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1. Introduction 

The progress of an epidemic through the population is highly amenable to 

mathematical modelling. In particular, the first attempt to model and hence predict 

or explain patterns dates back over 100 years, although it was the work of Kermack 

and McKendrick that established the basic foundations of the subject. These early 

models, and many subsequent revisions and improvements, operated on the 

principle that individuals can be classified by their epidemiological status—most 

simply susceptible to the infection, infected and therefore infectious, and recovered 

and hence no longer infectious. (We stress that this classification is based upon an 

individual's ability to host and transmit a pathogen, and may be relatively 

unconnected to their medical status.) In this review, we focus on how such models 

can be used to predict the future outcome of an epidemic process (or the impact of 

control measures); however, models may also have a more theoretical use as 

explanatory tools elucidating fundamental principles of transmission and the 

factors driving epidemic behavior.  

 

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by a 

virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The 

first known case was identified in Wuhan, China, in December 2019.The disease 
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quickly spread worldwide, resulting in the COVID-19 pandemic. The symptoms of 

COVID-19 are variable but often include fever, cough, headache,fatigue, breathing 

difficulties, loss of smell, and loss of taste.Symptoms may begin one to fourteen 

days after exposure to the virus. At least a third of people who are infected do not 

develop noticeable symptoms.of those who develop symptoms noticeable enough 

to be classified as patients, most (81%) develop mild to moderate symptoms (up to 

mild pneumonia), while 14% develop severe symptoms (dyspnea, hypoxia, or 

more than 50% lung involvement on imaging), and 5% develop critical symptoms 

(respiratory failure, shock, or multiorgan dysfunction).Older people are at a higher 

risk of developing severe symptoms. Some people continue to experience a range 

of effects (long COVID) for months after recovery, and damage to organs has been 

observed.Multi-year studies are underway to further investigate the long-term 

effects of the disease.COVID-19 transmits when people breathe air contaminated 

by droplets and small airborne particles containing the virus. The risk of breathing 

these is highest when people are in close proximity, but they can be inhaled over 

longer distances, particularly indoors. Transmission can also occur if contaminated 

fluids are splashed or sprayed in the eyes, nose, or mouth, or, more rarely, via 

contaminated surfaces. People remain contagious for up to 20 days and can spread 

the virus even if they do not develop symptoms. 
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2. The Kermack-McKendriek Model 

Considered as one of the first compartmental models, Kermack-McKendrick 

epidemic model was developed in the late 1920s with the pioneering work of 

Kermack and McKendrick.The model is described as the SIR model for the spread 

of disease, which consists of a system of three ordinary differential equations 

characterizing the changes in the number of susceptible (S), infected (I), and 

recovered (R) individuals in a given population. The model is a good one for many 

infectious diseases, despite its simplicity. Ever since, numerous and more complex 

compartmental mathematical models have been developed. For instance, in 

biology, modeling is particularly useful in studying organs like the lungs, heart, 

intestinal edema and cancer, etc. Almost all these models take their source on 

Kermack-McKendrick’s model and serve to help gain insights into the 

transmission and control mechanisms of diseases like HIV, TB, malaria and their 

interactions with others. Then most of the works done on modeling the dynamics 

of epidemiological diseases have been limited only to models based on (a system 

of) classical first-order differential equations. However, there is a growing interest 

in applying fractional calculus to mathematical epidemiology since it has turned 

out recently that many phenomena in different fields, including sciences, 

engineering, and technology, can be described very successfully by the models 

using fractional-order differential equations. In this model, a population of size 
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N(t) is divided into different classes, disjoint and based on their disease status. At 

time t, S=S(t) is the part of population representing individuals susceptible to a 

disease, I=I(t) is the part of population representing infectious individuals, R=R(t) 

is the part representing individuals that recovered from the disease. One of the 

most famous epidemic models is Kermack-McKendrick SIR model. Let 

N(t)=S(t)+I(t)+R(t), the Kermack-McKendrick then is 

$%
$&
= 	−𝛽𝑆𝐼																											          (1) 

$-
$&
= 𝛽𝑆𝐼 − 𝑣𝐼                              (2) 

$/
$&
	=	𝑣𝐼																																													(3) 

subject to the initial condition: 𝑆(0) = 𝑆3, 𝐼(0) = 𝐼3, and	𝑅(0) = 𝑅3, and 

therefore, 𝑁(0) = 𝑆3 + 𝐼3 + 𝑅3 . The basic reproduction number 𝑅3 = 𝛽𝑆3/𝜇 is 

the threshold that completely determines the dynamics of transmission of the 

epidemic.  We have three cases:  

• If 	𝑅3 >1, then I(t) increases (disease will spread, epidemic case). 

