also have κ(V ) ⊆ κ(V ) as κ is continuous. Therefore, κ(V ) = κ(V ) is a compact neigh-
borhood of H. Hence, G/H is locally compact. In addition, employing the map Ts de�ned in
Prop.2.4.3 gives for any arbitrary element in G/H has a compact neighborhood of it.
(iii) In this case, we assume that H is a normal subgroup of the topological group G such
that H and G/H are both compact. Let {Ui}i∈I be an open cover of G. For any x ∈ G, the
coset xH is compact and it is covered by {Ui}i∈I . Thus, there is a �nite subcovering of xH,
i.e., xH ⊆

⋃
i∈Jx Ui where Jx ⊆ I. Since

⋃
i∈Jx Ui is open, then by Prop.3.2.2, there exists a

neighborhood Nx of e such that
NxxH ⊆

⋃
i∈Jx

Ui.

On the other hand, as the canonical projection κ is open (see Prop.2.4.1) and since x ∈ NxxH,
the collection {κ(NxxH)}x∈G is an open cover of G/H. Therefore, there are x1, x2, · · · , xn ∈ G
such that

G/H =
n⋃
i=1

κ(NxixiH).

Remark that NxxH is a union of cosets. Hence,

κ−1(κ(NxxH)) = κ−1(κ(
⋃

y∈Nxx

yH)) =
⋃

y∈Nxx

κ−1(κ(yH)) =
⋃

y∈Nxx

yH = NxxH.

Thus,

G = κ−1(G/H) = κ−1(
⋃

y∈Nxx

κ(NxixiH)) =
⋃

y∈Nxx

κ−1κ(NxixiH) =
⋃

y∈Nxx

(NxixiH) ⊆
n⋃
i=1

⋃
j∈Jxi

Uj.

We deduce that G is compact.
(iv) One can �nd a compact neighborhood of the identity element of G, and then the locally
compactness of G follows.

Proposition 3.2.7. Let H be a closed subgroup of a topological group G. Then

(i) H is compact if G is,

(ii) H is locally compact if G is.
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Proof.
(i) As G is compact, by Prop.1.5.8 (i), the claim follows immediately.
(ii) Let x ∈ H, so x ∈ G. As G is locally compact, then there is a neighborhood U of x such
that U is compact. Thus V = U ∩H is a neighborhood of x in H. Further, we have V ⊂ U , and
so V ⊂ U . Hence, V is compact in U and then in G since it is closed in U which is compact.
This implies that V is compact in G. As V ⊂ H, then V ⊂ H because H is closed. Therefore,
V is compact in H, and then H is locally compact.

Lemma 3.2.1. Let H be a closed subset and C a compact subset of a topological group G such
that H ∩ C = ∅. Then there exists a neighborhoods β of e such that

(i) Hβ ∩ Cβ = ∅, and

(ii) βH ∩ βC = ∅.

Proof.
(i) It su�cies to show that there exists a neighborhood O of e such that HOO−1 ∩ C = ∅.
Indeed, for each neighborhood U of e, set

H(U) = HUU−1

which is clearly closed. Hence,

H(U) = H(U) =
⋂

V ∈U (e)

HUU−1V.

Indeed, pick x ∈
⋂
V ∈U (e)HUU

−1V . Then x ∈ HUU−1V for all V ∈ U (e). This implies that
xV −1 ⊂ HUU−1 and so that xV −1 ∩HUU−1 6= ∅ where xV −1 ∈ U (x). Thus, x ∈ H(U). On
the other hand, let x ∈ H(U) and V ∈ U (e). Then V −1 ∈ U (e) with

xV −1 ∩HUU−1 6= ∅.

Therefore, x ∈ HUU−1V and hence, x ∈
⋂
V ∈U (e)HUU

−1V since V is arbitrary. So the equality
holds. However,

H(U) =
⋂

V ∈U (e)

HUU−1V =
⋃

W∈U (e)

HW = H = H

since H is closed and where W = UU−1V . It follows that

H(U) ∩ C = H ∩ C = ∅.