• If 	𝑅3 <1, then I(t) decreases (disease will disappear). 

• If 	𝑅3 =1, then I(t) will remain the same. 
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3. More complex model to study the spread of Covid-19 

Let us define the following parameters: 

β = infection	rate 
µ = death	rate	, the	same	for	all	individuals 
v = recovery	rate	 
𝛼 =	death	rate	caused	by	Covid-19	
γ = rate	by	which	recovered	individuals	have	lost	their	immunity	and 
	became	susceptible	the	disease	 
 
We assume relationships between 𝑆, 𝐼, and	𝑅 as showing in the following diagram: 
     

 

             Figure 1: Diagram shown relationships between S, I, and R. 

 

We thus have the following system of differential equations: 

$U
$&
= 𝐴 − 𝛽𝑆𝐼 + 𝛾𝑅 − 𝜇𝑆       (4) 

 
$-
$&	
= 𝛽𝑆𝐼 − 𝑣𝐼 − 𝛼𝐼 − 𝜇𝐼                (5) 
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$/
$&
= 𝑣𝐼 − 𝛾𝑅 − 𝜇𝑅                (6) 

 
 
 
 
To show that the solutions are bounded, we introduce a differential equation for 
N(t), which is obtained by adding 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). Thus, 
 

$Y
$&
= $U

$&
+ $-

$&
+ $/

$&
. 

We know 𝑁(0) = 𝑁˳	,where		𝑁˳	is	a	constant. 
 
𝑑𝑁
𝑑𝑡

= 𝐴 − 𝜇	(	𝑆 + 𝐼 + 𝑅) − 𝛼𝐼 
         
        = 𝐴 − 𝜇𝑁 − 𝛼𝐼. 
 
We know that  
 
𝑑𝑁
𝑑𝑡

= 𝐴 − 𝜇𝑁 − 𝛼𝐼 < 𝐴 − 𝜇𝑁. 
 
Therefore, if  
$Y
$&
= 𝐴 − 𝜇𝑁, 

 
bounded then  
 
𝑑𝑁
𝑑𝑡

= 𝐴 − 𝜇𝑁 − 𝛼𝐼, 
 
is also bounded. We thus have 
 
𝑑𝑁(𝑡)
𝐴 − 𝜇𝑁

= 𝑑𝑡 

 

^𝜇
𝑑𝑁

𝐴 − 𝜇𝑁
= 	−𝜇^𝑑𝑡 

  
ln(𝐴 − 𝜇𝑁) = −𝜇𝑡 + 𝑐	  
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  −𝜇𝑁 = 𝑒abcd − 𝐴 
 

𝑁 = 	
−𝑒bcd

𝜇
+	
𝐴
𝜇
			 

 

	𝑁(0) = −
𝑒3cd

𝜇
+	
𝐴
𝜇
= 𝑁e 

 
𝑒3cf

µ
= 𝑁˳ −

𝐴
µ

 

 
𝑒f	 = −µ	𝑁˳ + 𝐴	 

 
	𝐶 = ln|−𝜇𝑁˳ + 𝐴| 
 

𝑁(𝑇) =
𝐴
µ
−
𝑒aj&

µ
× 𝑒lm|aj	Y˳cn| 

 
 

	=
−1
µ
𝑒aj	&	[−µ𝑁˳ + 𝐴] +

𝐴
µ

 

 

= 𝑁˳	𝑒aj	& −
𝐴
µ
𝑒aj	& +

𝐴
µ

 

 

𝑁(𝑡) = 𝑁˳	𝑒aj	& +
𝐴
µ
[1 − 𝑒aj&] 

 
𝑁(𝑡) → 	 n

b
				as					𝑡 → ∞.   

 Thus 
$Y
$&
= 𝐴 − 𝜇𝑁 − 𝛼𝐼  is also bounded. 

That means the solutions (total population density) increase with time until they 
reach the value n

b
, which means the solutions are bounded by this value. Therefore, 

the model is biologically reasonable.  
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3.1 Equilibrium points  
 
Equilibrium is a state of a system which does not change.  If the dynamics of a 
system is described by a differential equation (or a system of differential 
equations), then equilibria can be estimated by setting a derivative (all derivatives) 
to zero. 
 