In other words, C ⊂ G \ H(U) for each U and G \ H(U) is open. C being compact, so
{G \H(U)}U∈U (e) is an open covering of C which has a �nite subcovering {G/H(Ui)}ni=1 of C
such that H(Ui) ∩ C = ∅, for each i = 1, 2, · · · , n. Thus,

n⋂
i=1

H(Ui) ∩ C = ∅. (3.1)

Put O =
⋂n
i=1 Ui. We have

HOO−1 = H
n⋂
i=1

Ui

(
n⋂
i=1

Ui

)−1
= H

n⋂
i=1

Ui

n⋂
i=1

U−1i =
n⋂
i=1

HUiU
−1
i .
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By taking the closure in both sides in the equation above, we get

HOO−1 ⊂ HOO−1 = H(O) =

(
n⋂
i=1

HUiU
−1
i

)
⊂

n⋂
i=1

HUiU
−1
i =

n⋂
i=1

H(Ui),

that is,

HOO−1 ⊂
n⋂
i=1

H(Ui). (3.2)

It follows that HOO−1 ∩ C = ∅ by (3.1) and (3.2). Consequently, HO ∩ CO = ∅.
(ii) Likewise, we prove the existence of some neighborhood V of e satisfying V H ∩ V C = ∅.
Now let β = O ∩ V , then for this β, (i) and (ii) follow.

Proposition 3.2.8. Let H be a closed subset and C a compact subset of a topological group G,
then CH and HC are closed.

Proof. Let x ∈ G \HC. By Prop.2.1.3, H−1x is closed as H is. Note that H−1x ∩ C = ∅ since
x /∈ HC. Therefore, since C is compact, by Lemma 3.2.1, there is a neighborhood β of e such
that

H−1xβ ∩ Cβ = ∅.

That is, xββ−1 ∩HC = ∅. Hence, xββ−1 is a neighborhood of x such that xββ−1 ⊆ G \HC.
Hence, G \HC is open and so HC is closed. Analogously, CH is closed.

Remark 3.2.1. If C is not compact, then the above proposition is no longer valid. Indeed, for
instance, in the additive group R are equipped with the usual metric, Z and kZ, k irrational,
are both closed subgroups of R. However, Z + kZ is dense in R, so that it is not closed.

Proposition 3.2.9. Let N be a compact normal subgroup of a topological group G, then κ : G →
G/N is closed.

Proof. Let C be a closed subset of G. Then we show that the set

H = (G/N) \ κ(C) = {xN : x /∈ CN}

is open. Indeed, let xN ∈ H, then x /∈ CN . Since N is a compact subgroup, by Prop.3.2.8,
CN closed. Thus, there exists a neighborhood U of x such that U ∩ CN = ∅. As κ is an open
map, then κ(U) is a neighborhood of xN . It follows that

κ(U) = {yN : y ∈ U} = {yN : y /∈ CN} ⊆ H.

That is, we �nd an open neighborhood of xN contained in H. Since xN is arbitrary, we deduce
that H is open and consequently, κ(C) is closed. Thus, κ is a closed map, as desired.

Theorem 3.2.1. Let X be a homogeneous space of a topological group G. Suppose that X and
G are locally compact and have a countable base. Let H be the isotropy group of G at a point x,
then the map

g : G/H → X

which is de�ned in Prop.2.4.9, is a homeomorphism.

Proof. First we show that the map f : G → X de�ned as f(s) = sx is open. Indeed, let O be
an open set in G and let x ∈ f(O). Then there is s ∈ O such that x = f(s). Also, the map
de�ned by

t 7→ st−1t
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is continuous and se−1e = s ∈ O. So that there is a neighborhood U of e such that

sU
−1
U ⊂ O.

The collection {tU}t∈G forms an open cover of G and as G has a countable base, then there
exists a sequence {tn}n≥1 such that {tnU}n≥1 covers G as well. Therefore,

G =
⋃
n≥1

tnU =
⋃
n≥1

tnU.

If we set
Xn = f(tnU)

then we get
X = f(G) =

⋃
n≥1

Xn. (3.3)

Now for each n, tnU is compact and so its image under the continuous map f is compact, i.e.,
Xn is compact. However, X is a Hausdor� space since it is regular, so that Xn is closed for all
n. Hence, X is a countable union of closed sets and according to Lemma 1.5.2, there is n0 such
that Xn0 contains an open set W , i.e.,

W ⊂ Xn0 = f(tn0U) = tn0Ux.

So,
f(U) = Ux = t−1n0

f(tn0U).