Example:  

$Y
$&st(Y) 

 
 
To find equilibria we have to solve the equation f(N)=0. 
 
 
Now we apply that to our system in equations (4-6). The SIR model has a disease-
free equilibrium point (DFE) which is 

(𝑺𝟎, 𝑰𝟎, 𝑹𝟎) = w
𝑨
𝝁
, 𝟎, 𝟎z 

3.2 Linear stability analysis  

We now analyze the local stability of the system (4-6) around the DFE point. 
 
The Jacobian matrix of the system 
 

$U
$&
= 𝐴 − 𝛽𝑆𝐼 + 𝛾𝑅 − 𝜇𝑆 = 𝑓(𝑆, 𝐼, 𝑅)        

 
$-
$&	
= 𝛽𝑆𝐼 − 𝑣𝐼 − 𝛼𝐼 − 𝜇𝐼 = 𝑔(𝑆, 𝐼, 𝑅)                 

 
$/
$&
= 𝑣𝐼 − 𝛾𝑅 − 𝜇𝑅 = 𝑧(𝑆, 𝐼, 𝑅)                 

 
 
 
is as follow: 
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  J = 	

⎝

⎜
⎛

�t
�U
								 �t

�-
											 �t

�/	
��
�U
								 	��

�-
												 ��

�/
��
�U
								 ��

�-
												 ��

�/⎠

⎟
⎞

   = �
−𝛽𝐼 − 𝜇 −𝛽𝑆 𝛾
𝛽𝐼 𝛽𝑆 − 𝑣 − 𝛼 − 𝜇 0
0 𝑣 −𝛾 − 𝜇

�. 

  
 
We then find the Jacobian matrix at the disease-free equilibrium (DFE): 

 
 

J�n
b
, 0,0� =

⎝

⎛
−𝜇													 −𝛽 n

b
										 		𝛾

0													 𝛽 n
b
− (𝑣 + 𝛼 + 𝜇)				 	0

0													 𝑣 −𝜇 − 𝛾⎠

⎞ 

 
 

|	𝐽 − 𝜆𝐼| = ��	

⎝

⎛
−𝜇													 −𝛽 n

b
										 		𝛾

0													 𝛽 n
b
− (𝑣 + 𝛼 + 𝜇)				 	0

0													 𝑣 −𝜇 − 𝛾⎠

⎞ − �
𝜆						 0					 0
0							 𝜆					 0
0						 0					 𝜆

�	�� 

 
 

=
�
�
−𝜇 − 𝜆 −𝛽

𝐴
𝜇
	 					𝛾

0 							𝛽
𝐴
𝜇
− (𝑣 + 𝛼 + 𝜇) 	− 𝜆 						0

0 𝑣		 						−𝛾 − 𝜇 − 𝜆

�
�
 

 
 
The characteristic polynomial, therefore, is 
  
(𝜇 + 𝜆)(−𝛽 n

b
− (𝑣 + 𝛼 + 𝜇) − 𝜆)(𝜇 + 𝛾 + 𝜆) 

 
The eigenvalues are: 
𝜆�= −𝜇,															𝜆� = −𝜇 − 𝛼 − 𝛾,														𝜆� = 𝛽 n

b
− (𝑣 + 𝛼 + 𝜇).		 

 
Hence	the	DFE	is	stable	(as	in	case	B	in	Figure	2)	if		
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𝛽 n
b
< 𝑣 + 𝛼 + 𝜇,						(7)	

and the DFE	is	unstable	(as	in	case	C	in	Figure	2)		if		
	

𝛽 n
b
> 𝑣 + 𝛼 + 𝜇.					(8)	

 
 
 

 
Figure 2: Phase portrait for the system (4-6). 

 
 
 
 
       3.3 The basic reproduction number (𝐑𝟎) 
 
An important concept in epidemiology is the basic reproduction number, defined 
as follows: In a healthy population we introduce one infection and compute the 
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expected infection among the susceptibles caused by this single infection. We call 
it the expected secondary infection, or basic reproduction number, and denote 
it by 𝑅3.  
 