Since the map x 7→ t−1n0
x is clearly a homeomorphism and that f(tn0U) contains an open set

W , then f(U) contains an open set S = t−1n0
W . Let y ∈ S, then y ∈ f(U) so that there is z ∈ U

such that y = f(z) = zx. Thus, f(s) = sz−1zx ∈ sz−1S. On the other hand, since sz−1S is
contained in sz−1f(U) = sz−1Ux and

sz−1U ⊂ sU
−1
U ⊂ O,

then sz−1S ⊆ Ox = f(O). We �nd an open set sz−1S containing f(s) which is in f(O). So f
is an open map. Finally, we show that g is an open map. Indeed, let U be an open set in G/H,
then

g(U) = f(κ−1(U))

which is clearly open. Consequently, g is a homeomorphism.

Proposition 3.2.10. Let G be a locally compact group and totally disconnected. Then for all
neighborhoods U of e, there is an open compact subgroup H such that H ⊂ U .

Proof. As G is totally disconnected, {e} is the connected component of e which is compact as
long as G is locally compact. Then by Prop.1.5.11, there is an open and compact neighborhood
O of e such that O ⊂ U . Let W = {w ∈ G : Ow ⊂ O}, then W is non-empty since e ∈ O. Let
H = W ∩W−1. We show that H is an open, compact subgroup. Indeed,

• let w ∈ W and x ∈ O, then xw ∈ O. Since O is open, there are neighborhoods Ux
and Vx of x and w, respectively, such that UxVx ⊂ O. We also have, O ⊂

⋃
x∈O Ux. O

being compact, then there is a �nite subcovering {Ux}x∈O of O, i.e., O ⊂
⋃n
i=1 Uxi . Let

V = ∩ni=1Vxi , then OV ⊂ O and so V ⊂ W . Therefore, W is open. Consequently, H is
open by Prop.2.3.2.
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• By de�nition of W , we can see that W ⊂ O. Indeed, let w ∈ W , then ew = w ∈ O. Since
O is compact and W is closed in O, then W is compact. Similarly, it is easy to prove
that W−1 is compact since it is closed in O. Therefore, H is compact.

• Finally, H is subgroup of G. Indeed, let h1, h2 ∈ H, h1 ∈ W and h−12 ∈ W . Hence,
O(h1h

−1
2 ) = (Oh1)h

−1
2 ⊂ O. We get that h1h

−1
2 ∈ H.

Proposition 3.2.11. Let G be a compact and disconnected group, then for all neighborhoods
U of e, there exists an open normal subgroup N of G such that N ⊂ U

Proof. By the proposition above, there is a compact open subgroupH of G such that e ∈ H ⊂ U .
Let N = ∩x∈Gx−1Hx, we show that N is a normal subgroup and open in G. Indeed,

• let y ∈ G, then y−1Ny = ∩x∈Gy−1x−1Hxy. Since the map x 7→ xy−1 is a homeomorphism,
we have y−1Ny = ∩x∈Gx−1Hx = N . It follows that N is a normal subgroup.

• We have x−1ex = e ∈ N for all x ∈ G. Therefore, there are neighborhoods Ux and Ox of
e and x, respectively, such that O−1x UxOx ⊂ H. G being compact and G = ∪x∈GOx, then
there is n ∈ N such that G = ∪ni=1Oxi . Now let U = ∩ni=1Uxi so U contains e and we get

x−1Ux ⊂ O−1xi UOxi ⊂ O−1xi UxiOxi ⊂ H for all x ∈ G.

So that U ⊂ N and thus Uxi ⊂ N for all i = 1, 2, · · · , n. Hence, N is open.
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Chapter 4

Introduction to Haar Measure on Locally

Compact Groups

In this chapter, we introduce a measure which is analogous to the Lebesgue measure on locally
compact groups. Namely, on any locally compact group there is an essential unique regular
Borel measure which is invariant under translations called a Haar measure. We focus on two
problems, i.e., the existence and the uniqueness of Haar measures. First, we study a general
result concerning the existence of a Haar measure on a locally compact group. In addition, the
Riesz representation theorem, see [3], will be required to achieve the uniqueness.

4.1 Basics of Measure and Integration Theories

In this section, we give a quick review to the concepts of measure and integration theories with
some prelimaries useful results.

De�nition 4.1.1 (σ-algebra). Let X be a set. A collection A of subsets of X is called a σ-
algebra on X if the following axioms hold.

(i) X ∈ A,

(ii) X \ A ∈ A provided that A ∈ A,

(iii) if {An} is a �nite or in�nite countable collection of sets in A, then
⋃
n≥1An ∈ A.

A set X equipped with A is called a measurable space, denoted by (X,A), and a subset
A of A is said to be a measurable set.

Remark 4.1.1. One can deduce from the preceding axioms more properties for measurable
spaces. For instance, (i) and (ii) imply that the empty set is measurable, i.e., ∅ ∈ A. Also,
from all conditions above, we see that the countable intersection of �nite or in�nite family of
measurable sets is measurable, i.e., if {An}n∈N ⊂ A either �nite or in�nite, then

⋂
n≥1An ∈ A.

De�nition 4.1.2 (Borel σ-algebra). Let X be a topological space. The smallest σ-algebra
containing all open subsets of X is called a Borel σ-algebra, denoted as B(X).

In this case, we say that B(X) is generated by a topology on X. The members of B(X) is
called Borel sets.

Remark 4.1.2. Since all open sets are Borel sets, then in view of (ii) in Def.4.1.1, we deduce
that all closed sets are also Borel sets.
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Now we go through into the notion of measures. For convenience, we will deal with non-
negative measures. This types of functions can reach ∞ in the extended real numbers which
includes −∞ and +∞, i.e., R = R ∪ {±∞}. Further, the arithmetic and order properties
inherit as the real line system with some exceptions, i.e., we de�ne the product of 0 and ±∞
to be 0 while the di�erence of two ∞ is unde�ned.

De�nition 4.1.3 (Measure). Let (X,A) be a measurable space. A function µ : A → [0,∞] is
said to be a measure on A if

(i) µ(∅) = 0, and

(ii) if {An}∞n=1 is a collection of disjoint sets in A, then

µ

(
∞⋃
n=1

An

)
=
∞∑
n=1

µ(An).

A measurable space together with a measure µ is called a measure space and denoted by
(X,A, µ).

Remark 4.1.3. Note that all measures satisfy the subadditive property

µ

(
∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An),

where {An}n∈N is a countable collection of sets while the equality holds whenever {An}n∈N is a
pairwise disjoint family.

Example 4.1.1. Recall that the Lebesgue measure de�ned on R is the unique measure such
that the measure of any interval (open or closed) is the distance of its endpoints.

De�nition 4.1.4 (Borel Measure). A Borel measure on a topological space X is a measure
whose domain is B(X) and each compact subset has a �nite measure.

De�nition 4.1.5 (Regular Measure). Let X be a topological space together with a σ-algebra A
such that B(X) ⊂ A. Then a Borel measure is regular if the following hold.

(i) µ(A) = inf{µ(U) : U is open and A ⊂ U} for all A ∈ A, and

(ii) µ(U) = sup{µ(K) : K is compact and K ⊂ U} for all open subsets U of X.

A measure satisfying (i) is called outer regular and a measure is said to be inner regular
if (ii) holds.

De�nition 4.1.6 (Outer Measure). An outer measure on a set X is a function λ : P(X)→
[0,∞] such that the following hold.

(i) λ(∅) = 0,

(ii) λ(A) ≤ λ(B) whenever A ⊆ B (monotoncity),

(iii) countably subadditive property.

De�nition 4.1.7 (λ-measurable Set). Let λ be an outer measure on a set X. A subset B of X
is said to be λ-measurable if

λ(A) = λ(A ∩B) + λ(A ∩ (X \B))

holds for any subset A in X.
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Proposition 4.1.1 ([11]). Let λ be an outer measure on a set X and M be the collection of
all λ-measurable subsets of X. Then

(i) M is a σ-algebra on X.

(ii) The restriction of λ onMλ is a measure onMλ.

De�nition 4.1.8 (Measurable and Borel Measurable Functions). Let (X,A) and (Y, C) be two
measurable spaces. A function f : X → Y is said to be measurable if f−1(C) is measurable
in X for all C ∈ C. If f assigns to each Borel set in X a Borel subset in Y, then it is called a
Borel measurable function.

Proposition 4.1.2 ([11]). Let X and Y topological spaces and let f : X → Y be a continuous
function. Then f is Borel measurable.

De�nition 4.1.9. Let (X,µ) be a measure space and let f be a measurable function. Then the
integral of f over X,

∫
X
fdµ, exists if it is either �nite or equal to ∞ (or −∞) while it is said

to be µ-integrable if the integral of f is �nite.

Proposition 4.1.3. Let (X,µ) be a measure space, α ∈ R and f, g be two real-valued functions
which both are µ-integrable on X. Then

(i) f + g, αf are µ-integrable.