Since both sides of the inequalities (7-8) are positive, we can divide both sides of 
the inequalities by 𝛽 n

b
  to obtain   

 
1 < �c𝛼+b

���
,						(9)	

and the DFE	is	unstable	if		
	

1 > �c𝛼+b

���
.					(10)	

We	can	clearly	see	that	the	disease	will	disappear	when		

1 <
𝑣 + 𝛼 + 𝜇

𝛽 n
b

 

and the disease will spread when  

1 >
𝑣 + 𝛼 + 𝜇

𝛽 n
b

 

We thus take the basic reproduction number (R3) to be 
 

𝑅3 =
�n

b(�c𝛼cb)
. 

 
This is because we know the disease disappear when the DFE is stable (R3 < 1) 
and the disease will spread when the DFE is unstable (R3 > 1). 
 

4. Numerical simulations 

In this section, we numerically using Matlab and ode45 solver examine the impact 
of the basic reproduction number 𝑅3 on the model solutions. We analytically 
showed that the disease will disappear when 𝑅3 < 1 and the disease will spread 
when 𝑅3 > 1. Here, we confirm that numerically. In Table 1, we picked random 
values that make 𝑅3 = 0.5 < 1 and show in Figure 3 that the disease disappeared. 
In Figure 3 when 𝑅3 = 1.5 > 1 the infectious disease continues spreading. We see 
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in Figure 3 the solution (𝑆) moves towards the stable equilibrium point 	

(𝑆3, 𝐼3, 𝑅3) = w
𝐴
𝜇
, 0,0z = (2,0,0), 

since the parameters in Table 1 make it locally stable (𝑅3 = 0.5 < 1). While the 
solutions move away from this point when 𝑅3 = 1.5 > 1 since it becomes 
unstable. We thus confirmed our analytical result. 
 
 
 Table 1: Parameters used in Figure 3. 

Parameter Description Value 
𝑆3 Initial susceptible population (at 𝑡 = 0) 0.9 
𝐼3 Initial infected population (at 𝑡 = 0) 0.1 
𝑅3 Initial recovered population (at 𝑡 = 0) 0 
𝐴 Birth rate 2 
𝛽 Effective contact rate 1 
𝑣 Recovery rate 1 
𝜇 Normal death rate 1 
𝛼 Death rate caused by Covid-19 1 
𝛾 Rate by which recovered individuals have lost their 

immunity and became susceptible the disease 
1 

𝑅3 Basic reproduction number (𝑅3 =
�n

b(�c𝛼+b)
) 0.6667 

 
 

Table 2: Parameters used in Figure 4. 

Parameter Description Value 
𝑆3 Initial susceptible population (at 𝑡 = 0) 0.9 
𝐼3 Initial infected population (at 𝑡 = 0) 0.1 
𝑅3 Initial recovered population (at 𝑡 = 0) 0 
𝐴 Birth rate 2 
𝛽 Effective contact rate 3 
𝑣 Recovery rate 1 
𝜇 Normal death rate 1 
𝛼 Death rate caused by Covid-19 1 
𝛾 Rate by which recovered individuals have lost their 

immunity and became susceptible the disease 
1 
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𝑅3 Basic reproduction                                     number 
(𝑅3 =

�n
b(�c𝛼+b)

) 
2 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The solution of the system (4-6) with parameters from  

Table 1when R0<1. The disease disappeared. 
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Figure 4: The solution of the system (4-6) with parameters from 

Table 1when R0>1. The disease continues spreading. 
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Appendix  
 
 

 
function dv = fun_SIR(t,v) 
global A gamma mu beta V alpha 
S = v(1); % susceptible 
I = v(2); % infected 
R = v(3); % recovered 
dv = zeros(3,1); 
dv(1) = A - beta*S*I +gamma*R- mu*S; 
dv(2) = beta*S*I - V*I-alpha*I - mu*I; 
dv(3) = V*I- gamma*R - mu*R; 
 
  
  
%------------------------------------------------------------------------------------------- 

 
global A V gamma mu beta alpha 
%% parameters 
A = 2; 
V = 1; 
gamma = 1; 
mu = 1; 
beta = 1; 
alpha = 1; 
R0 = beta*A/(mu*(V+alpha+mu)) 
%% initial conditions 
S0 = 0.9; % susceptible 
I0 = 0.1; % infected 
R0 = 0; % recovered 
init = [S0; I0; R0]; 
tspan = [0,15]; 
[t,v] = ode45('fun_SIR',tspan,init); 
plot(t,v(:,1),'LineWidth',3), hold on 
plot(t,v(:,2),'LineWidth',3), hold on 
plot(t,v(:,3),'LineWidth',3), hold on 
 