(ii)
∫
X
αfdµ = α

∫
X
fdµ (homogoneity).

(iii)
∫
X

(f + g)dµ =
∫
X
fdµ+

∫
X
gdµ (linearity).

(iv)
∫
X
fdµ ≤

∫
X
gdµ whenever f ≤ g on X (monotoncity).

(v) |f | is µ-integrable if and only if f is µ-integrable. Moreover,∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ∫
X

|f | dµ (triangal inequality).

De�nition 4.1.10 (Sections of a Function). Let X and Y be two sets. The sections fx and
f y of a function f de�ned on X × Y are given by

fx(y) = f(x, y) and f y(x) = f(x, y).

Given two sets X and Y . Recall that the support of a function f : X → Y is the closure
of the set where f does not vanish and denoted by supp(f). In other words,

supp(f) = {x ∈ X : f(x) 6= 0}.

We denote the set of continuous functions from X into Y with compact support by Cc(X, Y ).

Remark 4.1.4. Note that Cc(X), the set of continuous real-valued functions, is a vector space
over R and each function is bounded on X. Futher, since f is continuous, then by Prop.4.1.2,
f is Borel measurable. Also, if f ∈ Cc(X) and µ is a regular Borel measure on X, then f is
µ-integrable. In addtion, as µ is regular and supp(f) is compact, it follows that supp(f) has a
�nite measure.

Proposition 4.1.4 ([11]). Let X and Y be two locally compact spaces, let µ and ν be two regular
Borel measures on X and Y, respectively. Let f ∈ Cc(X × Y ).
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(i) For each x ∈ X and each y ∈ Y , the sections fx and f y are continuous and whose supports
are compact in Y and X, respectively, i.e., fx ∈ Cc(Y ) and f y ∈ Cc(X).

(ii) The functions

x 7→
∫
Y

fx(y)dν(y) and y 7→
∫
X

f y(x)dµ(x)

are in Cc(X) and Cc(Y ), respectively.

(iii) The equality ∫
X

∫
Y

f(x, y)dν(y)dµ(x) =

∫
Y

∫
X

f(x, y)dµ(x)dν(y)

holds.

Proposition 4.1.5 ([11]). Let µ be a regular Borel measure on a locally compact group G and
let f ∈ Cc(G). Then the functions

x 7→
∫
G
f(xy)dµ(y) and x 7→

∫
G
f(yx)dµ(y)

are continuous.

We say that a scalar-valued function f is a linear functional on a scalar vector space X if

f(αx+ βy) = αf(x) + βf(y)

for any scalars α and β and any x, y ∈ X.
Now we state an important result which guarantees the existence of a unique regular Borel

measure on any locally compact space.

Theorem 4.1.1 (Riesz Representation Theorem). Let X be a locally compact space and let
P be a positive linear continuous functional on Cc(X). Then there is a unique regular Borel
measure µ on X such that

P (f) =

∫
X

fdµ

for any f ∈ Cc(X).

4.2 Existence and Uniqueness of a Haar Measure

In this section, we give the de�nition of the Haar measure illustrated by some examples and
then we state and prove the existence and uniqueness.

De�nition 4.2.1 (Haar Measure). Let G be a locally compact group and µ be a non-zero
regular Borel measure on G. Then µ is called a left Haar measure if it is invariant under left
translation, i.e.,

µ(xA) = µ(A) for all x ∈ G and A ∈ B(G).

Similarly, we can de�ne a right Haar measure. A left or right Haar measure is simply said to
be a Haar measure.

Remark 4.2.1. This de�nition is well de�ned since xA and Ax are open for any open (Borel)
set A. Hence, both are Borel sets.

Example 4.2.1. The following examples are Haar measures.
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1. The Lebesgue measure on the additive group R (or on Rn).

2. The counting measure c de�ned as

c(A) =


∞, if card(A) =∞
card(A), if card(A) <∞
0, if A is empty

on all groups in the discrete topology is a Haar measure.

3. The measure ν de�ned as

ν(A) =

∫
A

1

x
µ(dx)

where µ is the Lebesgue measure on R, is a Haar measure on R\{0} under multiplication.

When we talk about a Haar measure, we have to mention whether it is a left or right Haar
measure. In our consideration, we focus on the left Haar measure since the study on the right
one is similar.

Now we state the proof of the existence of Haar measures on locally compact groups. The
strategy of the construction will be given through it.

Theorem 4.2.1 (Existence). There exists a left Haar measure on any locally compact group.

Proof.

Step 1: (De�ning (K : V )). Let K be a compact subset of a locally compact group G, and let V
be a subset of G whose interior is non-empty, i.e., V̊ 6= ∅. Then {xV̊ }x∈G is an open cover
of K. K being compact, there is a �nite subfamily {xi}ni=1 of elements of G such that

K ⊆
n⋃
i=1

xiV̊ ⊆
n⋃
i=1

xiV.

Let (K : V ) be the smallest non-negative integer n for which such a collection {xi}ni=1

exists. De�ne (K : V ) = 0 if and only if K = ∅.

Step 2: (De�ning hU). Let C be a compact subset of G such that its interior is non-empty. Our
goal is to measure an arbitrary compact subsetK of G by �nding the ratio (K : U)/(C : U)
for each neighborhood U of e and then computing a limit of this proportion as the
neighborhood U becomes smaller. After that, we use this limit to construct an outer
measure λ on G. Finally, we show that the restriction of λ on B(G) is identically the
left Haar measure. Let now C and U be collections of all compact subsets of G and all
neighborhoods of e, respectively. Thus, for each U ∈ U , de�ne hU : C → R by

hU(K) =
(K : U)

(C : U)
.

Step 3: (Properties of hU). hU has many features which are introduced below.

Lemma 4.2.1 ([11]). Let U ∈ U and K,K0, K1 ∈ C with x ∈ G. Then

(i) 0 ≤ hU(K) ≤ (K : C).

(ii) hU(C) = 1.

(iii) hU(xK) = hU(K).

64



(iv) hU(K0) ≤ hU(K1) provided that K0 ⊆ K1.

(v) hU(K0 ∪K1) ≤ hU(K0) + hU(K1).

(vi) If K0U
−1 ∩K1U

−1 = ∅, then hU(K0 ∩K1) = hU(K0) + hU(K1).

Step 4: (Identifying the limit of hU). We discuss the limit of the ratios hU . Indeed, the way used
here is to build a product space containing all the functions hU , and then by compactness
argument, we can obtain the so-called a limit function. For each K ∈ C , let IK be the
closed interval [0, (K : C)] in R and let

X =
∏
K∈C

IK

be their product. By Lemma 4.2.1 (i), hU(K) ∈ IK for all K ∈ C . It follows that
hU = (hU(K))K∈C ∈ X for all U ∈ U . Moreover, since each interval IK is closed and
bounded in R, it is compact. Hence, according to Theorem 1.5.2, X is compact. Now, for
each neighborhood V of e, let S(V ) be the closure of the set {hU ∈ X : U ∈ U , U ⊆ V }
in X. If V1, V2, · · · , Vn ∈ U and V =

⋂n
i=1 Vi, then hV ∈

⋂n
i=1 S(Vi). Since the sets

V1, V2, · · · , Vn ∈ U are arbitrary, we deduce that the collection {S(V )}V ∈U has the �nite
intersection property. By Prop.1.5.9,

⋂
V ∈U S(V ) is non-empty as long as X is compact.

Therefore, there is h0 ∈
⋂
V ∈U S(V ), and h0 will be the limit of hU .

Step 5: (Properties of h0). We give some properties of h0 before moving to the construction of
an outer measure derived from h0.

Lemma 4.2.2 ([11]). Let K,K0, K1 ∈ C and x ∈ G. Then

(i) 0 ≤ h0(K).

(ii) h0(C) = 1.

(iii) h0(∅) = 0.

(iv) h0(xK) = h0(K).

(v) h0(K0) ≤ h0(K1) provided that K0 ⊆ K1.

(vi) h0(K0 ∪K1) ≤ h0(K0) + h0(K1).

(vii) If K0 ∩K1 = ∅, then h0(K0 ∩K1) = h0(K0) + h0(K1).

Step 6: (Constructing the left Haar measure on G). Firstly, we show that the function λ : U →
[0,∞] de�ned as

λ(U) = sup{h0(K) : K ⊆ U,K ∈ C } (4.1)

is an outer measure on G and then extend it to all subsets A of G by

λ(A) = inf{λ(U) : A ⊆ U,U ∈ U }. (4.2)

According to Lemma 4.2.2, it clear that λ is non-negative, monotonic and λ(∅) = 0. We
check that λ is countably subadditive. Indeed, in view of (4.2), it is su�cient to show
this for any U ∈ U . Let {Ui}∞i=1 be a countable collection of open subsets of G and let
K be a compact subset of G such that K ⊆

⋃∞
i=1 Ui. K being compact and covering by

{Ui}∞i=1, then there is positive number n such that K ⊆
⋃n
i=1 Ui. In addition, by Remark

1.5.2, there are compact subsets Ki such that Ki ⊆ Ui for all i = 1, 2, · · · , n. By Lemma
4.2.2 (vi) and (4.1), we obtain

h0(K) ≤
n∑
i=1

h0(Ki) ≤
n∑
i=1

λ(Ui) ≤
∞∑
i=1

λ(Ui).
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Since K is arbitrary compact subset of
⋃∞
i=1 Ui and in view of (4.1), it follows that λ is

countably subadditive and thus λ is an outer measure on G. Secondly, we show that every
Borel set in G is λ-measurable. Indeed, by Prop.4.1.1 (i), the family of λ-measurable sets
is σ-algebra on G and by the de�nition of the Borel σ-algebra, it su�ces to show that if
U and V are open subsets of G such that λ(V ) <∞, then

λ(V ) ≥ λ(V ∩ U) + λ(V ∩ (G \ U)).

Let ε > 0 and choose a compact subset K of V ∩U and a compact subset C of V ∩(G \K)
such that

h0(K) > λ(V ∩ U)− ε and h0(C) > λ(V ∩ (G \K))− ε.

Then K and C are disjoint and since V ∩ (G \U) ⊆ V ∩ (G \K), by Lemma 4.2.2 (v), we
have

h0(C) > λ(V ∩ (G \ U))− ε.
By applying Lemma 4.2.2 (vii), we get

h0(K ∪ C) = h0(K) + h0(C) ≥ λ(V ∩ U) + λ(V ∩ (G \ U))− 2ε.

Since ε is arbitrary and h0(K∪C) ≤ λ(V ), we deduce that every Borel set is λ-measurable.
Therefore, B(G) is contained in Mλ and consequently, the restriction of λ on Mλ is a
measure (see Prop.4.1.1 (ii)). Thirdly, let µ = λ|B(G) and we show that µ is regular.
Indeed, if U is open and K is compact in G such that K ⊆ U , then h0(K) ≤ µ(U). This
implies by using (4.2)

h0(K) ≤ µ(K). (4.3)

Further, if U has a compact closure U , then by Prop.1.5.16, we obtain

h0(C) ≤ h0(U)

for each compact subset C of U . Thus,

µ(K) ≤ µ(U) ≤ h0(U).

That is, µ is �nite on the compact subsets of G. Moreover, µ is outer and inner regular
since it satis�es (4.1), (4.2) and (4.3). Finally, Lemma 4.2.2 (i) and (iv) together with
(4.1) and (4.2) ensure that µ is a non-zero and translation invariant. Hence, µ is the
required left Haar measure.

The proof of theorem is now complete.

Proposition 4.2.1 ([11]). Let G be a locally compact group and x ∈ G. If µ is a left Haar
measure on G and f is a non-negative or a µ-integrable function de�ned on a Borel subset of G,
then ∫

G
f(x−1y)dµ(y) =

∫
G
fdµ.

The following lemma ensures that the integral with respect to Haar measure of a non-zero
continuous function with compact support cannot be zero. This allows us to deal with the
proof of the uniqueness result.

Lemma 4.2.3 ([11]). Let G be a locally compact group and let µ be a left Haar measure on G.
Then each non-empty open subset U of G satis�es µ(U) > 0 and each non-negative continuous
function f in Cc(G) which is not identically zero satis�ess∫

G
fdµ > 0.
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Now we state the uniqueness of a Haar measure.

Theorem 4.2.2 (Uniqueness). Let µ and ν be two left Haar measures on a locally compact
group. Then there is a positive real number c such that ν = cµ.

Proof.

Step 1: (Showing the ratio independence on the Haar measure µ). Let g be a non-zero and non-
negative continuous function with compact support on a locally compact group G. We
shall �x g and take f be an arbitrary continuous function with compact support on G.
Then by Lemma 4.2.3, we get ∫

G
gdµ 6= 0,

and consider the ratio ∫
G fdµ∫
G gdµ

. (4.4)

One can show that if ν is another Haar measure, then∫
G fdν∫
G gdν

=

∫
G fdµ∫
G gdµ

or equivalently ∫
G
fdν = c

∫
G
fdµ =

∫
G
fd(cµ) (4.5)

where c =
∫
G gdν/

∫
G gdµ. Since the integral is positive linear functional on the vector

space Cc(G) and (4.5) is true for any f ∈ Cc(G), by Theorem 4.1.1, we obtain ν = cµ.

Step 2: If h ∈ Cc(G × G), then by Prop.4.2.1 (iii),∫
G

∫
G
h(x, y)dµ(x)dν(y) =

∫
G

∫
G
h(x, y)dν(y)dµ(x).

As both µ and ν are Haar measures, using their translation invariance and applying
Prop.4.2.1, we get by exchanging x with y−1x, then reversing the order of integration,
and �nally replacing y with xy, that∫

G×G
h(x, y)dν(y)dµ(x) =

∫
G

∫
G
h(x, y)dν(y)dµ(x)

=

∫
G

∫
G
h(x, y)dµ(x)dν(y)

=

∫
G

∫
G
h(y−1x, y)dµ(x)dν(y)

=

∫
G

∫
G
h(y−1x, y)dν(y)dµ(x)

=

∫
G

∫
G
h(y−1, xy)dν(y)dµ(x).

(4.6)

Now consider the function h : G × G → R de�ned by

h(x, y) =
f(x)g(yx)∫
G g(tx)dν(t)

, (4.7)

and its corresponding function h(y−1, xy) : G × G → R given by

h(y−1, xy) =
f(y−1)g(x)∫
G g(ty−1)dν(t)

. (4.8)
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Step 3: (Showing indeed that h ∈ Cc(G × G)). By Prop.4.1.5, the function x 7→
∫
G g(tx)dν(t) is

continuous and Lemma 4.2.3 asserts that it never equals to zero. Also, f(x) and g(yx)
are continuous so, h(x, y) is well-de�ned and continuous. Note that if K = supp(f) and
C = supp(g), then supp(h) ⊆ K × CK−1. The set K × CK−1 is compact according to
Prop.3.2.1 and Theorem 1.5.2, thus, supp(h) is compact. This proves that h ∈ Cc(G×G).

Step 4: (Showing the ratio dependence only on the functions f and g). Take the integrals of (4.7)
and (4.8) over G with respect to ν and y, we get∫

G
h(x, y)dν(y) =

∫
G

f(x)g(yx)∫
G g(tx)dν(t)

dν(y) = f(x)

∫
G g(yx)dν(y)∫
G g(tx)dν(t)

= f(x) (4.9)

and∫
G
h(y−1, xy)dν(y) =

∫
G

f(y−1)g(x)∫
G g(ty−1)dν(t)

dν(y) = g(x)

∫
G

f(y−1)∫
G g(ty−1)dν(t)

dν(y). (4.10)

Thus, integrate (4.9) and (4.10) over G with respect to µ and x, we obtain∫
G

∫
G
h(x, y)dν(y)dµ(x) =

∫
G
fdµ (4.11)

and ∫
G

∫
G
h(y−1, xy)dν(y)dµ(x) =

∫
G
gdµ

∫
G

f(y−1)∫
G g(ty−1)dν(t)

dν(y). (4.12)

Substituting (4.11) and (4.12) into (4.6) gives∫
G
fdµ =

∫
G
gdµ

∫
G

f(y−1)∫
G g(ty−1)dν(t)

dν(y).

This concludes the proof because it shows that the ratio in (4.4) depends on f and g, but
not on µ.

The proof is now complete.

Remark 4.2.2. If G is abelian, then the uniqueness proof becomes simple. Indeed, let f, g ∈
Cc(G) be de�ned as above. Then∫

G
fdµ

∫
G
gdν =

∫
G

∫
G
f(x)g(y)dµ(x)dν(y)

=

∫
G

∫
G
f(xy)g(y)dµ(x)dν(y)

=

∫
G

∫
G
f(y)g(yx−1)dν(x)dµ(y)

=

∫
G

∫
G
f(y)g(x−1)dµ(x)dν(y)

=

∫
G
fdν

∫
G
g(x−1)dµ(x).

Now de�ne c =
∫
G gdν/

∫
G g(x−1)dµ(x), we get (4.5). Hence, by Theorem 4.1.1, ν = cµ as

desired.
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